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Abstract: The rapid and accurate detection of broccoli seedling planting quality is crucial for the
implementation of robotic intelligent field management. However, existing algorithms often face
issues of false detections and missed detections when identifying the categories of broccoli planting
quality. For instance, the similarity between the features of broccoli root balls and soil, along with the
potential for being obscured by leaves, leads to false detections of “exposed seedlings”. Additionally,
features left by the end effector resemble the background, making the detection of the “missed hills”
category challenging. Moreover, existing algorithms require substantial computational resources
and memory. To address these challenges, we developed Seedling-YOLO, a deep-learning model
dedicated to the visual detection of broccoli planting quality. Initially, we designed a new module,
the Efficient Layer Aggregation Networks-Pconv (ELAN_P), utilizing partial convolution (Pconv).
This module serves as the backbone feature extraction network, effectively reducing redundant
calculations. Furthermore, the model incorporates the Content-aware ReAssembly of Features
(CARAFE) and Coordinate Attention (CA), enhancing its focus on the long-range spatial information
of challenging-to-detect samples. Experimental results demonstrate that our Seedling-YOLO model
outperforms YOLOv4-tiny, YOLOv5s, YOLOv7-tiny, and YOLOv7 in terms of speed and precision,
particularly in detecting ‘exposed seedlings’ and ‘missed hills’-key categories impacting yield, with
Average Precision (AP) values of 94.2% and 92.2%, respectively. The model achieved a mean Average
Precision of 0.5 (mAP@0.5) of 94.3% and a frame rate of 29.7 frames per second (FPS). In field tests
conducted with double-row vegetable ridges at a plant spacing of 0.4 m and robot speed of 0.6 m/s,
Seedling-YOLO exhibited optimal efficiency and precision. It achieved an actual detection precision
of 93% and a detection efficiency of 180 plants/min, meeting the requirements for real-time and
precise detection. This model can be deployed on seedling replenishment robots, providing a visual
solution for robots, thereby enhancing vegetable yield.

Keywords: missed hills; exposed seedling; partial convolution; seedling replenishment robot

1. Introduction

Vegetables are essential in daily diets. Data from the United Nations’ Food and Agri-
culture Organization show that China leads globally, with 52.25% of the world’s vegetable
planting area and 58.31% of its total production [1]. With the increasing adoption of
smart agricultural technologies, traditional methods of vegetable production are evolving.
The use of transplanting machines, in particular, has greatly improved the efficiency of
vegetable cultivation [2,3]. However, when using transplanting machines for vegetable
cultivation, instances of substandard planting quality arise, including issues like excessive
planting depth (covered seedlings), inadequate depth (exposed seedlings), and missed

Agronomy 2024, 14, 931. https://doi.org/10.3390/agronomy14050931 https://www.mdpi.com/journal/agronomy

https://doi.org/10.3390/agronomy14050931
https://doi.org/10.3390/agronomy14050931
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com
https://orcid.org/0000-0002-3757-5946
https://doi.org/10.3390/agronomy14050931
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com/article/10.3390/agronomy14050931?type=check_update&version=2


Agronomy 2024, 14, 931 2 of 20

hills [4]. Factors contributing to substandard planting quality include mechanical de-
sign [5–7], agronomy [8,9], and various environmental aspects related to the field. Vavrina,
et al. [10] evaluated the impact of transplanting depth on tomato and bell pepper yields,
revealing that transplanting up to the first true leaf or cotyledon results in greater yields
than transplanting to the top of the stem. As shown in Figure 1, currently, the process of
detecting and replanting seedlings with substandard planting quality primarily relies on
manual labor. This method is marked by inconsistent standards and demands a significant
amount of work. A major challenge in transitioning from manual to mechanized replanting
is the development of effective target detection algorithms [11]. The speed and precision of
these algorithms are critical, as they directly influence the efficiency of the robots and the
yield of field-grown vegetables. Therefore, this study initially categorizes the conditions of
seedlings that impact yield and aims to develop fast and accurate detection algorithms for
these specific categories.
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The current prevalent technologies for field detection include machine vision [12,13],
ultrasonic sensor detection [14], and 3D Light Detection and Ranging (LiDAR) detec-
tion [15,16]. Ultrasonic sensors and 3D LiDAR can detect the presence of vegetable seedlings
within an area, yet they face difficulties in accurately distinguishing the planting quality of
these seedlings. Machine vision technology, known for its capability to capture compre-
hensive, precise, and intelligent information, demonstrates significant potential in target
detection of broccoli seedling planting quality [17,18].

Currently, deep learning is widely applied in the field of agricultural detection [19].
Scholars worldwide focus mainly on using deep learning to detect missing seedlings in
seedling planting quality assessments, with less emphasis on detecting planting depth. Lin,
et al. [20] developed a detection model for field peanut seedlings, combining an improved
YOLOv5s with DeepSort, and utilized drones for seedling emergence detection. Although
efficient, this model fails to locate non-emerged seedlings and cannot assess planting depth
quality. Cui, et al. [21] enhanced the YOLOv5s by adjusting its detection head structure and
incorporating a transformer, developing a rice missing seedling detection and counting
model with a precision of 93.2%. Wu, et al. [22] improved YOLOv5s by replacing its
Neck network with the Slim-Neck network, developing a sugarcane field missing seedling
detection model and proposing a method for predicting replanting locations. However,
this model tends to miss detecting small sugarcane seedlings, presenting limitations for the
detection of the “Covered seedling” category in our task. Zhang, et al. [23] replaced the
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upsampling module in the neck network of YOLOv5s with the Content-aware ReAssembly
of Features (CARAFE) module, enhancing the performance in detecting small targets.

For the detection of complex multi-target tasks such as broccoli planting quality as-
sessment, deep learning models need to achieve high precision across each category. Zhao,
et al. [24] developed a deep learning model for grading vegetable seedlings, utilizing
ShuffleNet Version 2 (ShuffleNet-V2) as the backbone network for feature extraction and in-
tegrating the Efficient Channel Attention (ECA) attention mechanism. This model achieved
high precision in categorizing seedlings as weak, damaged, or strong, with a precision rate
of 94.23%. Attention mechanisms enable network models to focus on relevant areas within
local information. Commonly used attention mechanisms include Squeeze-and-Excitation
(SE) [25,26], Convolutional Block Attention Module (CBAM) [27], and Coordinate Atten-
tion (CA) [28]. SE focuses solely on channel information, overlooking spatial information,
whereas CBAM employs global pooling operations to capture local spatial information.
CA, on the other hand, maintains channel information while concentrating on long-range
spatial information in feature maps. Zhu, et al. [29] integrated the CA mechanism with
YOLOX-s, enhancing the network’s focus on regions of interest and effectively improving
the detection precision for corn silk obscured by leaves.

To address challenges such as lower algorithm recognition rates and weak robustness
in natural environments, Sun, et al. [30] focused on the detection of broccoli seedlings.
They proposed a method based on the Faster Region-based Convolutional Neural Network
(Faster R-CNN) model, achieving a recognition precision of 91.73% with an average detec-
tion time of 249 ms. While two-stage detection models like Faster R-CNN [31] offer higher
precision, they also have slower image processing times. In contrast, one-stage detection
models, such as those in the YOLO series [32], bypass the candidate region selection stage
and directly treat object detection as a regression task, facilitating end-to-end detection.
In 2022, the novel YOLOv7 architecture was introduced, outperforming all known object
detectors within a performance range of 5 to 160 fps [33]. Among its variants, YOLOv7-tiny
maintains the cascade-based model scaling strategy of YOLOv7 and features improvements
in the Efficient Long-Range Aggregation Network (ELAN) [34]. YOLOv7-tiny employs a
more compact network architecture and an optimized training strategy. By reducing model
parameters and computational requirements, it offers a viable solution for target detection
in computationally constrained environments.

For mobile deployment in field environments, two primary methods are typically
used to reduce network model weights: (1) Utilizing lightweight architectures with fewer
parameters, such as MobileNet [35], ShuffleNet [36,37], and GhostConv [38], which decrease
the parameter count while minimizing performance loss. In precision agriculture, attention-
based lightweight models are often used in network models that require high accuracy but
fewer parameters [39]. (2) Implementing techniques like sparse training and model pruning
to further reduce the model’s parameters and computational demand. In addressing the
precise identification and localization of cabbage, Zhai, et al. [40] evaluated Faster R-CNN,
Single Shot MultiBox Detector (SSD), and YOLOv5. They opted for YOLOv5s as the base
model and implemented lightweight modifications using MobileNet V3s. This model
achieved a recognition precision of 93.14% with an image processing time of 54.09 ms,
marking a 26.98% reduction in processing time compared to the base model. However,
the model demonstrated reduced precision in detecting small cabbages with missing
leaves, particularly noticeable post-transplantation. Moreover, these studies have primarily
concentrated on inter-class classification, with the nuanced task of intra-class fine-grained
detection still presenting a significant challenge. Ref. [41] enhanced YOLOv3-tiny with Path
Aggregation Network (PANet) and Spatial Attention Module (SAM) for hierarchical tomato
seedling detection, effectively distinguishing no-seedlings, weak, and healthy seedlings.
However, research in this area is predominantly performed in stable conditions.
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In summary, current research primarily focuses on detecting missing seedlings, mainly
for assessing crop yield, with limited attention given to the detection of seedlings with
improper planting depth. This issue has emerged due to the transition from semi-automatic
to fully automatic transplanting machines, where the manual process of picking and placing
seedlings has been replaced by mechanical arms, leading to instances of substandard
planting quality, a new and common phenomenon. Ensuring vegetable yield necessitates
the detection of these poorly planted seedlings. Existing algorithms require significant
computational resources and memory, and they face limitations in recognizing categories
with similar features and small targets. For example, the similarity between the features
of broccoli root balls and soil clods, the ease with which root balls can be obscured by
leaves, the resemblance of “missed hill” features to the background, and the small size of
features in the “Covered Seedling” category, present significant challenges. To address these
challenges, our contributions are as follows: (1) We proposed a method for target detection
and classification specifically for broccoli planting quality, categorizing the planting quality
into “qualified seedlings”, “exposed seedlings”, “covered seedlings”, and “missed hills”,
and created a dataset for this research, thereby contributing exploratory work to the field of
vegetable planting quality detection. (2) We developed the Seedling-YOLO deep learning
model for identifying substandard broccoli planting quality in the field. (3) We introduced
the ELAN_P module for the backbone network, which reduces model parameters without
sacrificing precision. Furthermore, by integrating CARAFE and CA, we addressed issues
of false and missed detections, especially prevalent in “exposed seedlings”, “covered
seedlings”, and “missed hills”.

2. Materials and Methods
2.1. Broccoli Seedling Planting Quality Related

The classification of broccoli seedlings in this study is based on their planting status,
which plays a crucial role in their subsequent growth and development. We referred to the
transplanter performance experiment and the study of the impact of vegetable planting
depth on yield [10,42]. As depicted in Figure 2, we classified broccoli seedling planting qual-
ity into four types: (1) Qualified seedlings: Properly planted with adequate depth covering
the root ball without reaching the cotyledons or first true leaves; (2) Exposed seedlings:
The root ball of the seedling is exposed on the ground; (3) Covered seedlings: Planted too
deep, with the depth exceeding the first true leaf or the top of the seedling stem; (4) Missed
hills: Absence of seedlings in the designated planting locations within the established
inter-plant spacing. In this study, we developed a broccoli planting quality target detection
algorithm based on four defined classification situations. The development process and
key steps of this algorithm are illustrated in Figure 3. Initially, we conducted broccoli
planting experiments using three different types of transplanting machines. Following
this, we collected image data regarding the quality of broccoli planting and built a dataset
through data augmentation techniques and the use of Labelimg software (version 1.8.6;
tzutalin, 2021). Moreover, we developed the Seedling-YOLO model and compared it with
four currently high-performing algorithms. Finally, we evaluated the model’s performance
using validation sets and field experiments, discussing the advantages, limitations, future
directions, and the potential application of the model in mechanized replanting.
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From 21 August to 26 August 2022, data were collected at the demonstration base for 

whole-process mechanization of broccoli production in Xiangshui County, Jiangsu Prov-
ince, China. These data originated from broccoli plants transplanted using three different 
types of machines: the Yanmar (2ZQ-2) vegetable transplanting machine (Yanmar Co., 
Ltd., Osaka, Japan), the Jiangsu University (2ZBA-2) automatic transplanting machine [43] 

Figure 2. Broccoli seedling planting quality classification standards: (a) Diagram of soil covering
depth for broccoli seedling planting; (b) Examples of different planting qualities of broccoli seedlings.
Note: (a) Lines 1 and 2 in the figure represent the critical lines of soil coverage depth. Arrows above
dashed line 1 indicate that the soil covering depth exceeds critical line 1, representing a Covered
seedling. Arrows below dashed line 2 indicate that the soil covering depth is below critical line 2,
representing an Exposed seedling.
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2.2. Dataset Construction and Image Preprocessing

From 21 August to 26 August 2022, data were collected at the demonstration base for
whole-process mechanization of broccoli production in Xiangshui County, Jiangsu Province,
China. These data originated from broccoli plants transplanted using three different types of
machines: the Yanmar (2ZQ-2) vegetable transplanting machine (Yanmar Co., Ltd., Osaka,
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Japan), the Jiangsu University (2ZBA-2) automatic transplanting machine [43] (Jiangsu
University, Zhenjiang, China), and the AMEC (2ZS-2)vegetable transplanting machine [2]
(AMEC, Changzhou, China). The seedlings were derived from the local broccoli seedling
base with an age of 28–32 days, an average height of 12.4 cm, and 3–5 leaves. During the
image acquisition phase, we utilized a vision platform equipped with the Intel RealSense
D455 (Intel Corporation, Santa Clara, CA, USA) for video recording. The RGB resolution is
1920 × 1080 pixels. To minimize interference from non-target background in the field of
view, the camera was fixed at a height of 0.6 m. Given the requirement for the developed
detection model to adapt to the seedling detection needs of a replanting robot, moving
through various angles and moments in time, we set the camera’s installation angles at 45◦

and 90◦ for data collection. Additionally, we utilized an iPhone 12 (Apple Inc., Cupertino,
CA, USA) to collect single-plant images of broccoli seedling planting quality, aiming to
capture the fine-grained features of the broccoli. The main camera resolution of the iPhone
12 is 4032 × 3024 pixels. This dataset comprises images and video clips of broccoli taken
under various lighting conditions. Figure 4 displays a portion of this dataset.
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Data augmentation addresses sample imbalance and enhances the diversity of training
samples. It compels the model to learn more robust features and significantly improves the
model’s generalization capabilities. We used the ImgAug 3.2 software for image augmenta-
tion available at: https://github.com/Fafa-DL/Image-Augmentation (URL, accessed on
08 March 2023). To enrich the dataset and prevent model overfitting, offline augmentation
is employed through brightness adjustment and motion blur addition, resulting in a total
of 6000 images in the dataset. Labeling is performed using the LabelImg 1.8.6 software
available at: https://github.com/tzutalin/labelImg (URL, accessed on 09 March 2023). The
labeled objects are categorized into four classes, adhering to the COCO dataset format. The
dataset is partitioned into training, testing, and validation sets in an 8:1:1 ratio. Specific
information is shown in Table 1, the training set is used for network parameter training,
the testing set assesses the model’s generalization error, and the validation set optimizes
hyperparameters utilized during training, thereby enhancing the model’s performance.
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Table 1. Dataset breakdown for training, validation, and testing with class labels and image counts.

Set Target Box Number of
Images

Qualified Exposed Covered Missed

Train 3600 3300 2940 3150 4800
Validation 460 416 362 395 600

Test 475 428 342 382 600
Total 4535 4144 3644 3927 6000

2.3. Improvement of YOLOv7-Tiny

The improved network structure, including the ELAN_P module in the backbone
network for efficient feature extraction and the inclusion of CA in the Neck network, is
depicted in Figure 5. Additionally, the CARAFE operator is utilized for upsampling in
the model.
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2.4. Efficient ELAN-P Block

Partial convolution involves applying convolutional operations only to valid pixels
while disregarding or masking out invalid or missing pixels [44]. In image tasks, conven-
tional convolutions treat missing pixels as zero or entirely ignore them. In contrast, partial
convolution dynamically determines the contribution of each valid pixel to the output,
taking into account the absence or corruption of pixels, thereby addressing this issue. The
working principle of partial convolution is shown in Figure 6. For the convolution opera-
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tion of size H × W × C broccoli seedling image, it only needs to apply regular convolution
on a part of the input channel for spatial feature extraction and keep the rest of the channels
unchanged. It only uses the Cp channel for spatial feature extraction. Therefore, the FLOPs
of Pconv are as Formula (1).

FLOPs = W × H × C2
p × k2 (1)

For a typical r = Cp/C = 1/4, the FLOPs of PConv are only 1/16 of those of ordinary
convolutions.
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Figure 6. The structure of the Pconv and ELAN_P. Note: In the figure, the asterisk (*) represents the
convolution operation, and the dashed lines indicate the replacement of the standard CBL block with
a Pconv to enhance feature extraction and reduce the number of parameters.

By integrating Pconv into the ELAN module, our model efficiently processes valid
pixels in the feature map and addresses missing pixels with advanced padding or restora-
tion techniques. This integration, particularly within the ELAN_P module, improves the
handling of incomplete data, thereby boosting the model’s robustness and stability. The
ELAN_P module’s use of partial convolution optimization reduces computational demands
and memory usage.

2.5. Content-Aware ReAssembly of Features

Conventional upsampling techniques, such as nearest-neighbor and bilinear interpola-
tion, often fall short in complex tasks like detecting broccoli planting quality, as they do
not utilize the semantic context within feature maps. To overcome this, we adopted the
CARAFE operator, which adaptively performs upsampling by leveraging spatial informa-
tion, thus enhancing the detail and texture preservation in upsampled images. Figure 7
depicts the CARAFE network architecture [45]. The CARAFE module consists of two key
components: The Upsampling Kernel Prediction Module and the Feature Recombination
Module. The first component generates content-aware recombination kernels, optimizing
the process through channel compression and convolution operations to balance perfor-
mance and efficiency. The resulting feature map is restructured and normalized for effective
use in upsampling. In the Feature Recombination Module, features within local regions of
the input are reorganized using recombination kernels. This process involves weighted
summation based on the kernel and the position within the feature map, allowing for
precise and context-aware reassembly of features. The combined efforts of these modules
result in more accurate and detailed feature representation in the upsampling process,
crucial for tasks like detecting the quality of broccoli planting.
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2.6. Integrating the CA Attention Mechanism

Location information is the key to capturing target features in visual tasks, and CA
brings significant advantages to this task [28]. CA emplaces spatial information of seedlings
into channel attention and is able to capture long-range dependencies in one spatial di-
rection while retaining precise location information in the other. Its structure diagram is
shown in Figure 8. The input feature map uses pooling kernels of size (H, 1) and (1, W)
to encode each channel along the horizontal coordinate direction and vertical coordinate
direction. The output expressions of the C channel with height H and width W are obtained
as (2) and (3).

zh
c (h) =

1
W ∑

0≤i<w
xc(h, i) (2)

zw
c (w) =

1
H ∑

0≤i<H
xc(j, w) (3)
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In Equation (2), zh
c (h) represents the output of the c-th channel with a height of h, while

xc(h, i) signifies the feature vector of the i-th row. Similarly, in Formula (3) zw
c (w) denotes

the output of the c-th channel with a width of w, and xc(j, w) stands for the feature vector
of the j-th column. Employing a one-dimensional global pooling operation aggregates
features along the two spatial directions. This facilitates the attention module to capture
spatially relevant relationships along one direction while preserving positional information
from the other direction. In the attention generation phase, two feature images are first
concatenated. Then, a 1 × 1 convolution is used to reduce the number of channels, followed
by a nonlinear activation. The resulting output is split along the spatial dimension into
horizontal and vertical attention tensors. In this process, two sets of 1 × 1 convolutions are
employed to increase the channel count of the image, and nonlinear activation is applied
using the Sigmoid function. Finally, the generated attention images are element-wise
multiplied with the input feature image to implement the application of CA.

2.7. Model Training and Evaluation
2.7.1. Model Training

In this study, the experimental hardware platform consisted of an Intel i7-13700KF
CPU running the Windows 10 operating system, along with an RTX 4080 GPU and 32 GB
of RAM. The code was written using the PyTorch 1.13.0 deep learning framework and
developed using Python 3.8.15. To achieve optimal performance, hyperparameter tuning
was conducted, and the specific hyperparameter settings are presented in Table 2.

Table 2. Hyperparameter settings for network training.

Parameters Values

Lr0 0.01
Momentum 0.937

Weight decay 0.0005
Epochs 300

Batch size 16
Pre-trained weight YOLOv7-tiny.pt

In order to improve the o.

2.7.2. Model Evaluation

For the evaluation of broccoli seedling planting quality, precision (P) and recall (R)
were used to measure the precision and completeness of model detection. P represents the
proportion of all samples judged to be positive by the model, which are truly positive. Its
calculation formula is (4):

P =
TP

TP + FP
(4)

Among them, TP represents true positive cases and FP represents false positive cases.
R measures the model’s ability to detect positive samples. Its calculation formula is (5):

R =
TP

TP + FN
(5)

Among them, FN stands for false negative example. In addition, the average precision
(AP) and mean average precision (mAP) are used to comprehensively evaluate the perfor-
mance of the model on different categories. AP measures the precision of the model on a
single class (6), while mAP takes the average AP of all classes. Its calculation formula is (7):

AP =
∫ 1

0
P(R)dR (6)

mAP =
1
C

C

∑
i=1

APi (7)
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mAP@0.5 means that when the IOU value and ground truth value of the detection
frame are greater than 0.5, the sample is considered positive. As a comprehensive evalua-
tion index of model precision. The number of parameters(#param.), FLOPs, and FPS of the
model give insights into its size, computational load, and real-time processing ability, all vi-
tal for designing resource-efficient planting robots. By analyzing these metrics together, we
were able to gain insight and evaluate the overall performance and efficiency of the model.

3. Results
3.1. Training Loss Function Analysis

To ensure a fair comparison, both models were trained under identical environmental
and parameter conditions. Figure 9 presents the loss function graphs for Seedling-YOLO
and the baseline model. It is observed that Seedling-YOLO’s loss on the training set
decreases more rapidly compared to the baseline model, though the overall convergence
pattern is similar. On the validation set, the baseline model’s loss value shows a slightly
quicker decrease than the improved model in the initial 150 epochs. However, post 150
epochs, the improved model demonstrates a more significant reduction in loss value.
Ultimately, the loss value stabilizes after 250 iterations. The model effectively learns image
features and converges to an optimal solution.
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3.2. Model Performance and Comparison with State-of-the-Art

It can be seen from Figure 10 that the improved model has the best detection effect on
qualified seedlings and exposed seedlings, with AP values of 95.9% and 95.4%, respectively.
In addition, better results were obtained for covered seedlings and missed hills, with
AP values of 93.7% and 92.2%, respectively. The improved model achieved the highest
mAP@0.5, reaching 94.5%.
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Figure 10. Different models P-R curves: (a) YOLOv5s; (b) YOLOv7-tiny; (c) YOLOv7; (d) Seedling-
YOLO.

As indicated by Table 3, YOLOv7 achieved the highest P of 87.8%, R of 91.1%, and
mAP@0.5 of 92.5% when compared with YOLOv7-tiny, YOLOv5s, and YOLOv4-tiny. How-
ever, YOLOv7 also has the largest number of parameters and FLOPs, as well as the lowest
FPS, suggesting that while YOLOv7 offers superior detection performance, it is also the
slowest in detection speed. Among these four existing algorithms, YOLOv7-tiny presents
the best balance of accuracy and speed performance, which is why we chose to enhance
it. The improved model, Seedling-YOLO, has 4.98 M parameters and 11.6 G FLOPs, the
lowest among all models, denoting a more lightweight architecture. Additionally, with
the highest FPS of 29.7, it also proves to be the fastest. Moreover, Seedling-YOLO achieves
the best detection performance with a P of 91.3%, R of 92.1%, and mAP@0.5 of 94.3%. As
shown in Table 4, our Seedling-YOLO model, compared to YOLOv7-tiny, demonstrates
improvements in both precision and recall rates for the “exposed seedlings” and “missed
hills” categories. The most significant improvement is observed in the “missed hills” cate-
gory, with an increase of 10.9% in precision and a 9% increase in recall rate. The AP value
for “missed hills” saw the largest increase, reaching 11.2%.
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Table 3. Comparison of the experimental findings produced by various algorithms.

Networks #Param. FLOPs P R mAP@0.5 FPS

YOLOv7 37.2 M 105.2 G 87.8% 91.1% 92.5% 24.9
YOLOv7-tiny 6.23 M 13.9 G 87.5% 90.1% 90.3% 26.5

YOLOv5s 7.27 M 17.2 G 87.2% 87.4% 88.5% 25.8
YOLOv4-tiny 6.07 M 13.2 G 87.1% 86.9% 87.7% 26.7

Seedling-YOLO 4.98 M 11.6 G 91.3% 92.1% 94.3% 29.7

Table 4. Seedling-YOLO vs. YOLOv7-tiny: precision and recall in four broccoli planting quality categories.

Set YOLOv7-Tiny Seedling-YOLO

P R AP P R AP

Qualified seedling 91.3% 94.1% 94.3% 91.5% 93.9% 95.9%
Exposed seedling 89.3% 92.4% 92.8% 91.8% 92.6% 95.4%
Covered seedling 89.7% 93.1% 93.2% 91.3% 92.1% 93.7%

Missed hill 79.7% 80.8% 81.0% 90.6% 89.8% 92.2%

In order to test the detection effect of the Seedling-YOLO algorithm, a verification test
is carried out on the test set. Based on the consideration of the recall rate and experimental
comparison effect, the confidence level is set to 0.5. Figure 11 displays a selection of
detection results from the improved model, illustrating successful detection across all
four challenging categories. Figure 12 offers a comparative analysis of detection between
the improved model and the baseline. In Figure 12A,B, it is evident that YOLOv7-tiny
incorrectly identifies “exposed seedlings” as qualified seedlings and misinterprets the
background seedling leaves as “covered seedlings.” In Figure 12C, the model mistakenly
recognizes the background as “missed hills,” and in Figure 12D, the similarity between
seedling root balls and soil clods, coupled with obstructions, leads to the model’s inability
to accurately classify the specific category. Additionally, the model exhibits low precision in
detecting small target seedlings. In contrast, the improved model correctly identifies these
challenges, and its overall score and regression performance surpass that of the original
model. Using Grad-CAM [46] as a visualization tool, it is evident from Figure 13 that
our CA mechanism is able to locate the object of interest more precisely compared to the
base network.
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Figure 11. Improved model detection performance: (a) Detection performance for root balls similar to
soil clods; (b) Detection effectiveness for obscured root balls; (c) Detection performance for “covered
seedlings”; (d) Detection effectiveness for background similarity. Note: The figures (a–d) show the
detection performance on various types of challenging detection samples.
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Figure 12. Comparative analysis of detection performance between Seedling-YOLO model and
YOLOv7-tiny: (a) Detection Effectiveness of YOLOv7-tiny; (b) Detection Effectiveness of Seedling-
YOLO. Note: (A–H) in the figure show the comparison of detection performance on various challeng-
ing detection samples. Black circles (#) in the diagram represent false detections.
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Figure 13. Add CA attention and compare with baseline heat map: (a) Initial image; (b) YOLOv7-tiny;
(c) YOLOv7-tiny-CA. Note: Blue represents areas of lower feature activation. Red and its gradients
indicate the importance of the areas of interest to the model, where the deeper red signifies the areas
that the model focuses on more intensely.

3.3. Ablation Experiment

In order to study the contribution of ELAN_P, CARAFE and CA to Seedling-YOLO, the
ablation experiment was conducted for verification, and the data were uniformly processed
using the YOLO.py script. The experimental results are shown in Table 5. Among them, the
architecture information of the eight models is as follows: M1 is the original YOLOv7-tiny;
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M2 is the YOLOv7-tiny backbone network using ELAN_P; M3 incorporates CARAFE into
YOLOv7-tiny; M4 integrates CA into YOLOv7-tiny; M5 combines YOLOv7-tiny with both
ELAN_P and CARAFE; M6 adds ELAN_P and CA to YOLOv7-tiny; M7 fuses CARAFE and
CA into YOLOv7-tiny; M8 integrates all three modules—ELAN_P, CARAFE, and CA—into
YOLOv7-tiny. It can be seen from the table that the model parameters and GFLOPs
decreased by 20.8% and 27.3%, respectively, after the M2 adopted the ELAN_P module
integrated with Pconv, and the mAP@0.5 increased by 2.4%. M3 and M4 significantly
improve the detection precision with a small increase in the amount of parameters. When
ELAN_P integrates CARAFE or CA, it plays a positive role in promoting precision, and
M5 and M6 have increased by 3.6% and 2.9% respectively. CARAFE decreased by 0.3%
compared with M4 after CA fusion compared with M7. In the end, the fusion of the three
modules of YOLOv7-tiny played a positive role in the precision of the model. Compared
with the basic model, the parameters of the improved M8 were reduced by 20%, FLOPs
were reduced by 16.5%, and mAP@0.5 reached its highest of 94.3%.

Table 5. Comparisons of ablation experiments.

Model ELAN_P CARAFE CA #Param. FLOPs P R mAP@0.5

M1 × × × 6.23 M 13.9 G 87.5% 90.1% 90.3%
M2

√ × × 4.93 M 10.1 G 89.5% 90.9% 92.7%
M3 × √ × 6.33 M 14.0 G 89.4% 91.8% 93.2%
M4 × × √

6.2 M 13.9 G 90.1% 91.5% 93.9%
M5

√ √ × 5.04 M 10.9 G 90.4% 91.2% 93.9%
M6

√ × √
4.94 M 10.8 G 89.8% 89.1% 93.2%

M7 × √ √
6.35 M 14.0 G 90.3% 88.4% 93.6%

M8
√ √ √

4.98 M 11.6 G 91.3% 92.1% 94.3%
“×” and “

√
” indicate that the improved method was not and was applied in the model, respectively.

3.4. Experimental Results at Different Speeds

In order to verify the effectiveness and efficiency of the quality object detection model
for broccoli seedling transplanting at different speeds, we developed a vision platform for
field experiments. As shown in Figure 14, the experimental environment is a field with
a wide view and clear weather. The distance between broccoli plants is 0.4 m. In this
experiment, the speed of the vehicle is controlled by adjusting the motor speed, and the
speed can be adjusted from 0.2 to 1.2 m/s. We compared the detection performance at
different speeds. To evaluate the model’s effectiveness on hard-to-recognize samples, we
also selected more complex ridge surfaces for validation, as shown in Figure 15. When the
speed is 0.3 m/s, the model has a high recognition precision and recall rate, and it also has
a good recognition effect on complex ridges. As the speed increases to 0.6 m/s, the score
decreases slightly. When speed continues to increase to 0.7 m/s, missed detection and false
detection of each category begin to occur, and the detection frame score further decreases.
The circles in the figure are false detections, and the triangles are missed detections. In the
experiment, we conducted statistics based on the number of missed and false detections.
The model’s detection performance on a total of 200 objects, comprising 100 from normal
ridges and 100 from complex ridge surfaces, was evaluated using precision and recall as the
key metrics. The detection results are shown in Table 6. The experimental results show that
the Seedling-YOLO proposed in this paper can achieve a detection precision of more than
95% when the motion speed of broccoli is lower than 0.4 m/s. The recognition precision can
be maintained above 93% within the speed of 0.6 m/s. At this point, the model exhibited
good recognition performance on both normal ridges and complex ridge surfaces. When
the speed increased to 0.7 m/s, due to the increase in motion blur, the feature extraction of
the model was affected, and the precision began to decline. Resulting in a precision rate
of 84.5% and a recall rate of 89.6%. When the speed continued to increase, the precision
and recall dropped sharply. At this time, the model was unable to recognize normally.
When the spacing between broccoli plants is 0.4 m, our algorithm achieves an efficiency
of 180 plants per minute for detecting double-row vegetable ridges. The detection speed
meets the planting speed of existing high-speed transplanting machines [5]. Our proposed
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Seedling-YOLO satisfies the recognition speed and precision requirements of replanting
robots, providing visual recognition technology support for these robots.
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Table 6. Performance of the model at different speeds.

Speed Number of
Targets

Number of
Missed Detections

Number of False
Classification P R

0.3 m/s 200 2 3 97.5% 98.3%
0.4 m/s 200 2 6 96% 98.6%
0.6 m/s 200 3 11 93% 98.0%
0.7 m/s 200 12 19 84.5% 89.6%
1 m/s 200 35 41 62% 65.7%

4. Discussion

Currently, the most advanced models are typically those that excel on public datasets.
However, for specific tasks, these models often require customization and development
tailored to particular recognition challenges. The detection of vegetable planting quality
is a new challenge brought about by the development of fully automatic transplanting
machines. In this study, we found that the features of broccoli root balls are similar to soil
clods and can easily be obscured by leaves, as shown in Figure 12A,D, leading to false
detections in the most advanced models. In the “missed hills” category, features left by the
end effector resemble the background, making recognition difficult, as evidenced by false
detections in YOLOv7-tiny in Figure 12C. In the detection of “covered seedlings”, as shown
in Figure 12B,D, the small target size leads to false detections and low precision in existing
algorithms. To address these challenges, we developed Seedling-YOLO, which integrates
YOLOv7-tiny with CARAFE, CA, and our proposed ELAN_P module. As shown in Table 5,
the ablation experiments reveal that M3 and M4 significantly increase the model’s accuracy
and recall rate. From the heatmap in Figure 13, it is evident that the model pays more
attention to areas of interest, enhancing focus on small targets and reducing interference
caused by background similarities. According to M5-M8, the introduction of the CARAFE
and CA operators does not significantly increase the overhead of the model. This integra-
tion effectively resolves issues related to feature similarity, occlusion, and small target size,
resulting in a notable improvement in detection, as illustrated in Figures 11 and 12E–H.
Typically, developing fast detection algorithms sacrifices model precision, but as shown in
Table 5, Seedling-YOLO reduced the model’s parameters without losing precision using
ELAN_P, making it more suitable for deployment on resource-constrained devices. Com-
pared to previous research [20,21], which focused on the detection of emergence rate and
missing seedlings for yield assessment, [22] developed a sugarcane seedling replanting
model with a replanting location prediction method. Although successful in predicting
missing seedlings, it tended to miss small seedlings. In contrast, Seedling-YOLO can
directly locate missed plantings and detect exposed and covered seedlings. This study
primarily developed a high-precision, real-time detection model for replanting robots, as
shown in Table 4. High precision improves the precision of replanting, reducing the cases
of incorrect replanting, thereby enhancing the efficiency of replanting robots. A high recall
rate ensures the robot identifies and replants more areas that actually require it, which
is crucial for ensuring overall crop yield. Additionally, the proposed model has been
applied to a visual chassis for recognition verification at different speeds, achieving over
90% precision at speeds up to 0.6 m/s, as shown in Figure 15. As the speed increases, due
to motion blur, false and missed detections begin to occur, similar to the conclusions drawn
in the literature [40,47].

Regarding the applicability and limitations of the model, Seedling-YOLO can assist re-
planting robots in identifying substandard plantings. It also calculates the distance between
the robot and the seedling using the coordinates of the bounding box, guiding the motor
to the location requiring replanting. Furthermore, the bounding box coordinates aid in
directing the robot’s end effector for precise replanting positioning. Additionally, the model
is suitable for completing replanting tasks within a few days following transplantation by
a transplanting machine. This not only ensures consistent growth between replanted and
field-grown seedlings but also prevents the deterioration of mound surfaces due to weather
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or human factors, which could reduce the precision of missing seedling detection. Given
the model’s adaptability to unstructured environments, it is expected to excel even further
in stable, controlled settings. However, our model is currently specific to broccoli planting
quality detection. In the future, we plan to collect data on more vegetable varieties, enabling
the model to be used for quality detection in a broader range of vegetable plantings. In the
future, we can incorporate deblurring algorithms to enable the model to adapt to faster
walking speeds of replanting robots. Additionally, by adding layers for small targets, we
can further enhance the model’s precision in detecting small objects.

5. Conclusions

In this study, we successfully designed Seedling-YOLO, an efficient object detection
algorithm for the planting quality of broccoli seedlings. This model efficiently handles
real-time detection of diverse planting conditions, including qualified, exposed, covered
seedlings, and missed hills, which are commonly problematic in field environments due to
false and missed detections by existing algorithms.

Leveraging YOLOv7-tiny, we redesigned the ELAN module by incorporating Pconv,
significantly reducing the model’s parameter, and thereby streamlining the backbone fea-
ture extraction process. Further enhancements were achieved by integrating the CARAFE
operator, which uses a larger receptive field for upsampling to boost model precision.
Additionally, we introduced CA in the backbone and neck shallow layers, focusing the
model more on critical areas when capturing features.

The architecture of Seedling-YOLO has shown substantial improvements in terms of
precision and speed. Experimental validation confirmed that the model can effectively
classify four types of broccoli seedling planting qualities. Notably, the AP for detecting
missing seedlings increased by 11.2%. Compared to the original model, Seedling-YOLO’s
parameters were reduced by 20%, and FLOPs by 16%, with an mAP@0.5 of 94.3%, and an
FPS of 29.7. This streamlined, more accurate model is suitable for deployment on standard
hardware, achieving a detection precision of 93% at a speed of 0.6 m/s and a recognition
efficiency of 180 plants/min in dual-row vegetable ridges with a plant spacing of 0.4 m.
These capabilities fulfill high-speed planting requirements and provide robust technical
support for field vegetable seedling supplementation.

In future work, we plan to broaden the application of the model to include various
other vegetable seedlings, aiming to increase the versatility of the seedling recognition
system for diverse agricultural environments. Additionally, we plan to explore the de-
velopment of advanced seedling picking and planting devices that integrate our visual
recognition technology, potentially revolutionizing the mechanization of seedling planting
and replanting operations. These expansions could significantly contribute to the global
efforts in precision agriculture, aiming to improve crop yields, optimize resource use, and
ensure food security.
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