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Abstract: Mesenchymal stem cell (MSC)-based therapy is one of the most promising modalities
for cardiac repair. Accumulated evidence suggests that the therapeutic value of MSCs is mainly
attributable to exosomes. MSC-derived exosomes (MSC-Exos) replicate the beneficial effects of MSCs
by regulating various cellular responses and signaling pathways implicated in cardiac regeneration
and repair. miRNAs constitute an important fraction of exosome content and are key contributors
to the biological function of MSC-Exo. MSC-Exo carrying specific miRNAs provides anti-apoptotic,
anti-inflammatory, anti-fibrotic, and angiogenic effects within the infarcted heart. Studying exosomal
miRNAs will provide an important insight into the molecular mechanisms of MSC-Exo in cardiac
regeneration and repair. This significant information can help optimize cell-free treatment and
overcome the challenges associated with MSC-Exo therapeutic application. In this review, we
summarize the characteristics and the potential mechanisms of MSC-derived exosomal miRNAs in
cardiac repair and regeneration.
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1. Introduction

Mesenchymal stem cell (MSC)-based therapy is one of the most promising modalities for
cardiac repair and regeneration. Accumulated evidence from clinical trials have demonstrated
its safety, practicality, and potential effectiveness for treatment of ischemic heart disease [1–4].
The findings from our group and others have revealed that MSC paracrine action is the primary
mechanism mediating tissue protection against ischemia [5–12]. However, poor survival, limited
homing, and insufficient engraftment of implanted MSCs greatly hamper a better prognosis.

Of note, emerging studies provide evidence that MSC-derived exosomes (MSC-Exos)
emulate MSC secretome-mediated cardiac repair [13]. Indeed, MSC-Exos function as regulators
of MSC-mediated paracrine protection by transporting miRNAs (miRNA or miR), messenger
RNAs, and proteins to target cells [13]. Among these, miRNA is a key functional form in
exosomes to deliver regulatory information, thus impacting the physiology of recipient cells.
miRNAs constitute an important fraction of exosome content and are key contributors to the
biological function of exosomes [14–16]. MSC-Exos carrying specific miRNAs have been re-
ported to mediate cardiac repair and regeneration after myocardial infarction (MI), encouraging
angiogenesis and cell proliferation, while reducing apoptosis and inflammation in the ischemic
heart. Therefore, the MSC-Exo serves as a potential therapeutic while circumventing the risks
and disadvantages associated with cell therapies.

MI remains the leading cause of heart failure and death worldwide. Myocardial ischemia,
leading to myocardial dysfunction and infarction, is responsible for the irreversible loss of
functional cardiomyocytes. Therapeutic prevention of myocyte loss in infarcted myocardium
potentially through cardiac regeneration is therefore valuable and a topic of well-deserved
attention in research [17]. Considering the demonstrated impact of exosomal miRNAs in post-
MI cardiac remodeling [18], in this review, we summarize the characteristics and the potential
mechanisms of MSC-derived exosomal miRNAs in cardiac repair and regeneration.
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2. The Characteristics of MSC-Exos
2.1. Characterization of MSC-Derived Extracellular Vesicles

MSC-derived extracellular vesicles (MSC-EVs) include exosomes, microvesicles, and
apoptotic bodies, which package various signaling molecules for intercellular commu-
nication within a phospholipid bilayer membrane. Designations between each cate-
gory are made by the size and method of secretion. The smallest of the EVs are exo-
somes (40–150 nm), the largest are apoptotic bodies (1000–5000 nm), and microvesicles
(150–1000 nm) are of an intermediate size [19].

Among the different EVs, exosomes are produced and released using a more complex
pathway. Exosomes require cargo sorting of contents into intracellular vesicles, which
are stored in multivesicular endosomes until they are degraded by lysosomes or released
through endosomal fusion with the cell membrane [20,21]. Microvesicles are produced by
budding of the plasma membrane and contain a sampling of intracellular cytoplasm [22,23].
Apoptotic bodies are remnants of apoptotic cells after membrane blebbing and contain
cytoplasmic contents for disposal, downstream signaling, material recycling, and control of
immune responses by transmission of autoantigens [24].

Exosomes contain diverse cargo, including transcription factors, enzymes, growth
factors, cytokines, lipids, DNA, mRNA, and non-coding RNAs [25,26]. They are involved
in widely varied cellular communication functions, including enrichment of signaling
pathways, immunomodulation, and protection against oxidative stress. In stimulated
conditions of tissue expansion or ischemia, exosomes fortify PDGF, EGF, FGF, and NF-κB,
Wnt, and TFG-β pathways [27,28]. Through indoleamine 2,3 dioxygenase, prostaglandin
E2, IL-10, nitric oxide (NO), and hepatocyte growth factor (HGF), exosomes decrease
inflammatory and fibrotic responses of innate and adaptive immune cells [29]. Analysis
of exosomal proteins revealed antioxidant enzymes manganese superoxide dismutase
(MnSOD), SOD1, SOD2, peroxiredoxin 1-6, catalase, thioredoxin, glutathione S-transferases
GSTO and GSTP1. These enzymes contribute to exosomal protection against oxidative
stress and cell death in the in vitro organ tissue [30]. Specific to cardiac tissue, MSC-Exo
administration reduces apoptosis in cardiomyocytes undergoing stress and type 1 collagen
production by fibroblasts undergoing serum starvation [28].

2.2. miRNAs in MSC-Exo

miRNAs are short non-coding sequences that post-transcriptionally influence gene
expression. miRNAs are encoded in the genome with their own promoter sequences for
transcriptional regulation. Once transcribed as pre-miRNAs, the stem-loop transcripts are
processed into 20–22 nucleotide miRNAs by nuclear and cytosolic RNases, Drosha and
Dicer, respectively [31]. Through sequence-dependent and sequence-independent path-
ways, both pre-miRNAs and processed miRNAs can be selected for inclusion in endosomes
to be secreted within exosomes [32]. Though the selection mechanisms dictating inclusion
of miRNAs into exosomes remain unclear, there is filtering of cytosolic components for
exosomal incorporation [33]. Through this sorting process, miRNA concentration is greater
in exosomes in comparison to the cytosol [34]. Indeed, it is evident that several miRNAs
in MSC-Exo vary significantly in concentration from the MSCs they are derived from [13].
Levels of miR-874-3p, miR-133a-3p, miR-331-5p, miR-133c, miR-92a-3p, etc. were greatly
elevated in MSC-Exo compared to their parent rat bone marrow MSCs. Our previous study
also demonstrated that MSC-Exo contained enriched miR-199a-3p levels compared to the
corresponding human BM-MSCs [35]. The selective qualitative and quantitative inclusion
of miRNAs into exosomes strengthens the significance of the role miRNAs play in exosome
functions. These higher concentrations of miRNAs may explain the greater therapeutic
effect of MSC-Exo compared to MSCs in cardiac repair.

Besides selective inclusion for certain miRNAs from cytosol into exosomes, miRNA
profiles in exosomes can vary by cell line, developmental state, and microenvironment
of cell of origin [36–38]. Based on the needs of cells shaped by the stresses they undergo,
production of exosomes and miRNA content varies. In vivo application shows exosome
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release from border cells following MI, likely reflecting altered metabolism and pathways
responding to the hypoxic and apoptotic stresses posed by MI [39]. This evidence designates
MSC exosomal miRNAs as valuable signaling molecules that can contribute to increased
tissue resilience in response to stress. With the link between miRNA profiles in exosomes
and disease state being very strong, exosome miRNA expression is under investigation for
use as biomarkers or diagnostic tools for disease types and progressions [40–42].

miRNAs contained in exosomes have significant biological functions. After transmem-
brane proteins of exosomes interact with signaling receptors to be endocytosed, miRNAs
are released from the exosomes into recipient cells. miRNAs bind to cytosolic mRNA
transcripts through complementary pairing either perfectly to the transcript or imperfectly
to 3′ UTR or ORF segments [31]. miRNAs bind the Argonaut protein of RNA-induced
silencing complexes (RISCs), which leads to destruction or transcriptional silencing of the
mRNA transcript bound by the miRNA [33,43]. miRNA may even act in the nucleus as
a transcriptional enhancer [44]. Further non-classical roles for miRNAs in cell function
include binding and altering protein function, activating Toll-like receptors, activating gene
transcription, negatively regulating non-coding RNAs, acting on mitochondrial mRNA to
affect mitochondrial function, and even being translated into peptides [45].

miRNA signaling has a powerful downstream influence. miRNAs have pleiotropic
effects; a single human miRNA can alter the expression of over 100 genes. In fact, the
expression of over 80% of human genes is thought to be influenced by miRNAs [46].
miRNAs are critical for development, as embryonic lethality is observed in the absence
of functional miRNAs [47]. Additionally, they are implicated in anti-apoptotic and pro-
regenerative effects of exosomes in the in vitro and in vivo studies. In these same studies,
RNase treatment of exosomes to eradicate therapeutic miRNA levels abolished the observed
anti-apoptotic and pro-regenerative benefits [48]. Their numerous and pivotal roles of
miRNAs in cell development, differentiation, maintenance, and proliferation cannot be
understated [49–51].

2.3. Exosomal miRNAs in MSCs with Different Origins

Three main sources of MSCs are bone marrow, adipose tissue, and umbilical cord cells.
miRNA content in MSCs from these sources is different, with some shared elements [52,53].
Common miRNAs correlating with stem cell properties include miR-21 and miR-125b,
which are abundantly expressed in bone marrow, adipose, and umbilical cord-derived
MSCs [28,53]. miR-21 suppresses inflammation, inhibits cell death, and improves wound
healing [54]. miR-125b reduces cardiomyocyte apoptosis by suppressing p53 and BAK1
expression in mice [55].

Through sequencing, most abundantly expressed miRNAs were determined for each
of the three derivations of MSCs [15,56]. In a study of human bone marrow-derived
MSC (BM-MSC) exosomes, miR-143-3p, miR-10b-5p, miR-486-5p, miR-22-3p, and miR-21-
5p were the most abundantly expressed miRNAs [36]. In another analysis of BM-MSC
exosomes, the top 10 miRNAs were miR-23a-3p, miR-424-5p, miR-144-3p, miR-130-3p,
miR-145-5p, miR-29b-3p, miR-25-3p, miR-221-5p, miR-21-5p, and miR-125-5b [28]. Though
measured miRNA levels do not align seamlessly, there is an overlap between abundantly
expressed miRNAs as determined by these two studies of exosome analysis, indicating a
level of replicability in BM-MSC exosome content [28,36]. In human adipose-derived MSC
(AD-MSC) exosomes, miR-486-5p, miR-10a-5p, miR-10b-5p, miR-191-5p, and miR-222-3p
were the most abundantly expressed miRNAs [36]. Meanwhile, human umbilical cord-
derived stem cell (UC-MSC) exosomes contained high levels of miR-21, miR-23a, miR-125b,
and miR-145 [37]. Different contents of miRNAs in exosomes of BM-MSCs, AD-MSCs, and
UC-MSCs may suggest different therapeutic efficacies of these MSCs. Indeed, a functional
analysis of exosomes highlights the following preferences in their repairing capacities:
regeneration in BM-MSC-Exo, immune regulation in AD-MSC-Exo, and tissue damage
repair in UC-MSC-Exo [57]. However, the benefits of each type of exosomes are not limited
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to a single function. Studies have shown a significant overlap between biological functions
of exosomes derived from each of the three sources [58].

With different targets proposed for the various miRNAs of each origin of exosomes, it
is clear that protective effects from exosomes are not due to a single pathway, but potentially
due to a synergistic effect of multiple pathways being affected [59]. Some studies suggest
that exosomes from all three human MSCs possess similar anti-inflammatory, angiogenesis-
promoting, damage-limiting, and regenerative potential effects [58,60]. Meanwhile, other
studies indicate superiority for a type of exosome based on the function evaluated, such
as AD-MSC-Exo being superior to BM-MSC for angiogenesis and protection of cardiac
function following MI [24,61]. Further preference for experimental use between the types
of MSCs stems from ease of production. While AD-MSCs are abundant and easily derived
in the human body, BM-MSCs are favored over AD-MSCs and UC-MSCs by their stability
and ease of use. BM-MSCs are notable for their low microorganism contamination rate,
stability through biological trials, greater number of passages, and low rates of immune
activation [58].

Comparisons of existing studies are not conclusive as to whether any source of exo-
somes is reliably superior for a biological function. Due to their varied miRNA profiles, it
is possible that specific exosome origins may be superior for specific functions, but it has
also been established that other factors, such as stresses that the cells are undergoing, can
alter exosome production and function. More studies on comparative composition and
function under controlled conditions must be conducted before reaching a conclusion on
comparative exosome properties.

3. Biological Functions of MSC Exosomal miRNAs in Heart Repair
3.1. Cell Proliferation and Anti-Apoptosis

MSC secreted products have been well established to be cardioprotective in contexts of
MI and heart failure [62]. Besides paracrine protection, evidence supports that MSC-derived
factors improve outcomes of cardiac lineage differentiation, angiogenesis, anti-fibrotic healing,
anti-inflammation, and immune modulation in damaged cardiac tissue [63,64]. Particularly,
MSC-Exo cargos have been shown to decrease apoptosis, repair the damaged cardiomyocytes,
increase cardiomyocyte proliferation, and promote re-entry into the cell cycle.

A systems level analysis conducted by Ferguson et al. details the various biological
effects of MSC exosomal miRNAs [28]. Considering its effect on the induction of prolifera-
tion in cardiomyocytes, miR-199a-3p is a particularly important miRNA included in the
analysis. miR-199a is predicted to target 22 genes implicated in the regulation of cell death,
proliferation, and cell cycle [28], which highlights the importance of miR-199a in supporting
cell growth. Indeed, miR-199a-3p plays a key role in cardiomyocyte survival via activation
of Akt survival pathway following simulated ischemia and reperfusion (I/R) in vitro using
neonatal rat and adult mouse cardiomyocytes [65]. miR-199a-3p has also been determined
to be one of few miRNAs crucial to the induction of cardiac regeneration [66]. Our study
further reveals that miR-199a-3p is abundant in MSC-Exo and benefits cell survival in the
heart following I/R [35].

miR-199a targets Crim1, a gene essential to the inhibition of cardiomyocyte prolif-
eration [66], and has been found to increase cardiomyocyte proliferation by 30% [66].
Treatment with miR-199a-3p increases the percentage of EdU+ cardiomyocytes, associ-
ated with upregulated levels of cyclin genes in 7-day-old and adult rat cardiomyocytes
ex vivo [66]. Similarly, MSC-Exo loaded with miR-199a significantly promotes cardiomy-
ocyte proliferation as shown by increased EdU+ cardiomyocytes (from 18-day-old mouse
hearts) in ex vivo culture and inhibits cardiomyocyte apoptosis through reduction in BAX
expression [28]. Yet, p53 is another notable gene, the activity of which is altered by miRNA-
199-3p. Additionally, p53 is intimately implicated in regulating apoptosis in a variety of
mammalian cells including cardiomyocytes [67]. Upregulated p53 levels are related to
increased cardiomyocyte apoptosis [68,69]. MSC exosomal miRNA-199a targets p53 to
decrease expression of NF-κB and caspase-9, thus reducing cardiomyocyte apoptosis [28].
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Additional evidence suggests that miR-199a-3p can target CABLES1 to mediate p53 sup-
pression [70]. Of note, miR-199a is predicted to target retinoblastoma (RB1) (potentially
regulating cell cycle arrest via RB1) [71], LKB1 for cell proliferation [72], and NEUROD1
for cell cycle arrest [73]. Collectively, these studies suggest that miR-199a can regulate cell
proliferation, apoptosis, and cell cycle phases through multiple signaling pathways.

miR-21 is another cardio beneficial miRNA enriched in MSC-Exo. On the one hand,
miR2-21-5p acts through PI3K to increase gene expression of calcium handling genes
hECT, LTCC, and SERCA2, thus improving cardiac tissue contractility [74]. On the other
hand, miR2-21-5p decreases BAX/BCL2 ratio, an indication of antiapoptotic activity and
downregulates pro-apoptotic gene products PDCD4, PTEN, Peli1, and FasL, thereby con-
veying anti-apoptotic effects for cardiac repair [75,76]. miR-21a-5p in MSC-Exo cargo also
acts as a major cardioprotective paracrine factor to mediate cardiac repair via control of
PTEN-regulated apoptotic signaling [75].

Emerging evidence has demonstrated that MSC exosomal miRNAs improve cardiomy-
ocyte survival via multiple signaling pathways. MSC-Exo miR-22 exerts anti-apoptotic
effects through directly targeting methyl CpG binding protein 2 (Mecp2) [77]. miR-25-
3p in MSC-Exo improves the viability of adult mouse cardiomyocytes that underwent
oxygen-glucose deprivation in vitro and decreases apoptosis in mouse I/R hearts in vivo
via reduction in FASL/PTEN pathway [78]. Overexpression of miR-30e in MSC-Exo signifi-
cantly reduces infarct size, cardiac injury, and apoptosis, thus leading to improved cardiac
function in the rat MI model [79]. MSC-Exo delivers miR-30e to increase cell prolifera-
tion (demonstrated by enhanced EdU+ cells) and downregulate the number of apoptotic
cells in oxygen-glucose deprived H9c2 cells via the LOX1/NF-κB p65/caspase-9 axis [79].
miR-125b mediates cardio protection of MSC-Exo through modulating p53-Bnip3 signaling
to reduce autophagic flux and cell death in hypoxia and serum starved neonatal mouse
cardiomyocytes [80], while the exosomes from MSCs pretreated with the anti-miR-125b
oligonucleotide have less benefit with larger infarct size and worsened cardiac function
compared to the MSC-Exo group in a mouse MI model [80]. The expression of p53 was
also downregulated by miR-221 from engineered MSCs. MSC-EV containing miR-221 sig-
nificantly decreases neonatal rat ventricle cardiomyocyte apoptosis through reducing p53
and p53-upregulated PUMA [20]. Exosomal miR-221-3p from young MSCs further inhibits
cardiomyocyte (H9c2 cells) apoptosis in vitro under hypoxia and serum deprivation and
reduces myocardial apoptosis with improved cardiac function via the PTEN/Akt pathway
in a rat MI model [81]. miR-205 is found to decrease cardiomyocyte apoptosis in neonatal
mouse cardiomyocytes exposed to hypoxia [82]. Overexpressing miR-338 in MSC-Exo
ameliorates cell death in H2O2-stressed H9c2 cells and improves cardiac function in a rat
MI model via decreasing BAX/BCL2 [83]. Moreover, miR-1246 mitigates hypoxia-induced
cell death in H9c2 cells following oxygen and glucose deprivation ex vivo and decreases
cardiac tissue damage in a rat LAD (left anterior descending coronary) ligation model
through targeting serine protease 23 (PRSS23) and down-activating the Snail/alpha-smooth
muscle actin signaling [84]. Interestingly, MSC-Exo delivers miR-182-5p to reduce cell
pyroptosis in neonatal mouse cardiomyocytes under hypoxia and in mouse I/R hearts via
downregulation of gasdermin D [85].

The morbidity and mortality of cardiac damage stems from the inability of adult car-
diac tissue to proliferate in order to adequately replace the damaged tissue. Rather than cell
proliferation, cardiac cells mainly undergo hypertrophy to adapt to cardiac demands [86].
Repression of cell cycle activators and expression of cell cycle inhibitors contribute to
maintenance of cardiac cells in the resting phase of the cell cycle. However, manipulation
of the cell cycle can re-engage myocardial cells that have exited the cell cycle to enact
cell division [87]. Environmental oxygen, e.g., hypoxia, has been shown to regulate post-
natal cardiomyocyte cell cycle re-entry, as indicated by increased levels of p-histone H3
(a marker for G2-M progression) and Aurora B kinase at the cleavage furrow (a marker
for cytokinesis) [87]. Once again, miRNAs can be used to manipulate gene expression in
cardiomyocytes. miR-590-3p and miR-199a-3p effectively increase cardiomyocyte prolif-
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eration in vitro [66]. miR-294 overexpression has also been shown to stimulate cell cycle
activity in cardiomyocytes through the Wee1 pathway [88]. Increased expression of Ki67,
p-histone H3, and Aurora B kinase has been noted in neonatal rodent ventricular myocytes
treated with miR-294 [88]. While other miRNAs also promote cardiomyocyte proliferation,
miR-590-3p and miR-199a-3p conduct this without simultaneously inducing hypertrophy.
Translation to in vivo models further validates the proliferative effect of miR-590-3p and
miR-199a-3p. DNA synthesis and present mitotic figures confirm the role of these miRNAs
to encourage re-entry into the cell cycle [66].

In vivo and in vitro models have provided evidence of the efficacy of exosomes in
apoptotic resistance and cardiac healing. miRNAs have been shown to be central to the
function of exosomes. An extensive review by [89] provides a collection of the cardioprotec-
tive effects of at least 12 miRNAs compiled from data published by more than 15 studies.
miRNA activity in altering various cellular pathways further supports their values in
cardiac repair and regeneration. Though the presented pathways through which various
miRNAs act are not shared completely, some overlap signaling pathways exist, and syn-
ergistic effects may further potentiate the therapeutic effects of the miRNAs in MSC-Exo.
MSC exosomal miRNAs in anti-apoptosis and cell proliferation are summarized in Table 1.

Table 1. MSC exosomal miRNAs in cell proliferation and survival.

miRNA Cell Source Experimental Model Mechanism Year Published Reference

miR-21a-5p hBM-MSCs hESC- & hiPSC-derived CMs,
in vitro

Improving cardiac
contractility & Ca2+ handling
via PI3K

2018 [74]

hMSCs H9c2 cells, in vitro; Mouse
MI/R, in vivo

↓ PTEN, PDCD4, Peli1, and
FasL 2018 [75]

miR-22 Mouse BM-MSCs Mouse MI, in vivo Targeting methyl CpG
binding protein 2 (Mecp2) 2014 [77]

miR-25-3p Mouse BM-MSCs Adult mouse CMs + OGD,
in vitro; Mouse MI/R, in vivo ↓ FASL/PTEN 2020 [78]

miR-30e Rat BM-MSCs H9c2 cells + OGD, in vitro;
Rat MI, in vivo

↓ LOX1/NF-κB
p65/Caspase-9 2021 [79]

miR-125b MSCs
Neonatal mouse CMs +
hypoxia, in vitro; Mouse MI,
in vivo

↓ p53-Bnip3 2018 [80]

miR-182-5p Mouse BM-MSCs Neonatal mouse CMs + sI/R,
in vitro ↓ Gasdermin D 2022 [85]

miR-199a hBM-MSCs CMs from 18d mouse hearts +
H2O2, in vitro ↓ Crim1, ↓ p53/ NF-κB, ↓ Bax 2018 [28]

miR-199a-3p hBM-MSCs Mouse MI/R, in vivo --- 2022 [35]
Adult mouse CMs, mouse
hearts, in vitro & in vivo Cell cycle re-entry 2012 [66]

miR-205 Mouse Ad-MSCs Neonatal rat CMs, in vitro;
mouse MI, in vivo ↓ production of ROS 2023 [81]

miR-221 Rat BM-MSC Neonatal rat CMs + hypoxia,
in vitro ↓ p53 and PUMA 2013 [20]

miR-221-3p hBM-MSCs H9c2 cells + hypoxia, in vitro;
Rat MI, in vivo PTEN/Akt pathway 2020 [82]

miR-338 Rat BM-MSCs H9c2 cells + H2O2, in vitro;
Rat MI ↓ BAX/BCL2 2020 [83]

miR-1246 hUC-MSCs H9c2 + hypoxia, in vitro; Rat
MI

targeting serine protease 23
(PRSS23); ↓ the
Snail/alpha-smooth muscle
actin signaling

2021 [84]

h: human; BM: bone marrow; Ad: adipose tissue; UC: umbilical cord; CM: cardiomyocyte; MSC: mesenchy-
mal stem cell; ESC: embryonic SC; iPSC: inducible pluripotent SC; MI: myocardial infarction/ischemia; MI/R:
myocardial ischemia/reperfusion; sI/R: simulated I/R; OGD: oxygen-glucose deprivation.

3.2. Angiogenic Effects on the Injured Heart

Analysis of MSC exosome properties contributing to cardioprotective effects reiter-
ates the importance of miRNAs. Exosome miRNAs are mainstays in repairing damaged
heart tissue following injury [90]. MSC-Exo contains many miRNAs predicted to regulate
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regenerative target mRNAs. Specifically, MSC-Exo miRNAs have been found to promote
angiogenesis in the heart.

miRNA profiling and bioinformatics have revealed that the top 23 miRNAs constitute
79.1% of the exosomal miRNA content from human BM-MSCs. Among them, miR-23a-3p
and miR-130a-3p target the greatest number of genes related to angiogenesis and vas-
cular development [28]. miR-130a-3p has been shown to downregulate anti-angiogenic
homeobox genes GAX and HOXA5, thus inducing angiogenic effects [91]. Only modified
MSC-Exo with specific enrichment of miR-130a-3p, as opposed to unmodified MSC-Exo,
leads to a capillary-like network of tubular structures in human umbilical vein endothelial
cells (HUVECs) [28]. Human UC-MSC-Exo also promotes endothelial network formation
by delivering miR-23a-3p to activate phosphatase and tensin homolog (PTEN)/Akt sig-
naling [21]. Similarly, through the PTEN/Akt pathway, human MSC exosomal miR-21 is
identified to facilitate angiogenesis in a rat model of MI [76]. The involvement of miR-126-
enriched exosomes is found to significantly promote angiogenesis, resulting in increased
density of WF-containing cells indicative of vascular endothelium along the infarct bor-
der. Administration of the exosomes also displayed a dose-dependent relationship in the
promotion of angiogenesis, with miR-126 enriched exosomes inducing greater epithelial
progenitor cell migration and tube-like structure formation in hypoxic conditions than was
observed in either regular MSC-Exo or control treatments [92].

The entities of specific exosomal miRNAs reported to promote cardiac repair through
angiogenesis vary between different studies. This is to be expected due to the vast number
of miRNAs included in endosomes and the great variability in potential downstream effects
for each miRNA. A current study reports that the benefits of AD-MSC-Exo in migration of
microvascular endothelial cells and angiogenesis are abolished with administration of an
miRNA-205 inhibitor in a murine MI model [82]. In addition, human UC-MSC exosomal
miR-1246 has been noted to increase angiogenesis in HUEVCs by targeting serine protease
23 and reducing activation of the Snail/alpha-smooth muscle actin pathway [84]. miR-
210 abundantly detected in mouse BM-MSC-Exo is shown to downregulate Efna3, thus
improving tubulogenesis in vitro and enhancing neoangiogenesis with more capillaries in
peri-infarct regions in post-MI mouse hearts [93]. Intramyocardial injection of MSC-Exo
loaded with miR-132 significantly increases neovascularization in the peri-infarct zone and
preserves heart function in a murine MI model [94]. MSC exosomal miR-30b has been
found to promote HUVEC tube-like structure formation using the loss and gain function
approach [95]. Finally, miR-223-5p is identified as an effective candidate in TSA-pretreated
MSC-Exo to mediate cardio protection through enhanced angiogenesis and inhibited CCR2
activation to reduce monocyte infiltration [96]. These are a few of the likely numerous
miRNAs included in MSC-Exo with cardiac reparative properties through angiogenesis.
The abundance of miRNAs shown to benefit cardiac repair is a good omen for therapeutics,
as loading specific miRNAs in MSC-Exo can be investigated to yield optimal combinations
to activate synergistic mechanisms and pathways. MSC exosomal miRNAs in angiogenesis
are outlined in Table 2.
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Table 2. MSC exosomal miRNAs in angiogenesis.

miRNA Cell Source Model Mechanism Year Published Reference

miR-21
hEnMSCs,
BM-MSCs,
Ad-MSCs

Rat MI ↑ PTEN/Akt pathway 2017 [76]

miR-23a-3p hUC-MSCs HUVECs ↑ PTEN/Akt pathway 2022 [21]
miR-30b MSC cell line HUVECs ↓ DLL4 2017 [95]

miR-126 Rat Ad-MSCs EPCs (Matrigel assay);
Rat MI

Possibly ↓
inflammation 2017 [92]

miR-130a-3p hBM-MSCs HUVECS
↓ anti-angiogenic
homeobox gene
HOXA5

2018 [28]

miR-132 Mouse BM-MSCs HUVECS;
Mouse MI ↓ RASA1 2018 [94]

miR-205 Mouse AD-MSC Neonatal rat CMs;
mouse MI ↑ HIF-1α and VEGF 2023 [82]

miR-210 Mouse BM-MSC HUEVCs,
Mouse MI ↓ Efna3 2017 [93]

miR-223-5p hUC-MSCs HUEVCs
Rat MI/R

↓ CCR2 activation and
monocyte infiltration 2023 [96]

miR-1246 hUC-MSC HUEVCs
Rat MI

targeting serine
protease 23 (PRSS23);
↓ the
Snail/alpha-smooth
muscle actin signaling

2021 [84]

h: human; En: endometrium; BM: bone marrow; Ad: adipose tissue; UC: umbilical cord; CM: cardiomyocyte;
HUVECs: human umbilical vein endothelial cells; EPC: endothelial progenitor cell cardiomyocyte; MI: myocardial
infarction/ischemia.

3.3. Anti-Fibrosis and Anti-Inflammation

Fibrosis is the excessive formation of fibrous connective tissue, often as a result of chronic
inflammation. Following MI, fibrosis contributes to adverse remodeling of the heart. Excessive
fibrosis can impair the structure and function of the heart. Studies [28,97,98] have indicated that
MSC-Exo is able to ameliorate cardiac fibrosis and limit adverse ventricular remodeling after MI
by modulating the activity of fibroblasts and downregulating pro-fibrotic signals to reduce the
production of extracellular matrix proteins, thus preventing the formation of excessive scar tissue.
Inflammation following MI can increase deposition of extracellular collagen as well, leading
to scar formation. Microparticle engineered inhibition of MSC pro-inflammatory secretome
has been reported to reduce collagen deposition in human and murine cardiac fibroblasts [99].
Improving cardiac regeneration while limiting scar formation is important to long term cardiac
repair. MSC-Exo containing different miRNAs may regulate fibrotic pathways and promote
tissue repair through different pathways, including suppression of inflammation and cell death,
and improvement of angiogenesis.

It is reported that miR-125a-3p is enriched in MSC-Exo and plays an important role
in MSC-Exo elicited cardio protection, as shown by the increasing cardiac function and
limiting adverse remodeling in mouse I/R hearts [100]. miR-125a-3p is considered to
target Tgfbr1, Klf13, and Daam1 to regulate the function of fibroblasts, macrophages, and
endothelial cells, thus reducing fibroblast proliferation and activation, promoting M2
macrophage polarization to attenuate inflammation, and facilitating angiogenesis [100].
miR-126 is also found to reduce production of inflammatory cytokines, enhance VEGF, and
decrease pro-fibrotic gene expression to mitigate adverse myocardial remodeling post MI
in murine models [55,92].

Of note, the same exosomal miRNA could regulate different processes for cardiac
repair attributable to the complex mechanism of action and different variables of the com-
prehensive effects. Through anti-apoptotic effects, MSC-Exo with increased miR-22 content
has been shown to significantly reduce cardiac fibrosis compared to MSC-Exo with inhi-
bition of miR-22 in a mouse MI model [77]. Also, AD-MSC exosomal miR-205 markedly
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decreases cardiac fibrosis via promoted angiogenesis and attenuated cardiomyocyte apopto-
sis [82]. miR-25-3p containing MSC-Exo is found to suppress expression of IL-1β, IL-6, and
TNF-α in oxygen-glucose deprivation stressed adult mouse cardiomyocytes and in mouse
I/R hearts via inhibition of EZH2 (enhancer of zest homologue 2)/SOCS3 axis [78]. Over-
expressing miR-30e in MSC-Exo significantly decreases the level of fibrosis and suppresses
MI-induced inflammation as shown by the increased anti-inflammatory factor CD206 in
the rat infarcted myocardium in vivo [79]. MSC-EV-delivered miR-302d-3p diminishes
inflammation, reduces myocardial fibrosis, and decreases apoptosis in the infarcted area
through repressing the NFκB pathway-related MD2 and BCL6 levels [101]. Furthermore,
miR-212-5p enriched MSC-EVs have been reported to reduce the levels of α-SMA, Col-
lagen I, TGF-β1, and IL-1β in cardiac fibroblasts in vitro, attenuating cardiac fibrosis via
inhibiting the NLRC5/VEGF/TGF-β1/SMAD axis [102].

Collectively, anti-inflammatory and anti-apoptotic effects of MSC exosomal miRNAs
promote a more favorable microenvironment for tissue repair and prevent further damage
in the heart during the acute phase of MI. Meanwhile, pro-angiogenic and anti-fibrotic
activities of MSC exosomal miRNAs promote blood vessel formation to increase blood sup-
ply for delivery of oxygen and nutrients, thereby supporting tissue repair and regeneration
in the reparative phase. Figure 1 summarizes MSC exosomal miRNAs in cardiomyocyte
proliferation/survival, anti-inflammation, anti-fibrosis, and angiogenesis during cardiac
repair after heart injury.
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Figure 1. miRNAs derived from MSC exosomes improve cardiomyocyte survival/proliferation,
promote angiogenesis, suppress inflammation, and reduce cardiac fibrosis in the heart after injury.
Except the heart image from Heart Research Institute, this figure is created by the authors using
PowerPoint.

4. Modification of MSC Exosomal miRNAs
4.1. Preconditioning

MSCs can be manipulated for intentional delivery of miRNAs of interest through exo-
somes. As described above, physiological conditions and cell type alter the composition of
exosomes secreted [27,28,103]. This process of altering cellular conditions to change cellular
gene expression, and therefore exosome compositions, is termed “preconditioning” [26].
Also, as described previously, endosomal sorting mechanisms, though not well known,
are responsible for selecting the cargo of exosomes stored within the multivesicular body
during exosome synthesis [32,54]. Exosomes carry a wide expanse of miRNAs responsible
for various processes, including signal transduction, self-antigen presentation on MHCIs,
intercellular adhesion markers, and surface markers [54]. Other methods of interaction
with receptor cells include receptor–ligand interaction; lipid-raft, caveolae, receptor, and
clathrin-mediated endocytosis; micropinocytosis, and phagocytosis [103]. Manipulation of
these sorting, signaling, and identification characteristics are potential opportunities for
modification of exosomes function and reception by receptor cells [54].
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Preconditioning can be performed by exposing MSCs to chemical agents, hormones,
and physiological stresses. Specific treatments that skew MSC gene expression towards
cardioprotective profiles include 2,4-dinitrophenol, prolyl hydroxylase, adiponectin, and
hypoxic conditions, as well as cold storage [57,104–107]. Although preconditioning usually
modifies MSCs to release the paracrine beneficial angiogenic and cytoprotective factors,
accumulated evidence also indicate that preconditioning can impact the process of exosome
synthesis to enrich specific miRNA in MSC-Exo. Preconditioning of platelet-derived
growth factor (PDGF)-BB, a potent mitogen of MSCs, results in upregulation of miR-
16-2 [108]. Of note, transplanted MSCs encounter a hostile microenvironment in the
infarcted heart, which significantly stresses implanted MSCs and causes most cells to die.
The poor survival of MSCs limits the therapeutic value of implanted MSCs. Ischemic
preconditioning (IPC) enhances miR-107 in MSCs, leading to a significantly improved
survival of transplanted MSCs in the infarcted myocardium [109]. IPC also effectively
upregulates miR-210 expression and predominantly improves MSC survival following
engraftment in a rat model of acute MI [110]. Markedly, upregulated miR-146a during
preconditioning with diazoxide also plays a key role in promoting MSC survival [111].

In addition to improving stem cell survival, miRNAs regulated by preconditioning
affect the function of MSC-Exo. Tanshinone IIA pretreatment has been reported to increase
the content of miR-223-5p in MSC-Exo. Enriched miR-223-5p inhibits CCR2 activation to
reduce monocyte infiltration in the I/R-injured heart, thus promoting cardioprotective
effects in a rat MI/R model [96]. IPC of MSCs is shown to enhance miR-22 content, and
significantly alleviate myocardial infarct size after MI [77]. Preconditioning to modify MSC
exosomal miRNAs is simplified in Figure 2A.
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Figure 2. Modification of MSCs to enrich cardiac repair-favorable miRNAs so as to improve cardiac
regeneration and repair. (A) Preconditioning of MSCs. (B) Bioengineering of MSCs. This figure is
created by the authors using PowerPoint.

4.2. Bioengineering

The content of exosomes has been observed to vary based on the type of secreting
cell and on stresses that secreting cells have been subjected to. On the other hand, bio-
engineering strategies can be used to tailor the content of exosomes to include selective
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cargo (Figure 2B). Methods to manipulate exosome content can target the exosomes directly
or the cell-secreting exosomes [112]. Direct methods of exosome loading include simple
incubation with the target molecule, electroporation [44], and saponin permeabilization to
increase membrane permeability and optimize target entry into exosome, and chemical
conjugation of the target molecule (transfection) with agents such as lipofectamine to in-
crease entry through the membrane [103]. Direct transfection of BM-MSC exosomes with
miR19a/19b conferred increased cardiac recovery and decreased cardiac fibrosis compared
to non-enriched BM-MSC exosomes in a mouse model [113]. These studies establish that
loading exosomes directly can be an effective method of delivering specific cargo into
exosomes. Additionally, concern for lack of exosome functionality following loading is un-
warranted, as these enriched exosomes are still able to enact significant benefits in cardiac
repair [18,113]. However, each of these methods is optimized for characteristics of loading
molecules, such as lipophilicity or hydrophilicity, and may not be successful in loading
more than one type of cargo into the same exosome.

Engineering reprogramming and transduction have been harnessed to alter expres-
sion in MSCs and composition of secreted exosomes [114,115]. Transduction of plasmid,
lentivirus, and adenovirus vectors into host cells has also been a successful method to
selectively alter exosome composition in MSCs [115,116]. Once in the cell, transcripts and
proteins are at the mercy of cellular mechanisms for expression and inclusion into exosomes.
However, although transduction does not allow for precise control of inclusion criteria
for exosomes, it has generally been a successful method to induce overexpression of a
transcript of interest, and expression of these molecules has been reflected in the compo-
sition and therapeutic activity of exosomes. Increasing GATA4 expression in MSCs [116]
was able to enhance the levels of cardioprotective miRNAs present in exosomes derived
from these cells [116]. Exosomes derived from MSCs overexpressing GATA4 were found to
have greater expression of several miRNAs, including miR-19a and miR-451, compared to
exosomes derived from control MSCs. A higher level of miR-19a in exosomes derived from
GATA4 overexpressing MSCs, contributed to the cardioprotective effects of the exosomes.
Similar augmented protective functions have also been observed from exosomes derived
from MSCs genetically modified to overexpress HIF-1a and BMP2 [117,118]. Importantly,
though the proteins overexpressed in the MSCs are not increased in secreted exosomes,
the exosomes are found to have enriched miRNA content compared to exosomes derived
from non-overexpressing MSCs [118]. In addition to altering exosome contents, bioengi-
neering can alter exosome secretion. Increased exosome secretion is observed in MSCs
overexpressing HIF-1a [107]. As expected, miRNA content is altered in these exosomes
with increased secretion. Upregulated miRNAs include miR-15, miR-16, miR-17, miR-31,
miR-126, miR-145, miR-221, miR-222, miR-320a, and miR-424. Together, the differential
miRNA profiles in exosomes from HIF-1a overexpressing MSCs notably encourage Notch
signaling, glycolysis/gluconeogenesis, and angiogenesis [107].

Bioengineering can be utilized to further target exosomes to recipient tissues of interest.
In a murine model, manipulating transmembrane proteins on the exosome membrane
allowed for successful targeting of EGFR-expressing breast cancer xenograft tissues [119].
Additionally, as exosome transmembrane proteins are a sampling of the membranes of the
cells they were derived from, alteration of host cells to express certain markers is another
method to tailor the identity of ligands and receptors on exosome membranes [120]. Vector
delivery of cardiac targeting peptide (CTP)-Lamp2b into HEK 293 cells and glycosylation
sequence stabilization increased expression of cardiac targeting peptide (CTP)-Lamp2b on
exosome surfaces. Administration of exosomes expressing CTP-Lamp2b increased in vivo
delivery of exosomes to mice hearts by 15% compared to controls lacking CTP (expressing
Lamp2b only) [121]. These findings establish that bioengineering is a viable way to target
exosome destinations and increase therapeutic doses reaching ischemic cardiac tissue to
encourage pathways of cardiac repair.
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5. Prospective and Limitation of MSC-Exo-Based Therapy in Cardiac Repair

Exosomes have numerous characteristics that optimize them for therapeutics. In [122],
the following are cited as therapeutic benefits of exosomes: small size, low complexity,
lack of nuclei and concurrent decreased risk of neoplastic transformation, stability, ease
of production, long preservation, and potential for loading proteins, small molecules,
or RNAs for delivery of biomolecules. Exosomes also contain significantly less DNA
and MHC content compared to cell-based treatments, decreasing adverse immunogenic
activation [19,120]. Additionally, due to their small size and lipophilic membrane, they
can be absorbed and reach deeper tissues than other therapies. Exosomes even possess
the ability to cross the blood brain barrier [123]. Furthermore, exosomes can overcome
disadvantaged issues of using MSCs in cardiac repair, including the low cell survival,
arrhythmia and tumorigenesis risk, etc.

The heart contains different types of cells, including cardiomyocytes, endothelial cells, and
cardiac fibroblasts, etc. During injury, these cells can release exosomes to modulate the function
of other cells in response to the stress. It has been shown that cardiomyocyte-secreted exosomal
miR-222 and miR-143 promote cardiac angiogenesis during ischemia [124]. Cardiomyocyte
exosomal miR-217 also contributes to increased cardiac fibroblast proliferation and cardiac
fibrosis [125]. Upregulated miR-218-5p is observed in exosomes derived from the late-stage
familial dilated cardiomyopathy patients and is a critical contributor to fibrogenesis through the
suppression of TNFAIP3 activated TGF-β signaling [126]. In addition to cardiomyocyte-derived
exosomes, miR-21-3p containing exosomes from cardiac fibroblasts facilitate development of car-
diac hypertrophy when delivered into cardiomyocytes [127]. Myofibroblast-derived exosomes
impart miR-200a-3p upon endothelial cells, impairing the angiogenic potential of endothelial
cells via inhibition of placental growth factor production [128]. Furthermore, miR-214-containing
exosomes from endothelial cells promote tube formation by inhibition of the cell cycle arrest
in recipient endothelial cells [129]. Considering immune cell-derived exosomes, activated
macrophage exosomal miR-155 in the infarcted myocardium inhibits fibroblast proliferation
via reducing Son of Sevenless 1 but increases inflammation by downregulating Suppressor of
Cytokine Signaling 1 [130]. M1 macrophage-secreted exosomal miR-155 has also been shown to
impair the angiogenic ability of endothelial cells after MI [131]. Activated CD4+ T cells further
worsen cardiac fibrosis through the exosomal miR-142-3p-WNT pathway [132]. Interestingly,
although miRNA-containing exosomes play an important role in communications among differ-
ent types of cells that respond to stress in the heart, no direct information is available regarding
whether and how endogenous cardiac cell-derived exosomes interact with the effect of MSC-
Exo after heart injury. Indeed, human cardiomyocyte-derived exosomes have been shown to
induce human MSCs expressing cardiac genes in vitro [133]. This suggests the potential of
tissue-specific exosomes in the induction of lineage-determined differentiation of MSCs and
that cardiac cell-derived exosomes could impact the therapeutic value of MSCs. Nevertheless,
further study on this topic will better guide the clinical applications of MSC-Exo for cardiac
repair and regeneration.

It is noteworthy that an important limitation of exosomes is the absence of FDA-
approved exosome-based products. To date, there is no standard approach in producing
an efficient yet pure yield of exosomes. Though ultracentrifugation is the most frequently
used method to isolate exosomes in study protocols, exosome RNA content, membrane
damage, impurity inclusion, and throughput yield remains inconsistent and unoptimized
between collections [134]. Current mainstream methods of purification include centrifuga-
tion followed by ultrafiltration or size exclusion chromatography. Exosome precipitation,
sequential filtration, microfabrication technology, and immune-affinity capture are ad-
ditional methods used for purification [135]. These methods manipulate size, density,
immunoaffinity, acoustic, electrophoretic, electromagnetic properties of exosomes [135].
Combining purification methods, such as size exclusion chromatography with subsequent
immune-affinity capture, has proven to be quite specific in isolating exosomes [136]. Yet,
even these combination isolation methods that are more successful at isolation than any
one single method alone still include some degree of non-exosome protein contamination.
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Common exosome sample contaminants include the following free proteins: albumin,
immunoglobulins, and matrix metalloproteases [137,138]. Looking past contaminants, com-
plications of long processing times (hours) and low purification product yield remain [139].
A study of exosome protein purification found that processing 1 cm of culture medium can
be expected to yield less than 1 µg of exosomal protein. This contrasts with the 10–100 µg
protein typically comprising a therapeutic dose [140]. Though combinatorial and targeted
isolation methods have been quite successful in purifying samples, more research is re-
quired to increase pure exosomal yield to produce the required therapeutic levels. In fact,
clinical applications of exosomes are limited due to the difficulty of generating a large-scale
production of exosomes. In this regard, plant-derived EVs are much easier to scale up [141]
and could be a promising alternative to deliver specific miRNAs of interest for cardiac
repair and regeneration.

Yet other hurdles remain in the development of MSC-Exo-based therapeutics. Het-
erogeneity of MSCs results in a variable population of secreted exosomes, likely leading
to variable therapeutic effects on cardiac repair and regeneration. Furthermore, clinical
delivery of exosomal miRNAs for cardiac repair is hindered by off-target delivery and
limited retention of therapeutic exosomal doses at the site of damaged myocardium [142].
Exosomes could reach not only the infarcted myocardium, but also other organs/tissue
such as lungs, when administered systemically. Studies endorse the rapid redistribution
of exosomes to other sites, such as the spleen, GI tract, and lungs, with redistribution
rates and patterns dependent on delivery type and cell type in animal models [143]. As
described previously, a bioengineering approach can be used to modify exosome membrane
proteins for increased targeting of specific cells/tissue of interest [119,121]. However, there
remains progress to be made in optimizing the delivery of therapeutic levels at damaged
cardiac tissues. To address suboptimal dose delivery to cardiac tissue, cardiac patches
and hydrogels have been found to maintain a slow releasing yet potent dose of exosomes
to encourage endogenous repair. While exosome retention via intramyocardial injection
delivery only lasted three hours [144], hydrogel application was found to maintain local
exosome concentrations for weeks [145]. A recent study further indicates that combining
biomaterials with MSC-Exo improves their targeting and retention in the injury site for
cardiac repair as shown in a rat MI model [146]. Similar to liposomes used to deliver drugs,
exosomes can be modified with polyethylene glycol, which increases time in circulation
(decreases sequestration by non-targeted tissues) and reduces uptake in non-targeted tis-
sues [147]. These methods subdue concerns of subtherapeutic levels at damaged tissues
due to redistribution and side effects due to off-target effects.

6. Conclusions

Accumulated evidence suggests that the therapeutic value of MSCs is mainly at-
tributable to exosomes. Despite the complexity of exosomal miRNAs, MSC-Exo has
emerged as a promising candidate for cardiac repair and regeneration. MSC-Exo replicates
the beneficial effects of MSCs by regulating various cellular responses and signaling path-
ways implicated in cardiac regeneration and repair. MSC-Exo contains the enrichment of
cardiac repair-favorable miRNAs, being able to provide anti-apoptotic, anti-inflammatory,
anti-fibrotic, and angiogenic effects within the injured heart. MSCs can be preconditioned
and bioengineered to express or carry specific miRNAs of interest for better outcomes
concerning cardiac repair. Studying exosomal miRNAs will provide important insight into
the molecular mechanisms of MSC-Exo in cardiac regeneration and repair. This significant
information can help optimize cell-free treatment and overcome the challenges associated
with MSC-Exo therapeutic application.

Despite the evident benefits, MSC-Exo has not yet been clinically adapted to treat heart
disease. To date, all clinical applications of MSC-Exo (seven published clinical trials and
fourteen ongoing clinical studies) are related to respiratory disease (ARDS, pulmonary infec-
tion), immune system dysfunction (graft-versus-host disease, periodontitis, osteoarthritis,
Covid-19), Alzheimer’s disease, stroke, and type I diabetes [148,149]. Using MSC-Exo
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to conduct cardiac repair in clinical practice requires optimizing the isolation methods,
administration route, and dosing. Notably, current technical limitations lead to a diffi-
culty in isolating and purifying exosomes from microvesicles and apoptotic bodies, which
may complicate the functions of MSC exosomal miRNAs in cardiac repair. Additionally,
the heterogeneous population of exosomes raises a concern about the exact mechanism
underlying exosomal miRNA-based therapies. Furthermore, systemic administration of
MSC-Exo miRNAs may cause off-target effects. Nonetheless, future investigation could
focus on how to modify MSC-Exo to increase their target and retention in the injured site.
More research is also needed to fully understand the mechanisms and potential benefits of
the applications of MSC exosomal miRNAs in cardiac repair and regeneration.
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