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Abstract: Pigs are the most important source of meat and valuable biomedical models. However,
the porcine immune system, especially the heterogeneity of CD8 T cell subtypes, has not been fully
characterized. Here, using single-cell RNA sequencing, we identified 14 major cell types from periph-
eral blood circulating cells of pigs and observed remarkable heterogeneity among CD8 T cell types.
Upon re-clustering of CD8+ T cells, we defined four CD8 T cell subtypes and revealed their potential
differentiation trajectories and transcriptomic differences among them. Additionally, we identified
transcription factors with potential regulatory roles in maintaining CD8 T cell differentiation. The
cell-cell communication analysis inferred an extensive interaction between CD8 T cells and other
immune cells. Finally, cross-species analysis further identified species-specific and conserved cell
types across different species. Overall, our study provides the first insight into the extensive func-
tional heterogeneity and state transitions among porcine CD8 T cell subtypes in pig peripheral blood,
complements the knowledge of porcine immunity, and enhances its potential as a biomedical model.

Keywords: pig; immunity; CD8 T cell; heterogeneity; pseudotime trajectory

1. Introduction

CD8 T lymphocytes, also known as cytotoxic T lymphocytes (CTLs), are responsible for
eliminating intracellular pathogens and combating tumor cells, and they play an essential
role in the adaptive immune system. CD8 T cells recognize peptide antigens on the surface
of antigen-presenting cells through their T cell receptor (TCR) in the context of major
histocompatibility complex (MHC) class I molecules [1]. Upon receiving antigen signals
and under the actions of co-stimulatory molecules and cytokines, naive CD8 T cells undergo
proliferation and differentiation to generate effector CD8 T cells with cytotoxic activity [2].
CTLs primarily employ two pathways, including the release of cytotoxic effector molecules
(such as perforin, granzymes, and Fas ligand), and the production of effector cytokines (such
as IL-2, TNF, and IFN-γ) to eliminate target cells [3]. Several studies have indicated that
during viral infections, such as classical swine fever virus (CSFV), foot-and-mouth disease
virus (FMDV), and porcine reproductive and respiratory syndrome virus (PRRSV), the
presence of a high proportion of CTLs contributes to enhancing immunity and promoting
infection recovery [4–6]. Therefore, a comprehensive understanding of the differentiation
and functionality of CD8 T cells is essential for optimizing immune therapeutic strategies
and future vaccine development.

The differentiation stages and phenotypic functions of CD8 T cells are well char-
acterized in the human immune system. According to the expression of monoclonal
antibodies CD45RA, CD28, and CCR7, human CD8 T cells are further divided into four
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subtypes, namely, naive (CD45RA+CD28+CCR7+), Tem (CD45RA−CD28+CCR7−), Tcm
(CD45RA−CD28+CCR7+), and Temra (CD45RA+CD28−CCR7−) [7–9]. These four subtypes
exhibit distinct phenotypic and functional characteristics, playing crucial roles in the differ-
ent stages of the immune response. For instance, Tcm cells residing in secondary lymphoid
organs typically exhibit higher expressions of proliferation-related genes compared to Tem
cells. Conversely, Tem cells with effector functions exhibit higher expression of effector
molecules, such as perforin and granzymes [10,11].

As pigs are increasingly popular as a large animal model for preclinical research
and an important food source, it is crucial to gain a deeper understanding of pig im-
mune characteristics, particularly those associated with human immune cells. Despite
some similarities between the human and porcine immune systems, the characteriza-
tion of porcine CD8 T cells is still limited. Early studies of porcine immune cells rely
primarily on antibody-based assays, and porcine CTLs are typically characterized us-
ing expression of the lineage markers CD3, CD8α, and CD8β [12]. Afterward, based on
the expression levels of CD27, SLA-DR, and perforin, porcine CTLs are classified into
early effector cells (CD3+CD8αβ+perforin+CD27dim) and late effector or memory cells
(CD3+CD8αβ+perforin+CD27−) [13]. Recently, in combination with surface antigen-based
cell sorting and bulk RNA sequencing, porcine CTLs have been classified into naive cells
(CD8β+CD27+CD11alow), intermediate differentiated cells (CD8β+CD27dimCD11a+), and
terminally differentiated cells (CD8β+CD27−CD11ahigh), according to the expressions of
CD8β, CD27, and CD11a [1]. Although these studies contribute to our understanding of
CD8 T cell heterogeneity, certain limitations exist. Firstly, pre-selection bias potentially
arises in the case of limited antibody availability or the use of excessive markers to define
cell populations, since different CD8+ T cell phenotypes are typically defined by combining
multiple specific cell surface markers. Secondly, flow cytometric analysis tends to detect
only a limited number of cells, thus potentially impeding the accurate classification of
different T cell phenotypes. Finally, bulk RNA sequencing, which is conducted at the
population level, provides only average gene expression profiles, and it cannot capture
subtle intercellular variations or track dynamic changes in individual cells due to a lack of
high resolution.

Currently, the rapid development of single-cell RNA sequencing (scRNA-seq) technol-
ogy makes it possible to comprehensively characterize cellular heterogeneity and explore
the differentiation trajectory of the porcine immune cells. In this study, we characterized the
composition of immune cells in pig peripheral blood, analyzed gene expression signatures,
pathway patterns, developmental trajectory, and gene regulatory networks of CD8 T cell
subtypes, inferred intercellular communication between CD8 T cell and other cell types
using scRNA-seq technology. This study will increase the understanding of porcine CD8 T
cell heterogeneity and contribute to the further exploration of the porcine immune system.

2. Materials and Methods
2.1. Sample Collection and Processing

Peripheral blood mononuclear cells (PBMCs) were collected from three ~7-month-old
healthy Large White sows at the experimental pig farm at Huazhong Agricultural University.
Peripheral blood samples (2 mL) were collected into an EDTA anticoagulant tube and gently
inverted 2–3 times to ensure thorough mixing. Subsequently, the mixed blood samples were
transferred to a 15 mL centrifuge tube and treated with 6 mL of red blood cell lysis solution
for 15 min, followed by centrifugation at 1600 rpm for 10 min at 4 ◦C to collect cell pellets. The
cell pellets were then resuspended in cold phosphate-buffered saline (PBS), passed through
a 100 µm cell strainer, and incubated with 3 µL CD3ε antibody (clone BB23-8E6-8C8, BD
Pharmingen, San Diego, CA, USA) for 30 min at 4 ◦C in the dark, followed by FACS to
obtain living CD3+ PBMCs. The cell viability assay used trypan blue staining. After cell
counting, the samples from the three healthy pigs were mixed in equal volumes to obtain
9 × 105 cells. The mixed cells were used for constructing a 10× genomics sequencing library
and subsequent sequencing by Genergy Biotechnology (Shanghai, China).
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2.2. Processing of scRNA-Seq Data

Considering that large datasets contribute to enhancing the cell resolution in scRNA-seq
analysis, we downloaded seven publicly available datasets additionally and integrated them
with our experimentally generated datasets to dissect peripheral blood heterogeneity [14].
The initial processing of public scRNA-seq data, including reads 2 (R2) correction, 3′polyA
tail trimming, read alignment, and gene quantification and ambient RNAs removal, was
conducted by the methods described by Herrera-Uribe et al. [14]. Subsequently, low-quality
cells (with <500 detected genes and <1000 unique molecular identifiers (UMIs) per cell and
mitochondrial gene content per cell >10%) were excluded from each sample. To further
refine the dataset, the Scrublet python package (v0.2.3) was employed to identify and remove
doublet cells. A preset doublet formation rate of 0.07 was used for six samples from public
databases, while a doublet cell formation rate of 0.06 was applied for samples generated in
this study and other samples from public databases. The cells with a doublet probability
score >0.25 were removed. The filtered data were stored in CellRanger format.

2.3. Identification of Cell Clusters

After quality control and doublet cell removal, data from eight PBMC samples were
integrated using the Seurat package (v4.3.0.1). Subsequently, we performed data normal-
ization employing the NormalizeData function and identified 3000 highly variable genes
(HVGs) using the FindVariableFeatures function with the vst method. Further, we inte-
grated and batch-corrected the datasets following the standard integration workflow using
the Seurat package with default parameters (https://satijalab.org/seurat/archive/v3.0
/integration.html, accessed on 8 January 2023). To address variability induced by UMIs
and mitochondrial genes, we performed regression analysis using the vars.to.regress argu-
ment in the ScaleData function. Expression levels of all genes were scaled for subsequent
principal component analysis. Further, all the cells were subjected to cluster analysis to
obtain cell clusters, with dimension set as 20 and resolution set as 1.8. The cell clusters
were visualized using Unified Manifold Approximation and Projection (UMAP). The cell
clusters were classified and annotated based on the expressions of cell type-specific canoni-
cal markers. T cell re-clustering was performed by the above-mentioned methods, except
that the dimension was set to 8 and the resolution was set to 0.7. Notably, several gene
names/Ensembl IDs used for data analysis in this study were replaced with updated ones
due to their unavailability in the annotation file, as previously described [14].

2.4. Differential Gene Expression Analysis

In this study, we employed two different methods for the analysis of differentially
expressed genes (DEGs). One method was the Wilcoxon rank sum test using the Find-
AllMarkers function in the Seurat package, and the other method was pseudobulk con-
version using the method described by Ammons et al. [15]. Specifically, the genes with
<3 raw counts across all sample cells were removed, and only those genes that were ex-
pressed in more than 5 cells within a sample were included in the pseudobulk conversion.
Subsequently, we applied the DESeq2 (v1.34.0) pipeline to identify DEGs between the target
cluster and other groups [16]. In the pseudobulk conversion method, DEGs were identified
from adjusted thresholds of p < 0.05 and a |log2 FC (fold change)| > 0.58. In the Wilcoxon
rank sum test method, DEGs were identified using the FindAllMarkers function with the
parameters only.pos = T, logfc.threshold = 0.25, and min.pct = 0.25.

2.5. GO Enrichment Analyses

DEGs in the 10 major cell types were identified using the Wilcoxon rank sum test
(only.pos = T, min.pct = 0.25, logfc.threshold = 0.25) (Figure 1D). The DEGs in the 10 major
cell types were subsequently subjected to gene ontology (GO) analysis (http://metascape.
org, accessed on 30 January 2023) [17]. Go terms with p < 0.01, a minimum count of 3, and
an enrichment factor >1.5 were considered significantly enriched. DEGs in CD4 T clusters
and γδ T clusters were identified using the pseudobulk conversion method (adjusted

https://satijalab.org/seurat/archive/v3.0/integration.html
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p < 0.05 and |log2 FC| > 0.58). GO analysis of these DEGs was performed using the
enrichGO function within the clusterProfiler package (v4.2.2) [18].
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Figure 1. Single-cell transcriptomic analysis of porcine peripheral blood mononuclear cells.
(A) Unified manifold approximation and projection (UMAP) visualization of 34,220 cells from
8 PBMC samples. Each color represents one cell cluster. (B) Dot plot of the expression of cell type-
specific marker genes. Dot brightness and size represent the scaled expression of each marker gene
and the proportion of cells expressing each marker gene, respectively. (C) UMAP plots of marker
genes used for defining cell types. (D) GO enrichment analysis of DEGs. The left panel presents GO
terms enriched in 10 major cell types. The right panel is the heatmap of the top 50 DEGs (Wilcoxon
test) in each of the 10 major cell types. The gene expression value is a row-scaled Z score.

2.6. Gene Set Variation Analysis of CD8 T Cell Subtypes

To compare the functional profiles of different CD8 T cell subtypes, we employed
the Wilcoxon rank-sum test for DEG identification (only.pos = T, logfc.threshold = 0.25)
and the compareCluster function in the clusterProfiler package (v4.2.2) for GO analysis
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of identified DEGs. Gene set variation analysis (GSVA) was performed using the GSVA
package (v1.42.0) [19]. The annotated gene sets, including H (hallmark gene sets) and
C2 (CP: KEGG gene sets), were downloaded from the Molecular Signatures Database
(MSigDB, v7.0).

2.7. Pseudotime Trajectory Analysis

The Monocle2 package (v2.22.0) was used to infer single-cell developmental tra-
jectories of CD8 T cells, following the standard analysis pipeline (http://cole-trapnell-
lab.github.io/monocle-release/docs/#constructing-single-cell-trajectories, accessed on
1 March 2023) [20]. We selected 3000 HVGs identified by the function FindVariableFeatures
in Seurat to sort cells in pesudotime order. We then performed dimensionality reduction in
cells by the DDRTree method and ordered the cells with the orderCells function. Finally,
“plot_cell_trajectory” and “plot_pseudotime_heatmap” were used to visualize pseudo-time
gene branching trajectories and plot the heatmaps of marker genes in CD8 T cell subtypes.
Additionally, we applied the Slingshot package (v2.2.1) to compute pseudotime trajectories
of CD8 T cells and mapped these trajectories onto the UMAP for visualization [21].

2.8. Cell-Cell Communication Analysis with CellPhoneDB

Cell-cell communication between different cell types was conducted using the Cell-
PhoneDB software (v2.1.7), as previously described [22]. Gene expression matrices and
metadata containing major cell annotations were input into CellPhoneDB with default
parameters for subsequent analysis. The strength of cell-cell interactions was visualized
using a heatmap, and the cell-cell interactions mediated by putative receptor-ligand pairs
were presented using a dot plot.

2.9. Transcription Factor Analysis

We extracted the expression profiles of all CD8 T cells and input them into SCENIC
(single-cell regulatory network inference and clustering, v1.3.1) to construct a gene reg-
ulatory network [23]. The transcription factor (TF) data were analyzed based on the
“hg19” dataset, with the search region limited to 10 kb around the transcription start site
(TSS) or 500 bp upstream of the TSS. The SCENIC analysis (corresponding to RcisTarget
v1.12.0 and AUCell v1.14.0) was performed following the pipeline described by Gao et al.
(https://github.com/YahGao/Rumen-scRNA-seq/blob/master/4_scenic.R, accessed on
10 April 2023) [24]. To further validate the reliability of these identified TFs in CD8 T cells,
we combined the reported scATAC-seq data of PBMC and integrated the enriched TFs
identified by scATAC-seq data with those identified by our scRNA-seq data [25].

2.10. Porcine-Human and Porcine-Canine Homology Analysis

We performed a cross-species comparison by integrating previously published and
fully annotated scRNA-seq datasets. These datasets included scRNA-seq data of six healthy
adult human PBMCs (https://zenodo.org/record/4021967/, blish_covid.seu.rds, accessed
on 30 May 2023) and seven healthy dog PBMCs (https://github.com/dyammons/Canine_
Leukocyte_scRNA/tree/main/input, GSE225599_final_dataSet_H.rds, accessed on 30 May
2023), which were integrated with the scRNA-seq data of eight healthy pig PBMCs in this
study [14,15,26]. First, each sample data was independently normalized using the SCTrans-
form function in the Seurat package (v4.3.0.1), and the regression analysis of mitochondrial
gene content was performed. Subsequently, the SelectIntegrationFeatures function was
applied to identify the top 2000 HVGs that consistently changed across the datasets. Inte-
gration anchors were then identified within the dataset using the FindIntegrationAnchors
function. Next, the IntegrateData function was employed to integrate pig and human
datasets or pig and dog datasets. After integration, cell types of pig, human, and dog were
prefixed with “pig_”, “hu_”, or “dog_”, respectively. Hierarchical clustering analysis was
carried out using the hclust function.

http://cole-trapnell-lab.github.io/monocle-release/docs/#constructing-single-cell-trajectories
http://cole-trapnell-lab.github.io/monocle-release/docs/#constructing-single-cell-trajectories
https://github.com/YahGao/Rumen-scRNA-seq/blob/master/4_scenic.R
https://zenodo.org/record/4021967/
https://github.com/dyammons/Canine_Leukocyte_scRNA/tree/main/input
https://github.com/dyammons/Canine_Leukocyte_scRNA/tree/main/input
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3. Results
3.1. Transcriptional Landscape Reveals Heterogeneity of Porcine Peripheral Blood Monocytes

To investigate the intrinsic structure and potential functional subtypes of peripheral
immune cells, we performed a 10× Genomics single-cell RNA sequencing on a mixed
population of CD3+ PBMCs isolated from three healthy Large White pigs. Considering
that cell resolution of scRNA-seq analysis can be improved based on large datasets, we
also downloaded seven additional PBMC scRNA-seq datasets generated by Herrera-Uribe
et al. using the same technique (10× Genomics) [14]. After rigorous quality control and the
removal of batch effects, a total of 14,595 transcriptomes were obtained from 34,220 cells in
eight PBMC samples for subsequent analyses. Using the graph-based uniform manifold
approximation and projection (UMAP) clustering algorithm in the Seurat package, we
identified 32 cell clusters (Figures 1A and S1A–C). These cell clusters were further classified
into 14 main cell types based on classical marker gene expression (Figures 1A–C and S2F).
These cell types included B cells (cluster 3, 4, 5, 9, 11, 18), CD2−γδ T cells (cluster 0, 19),
CD2+γδ T cells (cluster 16), CD4 T cells (cluster 1, 7, 12, 25), CD8 T cells (cluster 8, 10,
13, 22), NK cells (cluster 2, 20), antibody-secreting cells (ASCs; cluster 28), erythrocytes
(cluster 31), plasmacytoid dendritic cells (pDCs; cluster 29), conventional dendritic cells
(cDCs; cluster 27), and monocytes (cluster 6, 17, 21, 26). These cell types were consistent
with those identified based on published scRNA-seq data in a previous study [14]. We
additionally identified megakaryocytes (cluster 23, PPBP, TUBB1, ITGA2B, ITGB3), pro-
liferative T cells (cluster 14, 15; MKI67, TOP2A, STMN1), and proliferative B cells (cluster
24; MKI67, TOP2A, CD79A, MS4A1). Cluster 30 included multiple cell types highly ex-
pressing various marker genes, indicating that cluster 30 was a mixed population, and thus
cluster 30 was excluded from subsequent analyses. The proportions of each cell type are
shown in Figure S2F. To validate the above-mentioned 14 cell types, we utilized the refer-
ence mapping of the human database in the SingleR package (v1.8.1) (Figure S2A–E) [27].
Unfortunately, some of these 14 cell types of pig did not well match those of the human,
especially T cells. This mismatch might be attributed to the inadequate annotation of pig
immune-related genomes and interspecies variations.

To further explore the potential functions of these major cell types, we performed func-
tional enrichment analysis of the DEGs in each major cell type using metasacpe (Figure 1D).
The enrichment analysis results effectively confirmed the accuracy of the categorization
of these cell types. For instance, GO terms assigned to B cells included “B cell activation”,
“B cell proliferation”, and “B cell differentiation”. Meanwhile, proliferation cells exhibited
enrichment in such GO terms as “cell cycle process”, “mitotic cell cycle”, and “mitotic
cell cycle process”. GO terms immune-regulatory and T cell activation were assigned
to T cells and γδ T cells. NK cells showed the enrichment of GO terms related to “cell
killing”. Dendritic cells (pDCs and cDCs) displayed the enrichment of GO terms, such as
“Antigen processing and presentation of peptide antigen via MHC class II”, “Dendritic cell
differentiation”, and “Antigen processing and presentation”, which was consistent with
previous reports by Herrera-Uribe et al. [14]. Notably, some genes were expressed in both T
cell cluster and NK cell cluster, suggesting similar expression patterns in these two clusters.
Collectively, we identified 14 different cell types and characterized their gene-expression
signatures, and our results preliminary suggested that peripheral blood cells were highly
heterogeneous.

3.2. Clustering Analysis Reveals Heterogeneity of T Lymphocytes in Peripheral Blood

Our data showed that T lymphocytes, the most important immune cells in anti-viral
response, dominated in peripheral blood. Therefore, we further explored the transcriptional
heterogeneity of T lymphocytes. Based on TRDC gene expression, we divided nine PBMC-
derived T cell clusters obtained from unsupervised clustering into two cell lineages, namely,
αβ T cell lineage (9749 T cells) and γδ cell lineage (5841 T cells) (Figures 2A and S3A,B). The
αβ T cell lineage was further divided into CD4+ (4145) and CD8+ (3984) T cells based on
the expression of CD4, CD8A, and CD8B, and subsequently, CD4+ and CD8+ T cells were



Cells 2024, 13, 692 7 of 19

subdivided into two and four cell subtypes, respectively (Figure 2B,C). The γδ cell lineage
was divided into CD2+γδ T cells (728) and CD2−γδ T cells (5113) based on CD2 expression
levels. The identity of one cell cluster could not be determined, and this unknown cell
cluster was excluded from downstream analysis. Among CD8 T cells, cluster 4 exhibited
specific high expression of naive markers, such as LEF1, CCR7, and SELL, clearly confirming
its identity as CD8_naive. Cluster 8 displayed the specific expression of GZMK, CXCR4,
and CXCR3, commonly associated with memory functions of T cells, and thus, cluster 8
was designated as CD8_memory. Notably, cluster 3 exhibited high expression levels of
effector marker genes, including GZMM, GZMB, CCL5, and GNLY, and thus, cluster 3
was defined as CD8_effector. The remaining CD8 T cells were assigned to cluster 7, and
cluster 7 shared several genes with cluster 3, exhibiting high expression of several cytotoxic
genes and exhaustion molecules, including ITGAM, KLRD1, TNFRSF9, and TYROBP,
implying that the identity of cluster 7 was CD8_terminal_effector cells. In addition to our
manual classification, we conducted differential gene expression analysis using pseudobulk
conversion by previously reported methods to further define each key cell type [15]. In
line with our manual classification results, we found that the CD8_naive cluster displayed
higher expression of naive-associated genes (LEF1, CCR7 and SELL) and lower expression
of cytotoxic genes (GZMB, NCR3, and KLRK1), relative to all other CD8 T cells (Figure 2D,
Table S1). CD8_effector and CD8_terminal_effector T cells displayed higher expression of
effect-related and cytotoxicity-related genes, such as LYZ (lysozyme), S100A11 (alarmin),
NCR1 than other CD8 T cells (Figure 2D, Table S1).

Similarly, we identified two CD4 T cell subtypes (cluster 2 and cluster 1) (Figure 2B,C).
Cluster 2 was characterized by the high expression of naive marker genes, such as CCR7
and LEF1, indicating that cluster 2 was CD4_naive T cells, whereas cluster 1 was charac-
terized by the high expression of activation-associated markers (ITGB1, CD40LG, IL6R),
suggesting that cluster 1 was activated CD4+αβ T cells, and thus, cluster 1 was designated
as CD4_effector_memory (CD4_TEM), which was in agreement with previous findings [14].
Further differential gene expression analysis based on pseudobulk conversion revealed
upregulated expression of several naive genes in CD4_naive T cells and activity-related
genes in CD4_TEM (Figure S3C, Table S2). GO enrichment analysis of DEGs obtained by
the pseudobulk conversion method confirmed functional differences between CD4_naive
and CD4_TEM. CD4_naive T cells were mainly involved in several biological pathways
related to growth, development, cell regulation, and tissue formation in organisms, such
as the regulation of the cell cycle pathway and the transmembrane receptor protein ty-
rosine kinase signaling pathway. CD4_TEM cells were associated with the regulation of
lymphocyte activation and cell adhesion (Figure S3D, Table S3).

Pigs are considered a high γδ species. In this study, we identified two major sub-
types of γδ T cells, namely, CD2+γδ and CD2−γδ cells (Figure 2B,C). Our results were
consistent with previous reports that CD2−γδ T cells dominate in porcine blood [28,29].
Further, we performed pseudobulk conversion on the γδ cell population and found that
CD2+γδ T cells exhibited high expression levels of genes related to TCR signaling (PRKCH,
LCK, and IKZF2), whereas CD2−γδ T cells displayed the expression of the JAML gene
(Figure S3E, Table S2). This finding is in close agreement with the porcine thymus single-
cell data reported by Gu et al., suggesting that a portion of the γδ T cells in the blood might
have originated from the thymus [30]. Our GO enrichment analysis revealed that CD2−γδ
T cells were mainly involved in the positive regulation of response to stimulus and the
regulation of immune system process and that CD2+γδ T cells demonstrated activity in the
process of cell positioning (such as cell migration and cell motility) (Figure S3F, Table S3).
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Figure 2. Transcriptomic heterogeneity of CD8 T lymphocytes. (A) UMAP visualization of T cell
subtypes. Different colors represent different cell clusters. (B) Dot plot of the expression of cell type-
specific marker genes. Dot brightness and size represent the scaled expression of each marker gene and
the proportion of cells expressing each marker gene, respectively. (C) UMAP plots of marker genes used
for defining cell types. (D) Volcano plot of the DEGs (pseudobulk conversion) between the target CD8
cluster and all other CD8 clusters. Adjusted p values < 0.05 and |log2 FC| > 0.58 were used as DEG
screening criteria. Red and blue dots denote up-regulated and down-regulated DEGs, respectively.
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3.3. Differences in Functions and Immunometabolic Patterns among CD8 T Cell Subtypes

To investigate the function heterogeneity among different CD8 T cell subtypes, we
conducted GO analysis, pathway activity analysis, and Kyoto Encyclopedia of Genes and
Genomes (KEGGs) analysis. GO analysis revealed that CD8_naive T cells were mainly
related to the ribosome synthesis-related pathway, CD8_memory and CD8_effector cells
were primarily associated with immune response, and CD8_terminal_effector T cells were
involved in ATP metabolism and aerobic respiration processes (Figure 3A). Additionally,
GSVA results indicated substantial heterogeneity among CD8 T cell subtypes (Figure 3B).
In detail, CD8_naive cells displayed relatively low activity in fatty acid metabolism but
relatively high activity in cell proliferation and differentiation, such as MYC targets v1/v2,
TGF-β signaling, E2F targets, and WNT/β catenin signaling. CD8_memory T cells exhibited
a similar low activity in fatty acid metabolism. PI3K/Akt/mTOR signaling pathway,
glycolysis, and several immune activation-related pathways (interferon-γ response, IL2-
STAT5 signaling, TNFA signaling via NFκB, and IL6-JAK-STAT3 signaling) were highly
activated in CD8_effector. Notably, both inflammatory response and mTORC1 signaling
were relatively active in CD8_memory and CD8_effector. Furthermore, three pathways,
including fatty acid metabolism, oxidative phosphorylation, and adipogenesis, showed the
highest activity in the CD8_terminal_effector T cells. Consistent with the pathway activity
analysis results, the KEGG results revealed that CD8_naive T cells were mainly related
to the cell cycle pathway, whereas CD8_memory T cells were primarily associated with
valine, leucine, and isoleucine biosynthesis, as well as glycolipid metabolism (Table S4).
The immune-inflammation pathways exhibited high activity in CD8_effector T cells, while
fatty acid metabolism and oxidative phosphorylation pathways displayed high activities
in CD8_terminal_effector T cells. Taken together, our results revealed complex function
heterogeneity among CD8 T cell subtypes.

3.4. Pseudotime Trajectory Analysis Reveals Dynamic Heterogeneity among CD8 T Subtypes

Further, we conducted single-cell trajectory analysis to investigate the developmental
status of CD8 T cell subtypes with the highest heterogeneity using the Monocle2 (v2.22.0)
and the SlingShot software packages (v2.2.1). The results revealed that a majority of
cells from each cluster gathered based on the gene expression similarity and that the
CD8 T cell subtypes formed a relatively continuous pseudo-time trajectory which began
with the CD8_naive cells, followed by CD8_memory, and then branched into two dif-
ferent trajectories represented by CD8_effector and CD8_terminal_effector, respectively
(Figure 4A–C). The pseudo-time heatmap showed that CD8_memory appeared to be an
intermediate state between naive and effector T cells (Figure 4A,E). Moreover, CD8_effector
and CD8_terminal_effector T cells exhibited higher pseudo-time scores than two other
CD8 T cell subtypes, indicating their terminal developmental state (Figure 4B). Further-
more, we also inferred the progression of the cellular transcriptomes using Slingshot. As
expected, Slingshot analysis confirmed the inferred pseudotime trajectory, which started
with CD8_naive serving as the root node and transitioned from the CD8_memory to
CD8_effector and CD8_terminal_effector cells (Figure 4D). According to the transition
processes, genes were clustered into four modules, which were highly consistent with
the developmental trajectories of CD8 T cell subtypes we defined (Figure 4F). For exam-
ple, genes such as LEF1, SELL, and TCF7 were specifically expressed in CD8_naive, and
CD8_memory showed high expression of genes, such as GZMK, CXCR3, and FCGR3A.
Genes such as GZMB, GNLY, and GZMM were highly expressed in CD8_effector, and most
NK cell markers, including NCR1, KLRC1, NFKB1, and KLRB1 were specifically expressed
in CD8_terminal_effector. Overall, our study has clearly defined major developmental
trajectories of CD8 T cell subtypes, which provide valuable insights into the biological
characteristics of CD8 T cells in the context of porcine immune responses.
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Figure 3. Pathway heterogeneity among CD8 T cell subtypes. (A) GO analysis of biology processes in
each CD8 T cell subtype. Node size represents the number of genes, and color intensity corresponds
to the adjusted p-value. (B) GSVA heatmaps of hallmark gene sets in each of 4 CD8 T cell subtypes.
The important metabolic gene sets are highlighted in red, while the cell cycle-related gene sets are
highlighted in blue.

3.5. Single-Cell Network Inference and Cell Communication Analysis Unveil Candidate Regulators
and Extensive Intercellular Communication in CD8 T Subtypes

We applied the CellphoneDB algorithm to predict cell-cell receptor-ligand interactions
between CD8 T cells and other cell types (CD4 T cells, B cells, monocytes, dendritic cells,
and NK cells) in the blood microenvironment. The results showed that monocytes exhibited
the most interactions with other cell types, and the strongest interactions were observed
between monocytes and dendritic cell types (cDC and pDC) (Figure 5A,B). The interaction
signal strength is shown in Figure 5A. In the CD74 signaling network, a significant inter-
action occurred between B cells, monocytes, or dendritic cells and CD8+ T cells through
related receptor-ligand pairs, including CD74-APP and CD74-COPA (Figure 5C). In CD8 T
cells, the chemokine CCL5 was highly expressed, whose receptors include CCR5, CCR4,
CCR3, CCR1, ACKR1, and ACKR4. The majority of these receptors were important in im-
mune regulation, and CD8 T cells primarily interacted with several other cell types through
the specific ligand-receptor pairs composed of CCL5 and these receptors. (Figure 5C). In
addition, CD8 T cells also interacted with all other cell types through another common
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CD74-MIF pair in pig peripheral blood. The CD74-MIF pair has been reported to modulate
immune activity, and CD74 is an important receptor regulating dendritic cell migration and
immune response, and it also is involved in regulating T cell and B cell development [31,32].
In addition, we also explored the communication network among CD8 T cell subtypes. We
found that CD8_terminal_effector cells frequently interacted with the other three CD8 T
cell subtypes through the receptor-ligand pairs, further suggesting the important crosstalk
effects of CD8_terminal_effector (Figure S4A,B).
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Figure 4. Developmental trajectory analysis of porcine CD8 T cells. (A) Transformation among CD8 T
cell subtypes predicted by Monocle2. The rainbow colors from blue to yellow represent the trajectory
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from the beginning to the end. (B,C) Pseudotime trajectories of CD8 T cells inferred by Monocle2.
(D) CD8 T cell Cells are colored according to pseudotime (B) and cell states (C). differentiation trajec-
tory inferred by Slingshot according to cluster information (left) and pseudotime (right). (E) Ridge
plot of CD8 T cell subtypes over pseudotime. (F) Heatmap of relative expression of representative
marker genes in CD8 T cell subtypes along the inferred trajectory.

Transcription factors (TFs) play an important role in regulating gene expression and
shaping different phenotypes of T cells [33]. Thus, we employed SCENIC to identify
potential differential TFs from CD8 T cell subtypes. We identified some highly active TFs
in each CD8 T cell subtype. For example, TFs LEF1, TCF7, PPARD, and NR1H3 were highly
active in CD8_naive cells, TFs STAT1 and MEF2C in CD8_memory cells, SPI1, USF2, and
RFX5 in CD8_effector cells, and IRF7, TBX21, and EP300 in CD8_terminal_effector cells
(Figure 5D). Meanwhile, in conjunction with the published PBMC scATAC-seq data [25],
further analysis revealed that the TFs predicted in CD8 T cells through scRNA-seq were
also significantly enriched in motif enrichment analysis for the ATAC peaks specific to
the CD8+ T cluster (Figure 5E). These findings collectively suggest that multiple TFs
synergistically regulate T cell development and maintain the heterogeneity of CD8 T
cells. Taken together, the above results elucidate the possible molecular basis of cell-cell
interactions in the peripheral blood and reveal the underlying mechanism of the CD8 T cell
phenotypic switch.

3.6. Cross-Species Comparison Shows Similarities and Differences between Species

We integrated previously published PBMC datasets from six healthy adult humans
and seven healthy dogs with the PBMC datasets from eight healthy pigs in our study [15,26].
Our results indicated that there were more similarities than differences between species.
For instance, porcine dendritic cells (pDCs and cDCs), B cells, monocytes, ASC cells,
and erythrocytes clustered together with their corresponding cell types in humans and
dogs on the same evolutionary branches (Figure S5A,B). Porcine CD4_naive defined in
this study corresponds to naive_CD4 cells in both humans and dogs, and our defined
porcine CD4_TEM corresponds to Tm_CD4 cells in humans and Tem_CD4 cells in dogs.
Notably, we found subtle differences between species. For example, two subtypes of
porcine γδ cells clustered separately with two subtypes of canine γδ cells, but porcine γδ

cells and human γδ cells were on different branches. These results suggested that pigs
and dogs belonged to the high γδ cell species and that their γδ cells were evolutionarily
closer to each other but more distant from human γδ cells. Our defined CD8_effector
and CD8_terminal_effector cell types were closer to human NK cells, which was similar
to one previous report that canine CD8 effector T cells clustered together with human
NK cells [15]. Furthermore, porcine CD8_memory cells and human CD8_memory cells
clustered on the same evolutionary branch. CD8_naive cells were not available in human
data, but we observed that porcine CD8_naive cells and canine CD8_naive cells shared
a common branch. In summary, although cross-species analysis underscored similarities
among immune cells, it also highlighted potential inter-species differences.
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Figure 5. Cell communication between CD8 T cells and other cell types and SCENIC analysis
of CD8 T cell subtypes. (A) Heatmap of the number of significant ligand-receptor interactions
among different cell types. (B) The interaction network of immune cell types. (C) Dot plot of
significant ligand-receptor pairs involved in the interaction between CD8 T cells and other cell types.
Dot size represents the significance level (−log10(p-value)), while colors indicate the expression
levels (log2 mean (molecule 1−molecule 2)). (D) Heatmap of transcription factor regulon activity in
CD8 T cell subtypes. (E) Motif enrichment analysis in CD8 T cells by integrating scATAC-seq and
scRNA-seq data.
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4. Discussion

CD8 T cells play a pivotal role in adaptive immune responses against intracellular
pathogens. Currently, CD8 T cells have been extensively studied in human and mouse
models, but knowledge of porcine cytotoxic T lymphocytes (CTLs) remains limited. In this
study, we first characterized the heterogeneity of peripheral blood circulating immune cells
through the transcriptome analysis of 34,220 single cells based on multiple datasets from
our experiment and open databases. We newly identified four CD8 T cell subtypes, and
they exhibited different transcriptomic profiles and pathway activities in peripheral blood.
Additionally, we revealed potential differentiation trajectories of four CD8 cell subtypes
by Monocle2 and Slingshot analyses. Finally, we inferred the interactions between CD8 T
cells and other immune cells and identified key transcription factors (TFs) involved in the
formation and maintenance of different T cell phenotypes.

In our study, we identified two distinct subtypes of γδ T cells based on the expression
levels of the TRDC and CD2 genes. Comparison between human and pig data revealed that
γδ T cells from these two species fell into separate branches. In contrast, the comparison
of pig and dog data found a high similarity in their γδ T cells. Specifically, dog γδ T
cells and pig CD2−γδ T cells clustered in the same clade, and pig CD2+γδ T cells (highly
expressing CD8A) and dog CD8+γδ T cells clustered in the same clade. Further, GO
enrichment analysis revealed functional differences between CD2+γδ T cells and CD2−γδ
T cells in pigs. CD2−γδ T cells primarily participated in immune system regulation, while
CD2+γδ T cells were mainly involved in cell migration processes. Another interesting
finding was that naive CD8 T cells were closer to naive CD4 T cells than other CD8 T
cells in the UMAP plot. This observation was consistent with previous findings of dog
PBMCs [15]. This unique clustering pattern of T cells might be attributed to the fact
that naive CD8 T cells have not encountered specific antigens yet, and thus, they exhibit
no cytotoxicity. Furthermore, our clustering tree showed that the two distinct effector
CD8 T cell subtypes were phylogenetically closer to human NK cells, indicating potential
interspecies differences. Our data indicated that in the case of investigating non-model
species, various methods should be combined, and multiple databases should be integrated
for cell type annotation.

Although the various transitions of T cells are generally considered to occur primarily
in lymph nodes and/or infection sites, a recent scRNA-seq study of healthy humans
has demonstrated the existence of a clear cell developmental trajectory in peripheral
blood, where naive T cells (TN cells) differentiate into memory T cells (TCM and TEM
cells) and further differentiate into CD8+ tissue-resident memory (TRM) cells [34]. Similar
differentiation trajectories were identified when studying the dynamic relationships among
T cell subtypes across tissues in adults, which revealed that certain CD8+ T cells underwent
clonal expansion in multiple tissues at different developmental stages and that diverse
T cells were widely distributed throughout the human body through clonal expansion
and transformation [35]. In order to explore the transformation relationships among
porcine CD8 T cell subtypes in peripheral blood, we conducted a pseudo-time trajectory
analysis. We found that CD8_naive cells and CD8_memory primarily clustered along
the pseudotime axis, while CD8_effector and CD8_terminal_effector diverged in two
directions. Interestingly, effector CD8 T cells appeared in two directions and were more
dominant in state 2 (CD8_effector), whereas CD8_terminal_effector T cells were mainly
present at the end of state 3. This phenomenon is similar to the asymmetric cell fate
model of human effector CD8 T cells [36]. This model suggests that human effector
CD8 T cells in intermediate differentiation states undergo asymmetric cell division upon
repeated encounters with antigen-presenting cells (APCs) [36]. This process allows some
activated T cells to collectively receive strong differentiation signals, driving them toward
terminal differentiation. Simultaneously, this process preserves the great potential of less
differentiated cells to develop into memory cells [36]. In sum, our trajectory analysis
revealed that CD8_naive was the starting point for differentiation and CD8_memory was
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an intermediate transitional state, or CD8_effector T cells dedifferentiated into memory
cells with features of naive and effector T cells [37,38].

In addition to trajectory analysis, we also conducted GO analysis and GSVA analysis
to investigate the potential biological functions and pathway activities of different CD8 T
cell subtypes. Our GO analysis revealed that the biological functions of CD8_naive cells
were largely associated with ribosome synthesis, including “ribosome biogenesis”, “rRNA
processing”, and “ribosomal large subunit assembly”. Our finding was in line with one
previous report that a substantial pool of ribosomal subunits is present in naive T cells and
that these ribosomes can rapidly participate in the T cell activation process upon antigen
stimulation [39]. Our GO analysis also showed that memory CD8 T cells and effector
CD8 T cells were mainly related to the immune response biological processes, such as
“regulation of immune system process”, “adaptive immune response”, and “leukocyte
activation”. Furthermore, we also found that CD8_effector cells were extensively involved
in the regulation of actin filament-related biological processes, and actin filaments have
been demonstrated to play a crucial role in T cell immune synapse formation and T cell
activation [40]. CD8_terminal_effector T cells at the terminal differentiation stage were
extensively involved in oxidative phosphorylation and ATP metabolism processes. In
addition, our GSVA (hallmark gene sets) and KEGG analyses also revealed the complex
pathway heterogeneity of CD8 T cells in the peripheral blood.

Cells often communicate with each other to coordinate their behavior [41]. In this
study, we investigated the interactions between CD8 cells and other cells in peripheral
blood by CellPhoneDB analysis. We found that most CD8 T cells communicated with
other cells through the CCL5-related pairs (CCL5 ligand and CCR5, CCR4, CCR3, CCR1,
ACKR1, and ACKR4 receptors). Notably, CCL5 has been reported to be a key effector
molecule of T lymphocytes, playing a role in regulating the migration of T lymphocytes and
monocytes [42,43]. We also found that several types of cells with antigen-presenting ability,
such as monocytes, dendritic cells, and B cells, utilized CD74-APP and CD74-COPA pairs
to interact with CD8 T cells, thereby promoting T cell activation and polarization. Transcrip-
tion factors have been reported to participate in the formation and maintenance of different
T cell phenotypes [33]. Further, we identified TFs associated with cell differentiation using
SCENIC. Consistent with the differential gene expression analysis results, the greatest
differences in transcription factor activity were observed between CD8_terminal_effector
cells and CD8_naive T cells that were highly expressing LEF1, TCF7, PPARD, and NR1H3.
Previous research has established the essential roles of WNT signaling pathway effectors,
LEF1 and TCF7, in the activation and quiescence of peripheral CD8_naive T cells [44–46].
CD8_memory cells prominently expressed MEF2C and STAT1. Interestingly, CD8_naive
and CD8_memory cells shared JUNB and ETS1, suggesting a potential lineage relationship
between them, with CD8_memory possibly originating from naive CD8 T cells. SPI1,
encoding PU.1, has been reported to control T cell differentiation [47]. CD8_effector cells
lacked TCF7 regulon activity but displayed high SPI1, USF2, and RFX5 regulon activities.
Transcription factors IRF7 and TBX21 (T-bet) have been found to be associated with CD8
T cell cytotoxicity [48]. In this study, we found that these two TFs had high activities
in CD8_terminal_effector T cells. Furthermore, we also observed several less-reported
transcription factors, such as PPARD and ELF1, in various subtypes of CD8 T cells, and
these TFs might potentially play a role in the differentiation and phenotypic maintenance of
different T cells. Recently, a scATAC-seq study utilizing PBMCs from Duroc pigs predicted
TFs for various immune cell subtypes, including CD8 T cells [25]. Through our analysis, we
found that TFs identified in our study were also significantly enriched in the scATAC-seq
study. This result strongly supported the reliability of the identified TFs in CD8 T cells.
In summary, we identified known and unknown TFs that might contribute to phenotypic
heterogeneity of CD8+ T cells. However, there were some limitations of this study, such as
the lack of experimental validation of the cell subsets or marker genes we identified.
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5. Conclusions

In conclusion, our analysis of porcine peripheral blood scRNA-seq data has defined
four different CD8 T cell subtypes and revealed their functional and dynamic heterogeneity.
Through single-cell regulatory network inference, we identified key regulatory factors
during CD8 T cell differentiation. Moreover, cell-cell communication analysis underscored
extensive intercellular interactions among different cell types. Lastly, our cross-species
analysis highlighted both similarities and potential differences between species. Our
findings provide insights into the diverse CD8 T cell state transitions in peripheral blood
and identify core regulators of CD8 T cell identity, enriching our understanding of the
porcine immune system.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells13080692/s1, Figure S1. 32 cell clusters in porcine peripheral
blood mononuclear cells obtained by unsupervised clustering. (A) The UMAP plot of integrated
transcriptome of 34,220 single cells derived from all 8 PBMC samples. Color brightness represents
sample source of cells. (B) Stacked bars of 32 cell clusters. The bar size represents the percentage
of 8 PBMC samples in each cluster. (C) Hierarchical clustering trees of the relationships among
cell clusters; Figure S2. SingleR comparison between procine PBMCs and human PBMCs and the
percentage of PBMC samples in each of 15 cell types. (A–E) Cell types were annotated using SingleR
based on their similarity to human PBMC. The 5 human reference datasets utilized in this study are
HumanPrimaryCellAtlasData (ref1), BlueprintEncodeData (ref2), DatabaseImmuneCellExpression-
Data (ref3), NovershternHematopoieticData (ref4), and MonacoImmuneData (ref5). (F) Stacked bars
of 15 major cell types. The bar size indicates the percentage of PBMC samples in each of 15 major cell
types; Figure S3. Transcriptome heterogeneity in T lymphocytes. (A) Sankey plot of initial clusters
and subset clusters. Clusters with the prefix “S” indicate the subset cluster. “S9” corresponds to the
“low-quality cluster”. (B) Stacked bar. Bar size indicates the proportions of PBMC samples in each of
10 major T cell types. (C) Volcano plot of the DEGs (pseudobulk conversion) between CD4_naive and
CD4_TEM (Supplemental Table S2). Adjusted p values < 0.05 and |log2 FC| > 0.58 were used as DEG
screening criteria. Red and blue dots represent up-regulated and down-regulated DEGs, respectively.
(D) GO analysis of down-regulated and up-regulated DEGs obtained by pseudobulk conversion
(Supplemental Table S3). Blue and orange bars indicate the pathways enriched with up-regulated
and down-regulated DEGs, respectively. (E) Volcano plot of DEGs (pseudobulk conversion) between
CD2−γδ and CD2+γδ T cells (Supplemental Table S2). Red and blue dots represent up-regulated
and down-regulated DEGs in the CD2−γδ cluster, respectively. (F) GO analysis of up-regulated
and down-regulated DEGs obtained by pseudobulk conversion (Supplemental Table S3). Blue and
orange bars denote the pathways enriched with up-regulated and down-regulated DEGs, respec-
tively; Figure S4. Cell communication among CD8 T cells subtypes. (A) Heatmap of the number of
significant ligand-receptor interactions among different CD8 T cell subtypes. CD8_C1 represents
CD8_naive cell; CD8_C2 represents CD8_memory cell; CD8_C3 represents CD8_effector cell; and
CD8_C4 represents CD8_terminal_effector cell. (B) Dot plot of the significant ligand-receptor pairs
involved in the interaction among CD8 T cell subtypes. Dot size represents the significance level
(−log10(p-value)), while colors indicate the expression levels (log2 mean (molecule 1−molecule 2));
Figure S5. Comparison between porcine PBMCs and human PBMCs or dog PBMCs. (A) Hierarchical
clustering of human and pig cell types using the top 2000 variable features after SCT normalization.
(B) Hierarchical clustering of pig and dog cell types using the top 2000 variable features after SCT
normalization. The prefix “hu_” represents human cell types; Supplemental Table S1. Differentially
expressed genes among CD8 T subtypes; Supplemental Table S2. Differentially expressed genes
between CD4+ T cell subtypes and γδ cell T subtypes; Supplemental Table S3. Gene Ontology enrich-
ment analysis for CD4+ T cell subtypes and γδ T cell subtypes; Supplemental Table S4. The results of
GO analysis, pathway activity analysis, and KEGG analysis among CD8 T subtypes.

Author Contributions: P.H.: conceptualization, formal analysis, methodology, investigation, software,
visualization, writing—original draft preparation. Y.G.: data curation, formal analysis, methodol-
ogy, visualization, writing—review and editing. W.Z.: data curation, methodology, investigation,
writing—review and editing. D.W.: data curation, methodology, investigation, writing—review and
editing. Y.W.: data curation, methodology, investigation, writing—review and editing. X.L.: concep-
tualization, data curation, funding acquisition, project administration, supervision, writing—review

https://www.mdpi.com/article/10.3390/cells13080692/s1
https://www.mdpi.com/article/10.3390/cells13080692/s1


Cells 2024, 13, 692 17 of 19

and editing. M.Z.: conceptualization, data curation, funding acquisition, project administration,
supervision, writing—review and editing. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by the National Key Research and Development Program of
China (2021YFD1301201), Natural Science Foundation of China (31961143020), Major Project of Hubei
Hongshan Laboratory (2021hszd019), and Earmarked Fund for China Agriculture Research System
(CARS-35).

Institutional Review Board Statement: All animal experiments in this study were conducted in
accordance with the protocols and guidelines approved by the Institutional Animal Care and Use
Committee of Huazhong Agricultural University, China, approval code HZAUSW-2018-008.

Informed Consent Statement: Not applicable.

Data Availability Statement: Raw sequencing data (FASTQ format) and processed data files are
available in the NCBI Gene Expression Omnibus database under accession number GSE247126.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Lagumdzic, E.; Pernold, C.; Viano, M.; Olgiati, S.; Schmitt, M.W.; Mair, K.H.; Saalmuller, A. Transcriptome Profiling of Porcine

Naive, Intermediate and Terminally Differentiated CD8(+) T Cells. Front. Immunol. 2022, 13, 849922. [CrossRef] [PubMed]
2. Andersen, M.H.; Schrama, D.; Thor Straten, P.; Becker, J.C. Cytotoxic T cells. J. Invest. Dermatol. 2006, 126, 32–41. [CrossRef]

[PubMed]
3. Halle, S.; Halle, O.; Forster, R. Mechanisms and Dynamics of T Cell-Mediated Cytotoxicity In Vivo. Trends Immunol. 2017, 38,

432–443. [CrossRef]
4. Pauly, T.; Elbers, K.; Konig, M.; Lengsfeld, T.; Saalmuller, A.; Thiel, H.J. Classical swine fever virus-specific cytotoxic T lymphocytes

and identification of a T cell epitope. J. Gen. Virol. 1995, 76, 3039–3049. [CrossRef] [PubMed]
5. Patch, J.R.; Kenney, M.; Pacheco, J.M.; Grubman, M.J.; Golde, W.T. Characterization of cytotoxic T lymphocyte function after

foot-and-mouth disease virus infection and vaccination. Viral. Immunol. 2013, 26, 239–249. [CrossRef] [PubMed]
6. Chung, C.J.; Cha, S.H.; Grimm, A.L.; Ajithdoss, D.; Rzepka, J.; Chung, G.; Yu, J.; Davis, W.C.; Ho, C.S. Pigs that recover from

porcine reproduction and respiratory syndrome virus infection develop cytotoxic CD4+CD8+ and CD4+CD8− T-cells that kill
virus infected cells. PLoS ONE 2018, 13, e0203482. [CrossRef] [PubMed]

7. Romero, P.; Zippelius, A.; Kurth, I.; Pittet, M.J.; Touvrey, C.; Iancu, E.M.; Corthesy, P.; Devevre, E.; Speiser, D.E.; Rufer, N. Four
functionally distinct populations of human effector-memory CD8+ T lymphocytes. J. Immunol. 2007, 178, 4112–4119. [CrossRef]

8. Appay, V.; Rowland-Jones, S.L. Lessons from the study of T-cell differentiation in persistent human virus infection. Semin.
Immunol. 2004, 16, 205–212. [CrossRef]

9. Mahnke, Y.D.; Brodie, T.M.; Sallusto, F.; Roederer, M.; Lugli, E. The who’s who of T-cell differentiation: Human memory T-cell
subsets. Eur. J. Immunol. 2013, 43, 2797–2809. [CrossRef]

10. Sallusto, F.; Lenig, D.; Forster, R.; Lipp, M.; Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing
potentials and effector functions. Nature 1999, 401, 708–712. [CrossRef]

11. Rufer, N.; Zippelius, A.; Batard, P.; Pittet, M.J.; Kurth, I.; Corthesy, P.; Cerottini, J.C.; Leyvraz, S.; Roosnek, E.; Nabholz, M.; et al.
Ex vivo characterization of human CD8+ T subsets with distinct replicative history and partial effector functions. Blood 2003, 102,
1779–1787. [CrossRef] [PubMed]

12. Pescovitz, M.D.; Book, B.K.; Aasted, B.; Dominguez, J.; Ezquerra, A.; Trebichavsky, I.; Novikov, B.; Valpotic, I.; Sver, L.; Nielsen,
J.; et al. Summary of workshop findings for antibodies reacting with porcine T-cells and activation antigens: Results from the
Second International Swine CD Workshop. Vet. Immunol. Immunopathol. 1998, 60, 251–260. [CrossRef] [PubMed]

13. Talker, S.C.; Kaser, T.; Reutner, K.; Sedlak, C.; Mair, K.H.; Koinig, H.; Graage, R.; Viehmann, M.; Klingler, E.; Ladinig, A.; et al.
Phenotypic maturation of porcine NK- and T-cell subsets. Dev. Comp. Immunol. 2013, 40, 51–68. [CrossRef] [PubMed]

14. Herrera-Uribe, J.; Wiarda, J.E.; Sivasankaran, S.K.; Daharsh, L.; Liu, H.; Byrne, K.A.; Smith, T.P.L.; Lunney, J.K.; Loving,
C.L.; Tuggle, C.K. Reference Transcriptomes of Porcine Peripheral Immune Cells Created Through Bulk and Single-Cell RNA
Sequencing. Front. Genet. 2021, 12, 689406. [CrossRef] [PubMed]

15. Ammons, D.T.; Harris, R.A.; Hopkins, L.S.; Kurihara, J.; Weishaar, K.; Dow, S. A single-cell RNA sequencing atlas of circulating
leukocytes from healthy and osteosarcoma affected dogs. Front. Immunol. 2023, 14, 1162700. [CrossRef] [PubMed]

16. Squair, J.W.; Gautier, M.; Kathe, C.; Anderson, M.A.; James, N.D.; Hutson, T.H.; Hudelle, R.; Qaiser, T.; Matson, K.J.E.; Barraud,
Q.; et al. Confronting false discoveries in single-cell differential expression. Nat. Commun. 2021, 12, 5692. [CrossRef] [PubMed]

17. Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a
biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019, 10, 1523. [CrossRef]

18. Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. Omics
2012, 16, 284–287. [CrossRef] [PubMed]

https://doi.org/10.3389/fimmu.2022.849922
https://www.ncbi.nlm.nih.gov/pubmed/35265090
https://doi.org/10.1038/sj.jid.5700001
https://www.ncbi.nlm.nih.gov/pubmed/16417215
https://doi.org/10.1016/j.it.2017.04.002
https://doi.org/10.1099/0022-1317-76-12-3039
https://www.ncbi.nlm.nih.gov/pubmed/8847509
https://doi.org/10.1089/vim.2013.0011
https://www.ncbi.nlm.nih.gov/pubmed/23829779
https://doi.org/10.1371/journal.pone.0203482
https://www.ncbi.nlm.nih.gov/pubmed/30188946
https://doi.org/10.4049/jimmunol.178.7.4112
https://doi.org/10.1016/j.smim.2004.02.007
https://doi.org/10.1002/eji.201343751
https://doi.org/10.1038/44385
https://doi.org/10.1182/blood-2003-02-0420
https://www.ncbi.nlm.nih.gov/pubmed/12750165
https://doi.org/10.1016/S0165-2427(97)00101-3
https://www.ncbi.nlm.nih.gov/pubmed/9589563
https://doi.org/10.1016/j.dci.2013.01.003
https://www.ncbi.nlm.nih.gov/pubmed/23352625
https://doi.org/10.3389/fgene.2021.689406
https://www.ncbi.nlm.nih.gov/pubmed/34249103
https://doi.org/10.3389/fimmu.2023.1162700
https://www.ncbi.nlm.nih.gov/pubmed/37275879
https://doi.org/10.1038/s41467-021-25960-2
https://www.ncbi.nlm.nih.gov/pubmed/34584091
https://doi.org/10.1038/s41467-019-09234-6
https://doi.org/10.1089/omi.2011.0118
https://www.ncbi.nlm.nih.gov/pubmed/22455463


Cells 2024, 13, 692 18 of 19

19. Hanzelmann, S.; Castelo, R.; Guinney, J. GSVA: Gene set variation analysis for microarray and RNA-seq data. BMC Bioinform.
2013, 14, 7. [CrossRef]

20. Qiu, X.; Mao, Q.; Tang, Y.; Wang, L.; Chawla, R.; Pliner, H.A.; Trapnell, C. Reversed graph embedding resolves complex single-cell
trajectories. Nat. Methods 2017, 14, 979–982. [CrossRef]

21. Street, K.; Risso, D.; Fletcher, R.B.; Das, D.; Ngai, J.; Yosef, N.; Purdom, E.; Dudoit, S. Slingshot: Cell lineage and pseudotime
inference for single-cell transcriptomics. BMC Genom. 2018, 19, 477. [CrossRef]

22. Efremova, M.; Vento-Tormo, M.; Teichmann, S.A.; Vento-Tormo, R. CellPhoneDB: Inferring cell-cell communication from
combined expression of multi-subunit ligand-receptor complexes. Nat. Protoc. 2020, 15, 1484–1506. [CrossRef]

23. Aibar, S.; Gonzalez-Blas, C.B.; Moerman, T.; Huynh-Thu, V.A.; Imrichova, H.; Hulselmans, G.; Rambow, F.; Marine, J.C.; Geurts,
P.; Aerts, J.; et al. SCENIC: Single-cell regulatory network inference and clustering. Nat. Methods 2017, 14, 1083–1086. [CrossRef]
[PubMed]

24. Gao, Y.; Fang, L.; Baldwin, R.L.; Connor, E.E.; Cole, J.B.; Van Tassell, C.P.; Ma, L.; Li, C.J.; Liu, G.E. Single-cell transcriptomic
analyses of dairy cattle ruminal epithelial cells during weaning. Genomics 2021, 113, 2045–2055. [CrossRef] [PubMed]

25. Bao, W.; Fan, H.; Xu, C.; Du, C.; Wang, H.; Wang, Y.; Zhao, B.; Chen, C.; Shang, S.; Wu, S. Single-Cell Transcriptomic
and Chromatin Accessibility Atlas of Peripheral Blood Mononuclear Cells Reveal the Immune Cell Heterogeneity of Pigs.
Res. Sq. 2022. [CrossRef]

26. Wilk, A.J.; Rustagi, A.; Zhao, N.Q.; Roque, J.; Martinez-Colon, G.J.; McKechnie, J.L.; Ivison, G.T.; Ranganath, T.; Vergara, R.; Hollis,
T.; et al. A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nat. Med. 2020, 26, 1070–1076.
[CrossRef] [PubMed]

27. Aran, D.; Looney, A.P.; Liu, L.; Wu, E.; Fong, V.; Hsu, A.; Chak, S.; Naikawadi, R.P.; Wolters, P.J.; Abate, A.R.; et al. Reference-based
analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 2019, 20, 163–172. [CrossRef]

28. Sedlak, C.; Patzl, M.; Saalmuller, A.; Gerner, W. CD2 and CD8alpha define porcine gammadelta T cells with distinct cytokine
production profiles. Dev. Comp. Immunol. 2014, 45, 97–106. [CrossRef] [PubMed]

29. Stepanova, K.; Sinkora, M. The expression of CD25, CD11b, SWC1, SWC7, MHC-II, and family of CD45 molecules can be used to
characterize different stages of gammadelta T lymphocytes in pigs. Dev. Comp. Immunol. 2012, 36, 728–740. [CrossRef]

30. Gu, W.; Madrid, D.M.C.; Joyce, S.; Driver, J.P. A single-cell analysis of thymopoiesis and thymic iNKT cell development in pigs.
Cell Rep. 2022, 40, 111050. [CrossRef]

31. Leng, L.; Metz, C.N.; Fang, Y.; Xu, J.; Donnelly, S.; Baugh, J.; Delohery, T.; Chen, Y.; Mitchell, R.A.; Bucala, R. MIF signal
transduction initiated by binding to CD74. J. Exp. Med. 2003, 197, 1467–1476. [CrossRef] [PubMed]

32. Su, H.; Na, N.; Zhang, X.; Zhao, Y. The biological function and significance of CD74 in immune diseases. Inflamm. Res. 2017, 66,
209–216. [CrossRef] [PubMed]

33. Rothenberg, E.V. The chromatin landscape and transcription factors in T cell programming. Trends Immunol. 2014, 35, 195–204.
[CrossRef] [PubMed]

34. Wang, X.; Shen, X.; Chen, S.; Liu, H.; Hong, N.; Zhong, H.; Chen, X.; Jin, W. Reinvestigation of Classic T Cell Subsets and
Identification of Novel Cell Subpopulations by Single-Cell RNA Sequencing. J. Immunol. 2022, 208, 396–406. [CrossRef] [PubMed]

35. He, S.; Wang, L.H.; Liu, Y.; Li, Y.Q.; Chen, H.T.; Xu, J.H.; Peng, W.; Lin, G.W.; Wei, P.P.; Li, B.; et al. Single-cell transcriptome
profiling of an adult human cell atlas of 15 major organs. Genome Biol. 2020, 21, 294. [CrossRef] [PubMed]

36. Kaech, S.M.; Cui, W. Transcriptional control of effector and memory CD8+ T cell differentiation. Nat. Rev. Immunol. 2012, 12,
749–761. [CrossRef] [PubMed]

37. Akondy, R.S.; Fitch, M.; Edupuganti, S.; Yang, S.; Kissick, H.T.; Li, K.W.; Youngblood, B.A.; Abdelsamed, H.A.; McGuire, D.J.;
Cohen, K.W.; et al. Origin and differentiation of human memory CD8 T cells after vaccination. Nature 2017, 552, 362–367.
[CrossRef] [PubMed]

38. Youngblood, B.; Hale, J.S.; Kissick, H.T.; Ahn, E.; Xu, X.; Wieland, A.; Araki, K.; West, E.E.; Ghoneim, H.E.; Fan, Y.; et al. Effector
CD8 T cells dedifferentiate into long-lived memory cells. Nature 2017, 552, 404–409. [CrossRef] [PubMed]

39. Wolf, T.; Jin, W.; Zoppi, G.; Vogel, I.A.; Akhmedov, M.; Bleck, C.K.E.; Beltraminelli, T.; Rieckmann, J.C.; Ramirez, N.J.; Benevento,
M.; et al. Dynamics in protein translation sustaining T cell preparedness. Nat. Immunol. 2020, 21, 927–937. [CrossRef]

40. Kumari, S.; Curado, S.; Mayya, V.; Dustin, M.L. T cell antigen receptor activation and actin cytoskeleton remodeling. Biochim.
Biophys. Acta. 2014, 1838, 546–556. [CrossRef]

41. Daneshpour, H.; Youk, H. Modeling cell-cell communication for immune systems across space and time. Curr. Opin. Syst. Biol.
2019, 18, 44–52. [CrossRef] [PubMed]

42. Zou, R.; Zhang, M.; Zou, Z.; Shi, W.; Tan, S.; Wang, C.; Xu, W.; Jin, J.; Milton, S.; Chen, Y.; et al. Single-cell transcriptomics reveals
zinc and copper ions homeostasis in epicardial adipose tissue of heart failure. Int. J. Biol. Sci. 2023, 19, 4036–4051. [CrossRef]
[PubMed]

43. Appay, V.; Rowland-Jones, S.L. RANTES: A versatile and controversial chemokine. Trends Immunol. 2001, 22, 83–87. [CrossRef]
[PubMed]

44. Willinger, T.; Freeman, T.; Herbert, M.; Hasegawa, H.; McMichael, A.J.; Callan, M.F. Human naive CD8 T cells down-regulate
expression of the WNT pathway transcription factors lymphoid enhancer binding factor 1 and transcription factor 7 (T cell
factor-1) following antigen encounter in vitro and in vivo. J. Immunol. 2006, 176, 1439–1446. [CrossRef] [PubMed]

https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1038/nmeth.4402
https://doi.org/10.1186/s12864-018-4772-0
https://doi.org/10.1038/s41596-020-0292-x
https://doi.org/10.1038/nmeth.4463
https://www.ncbi.nlm.nih.gov/pubmed/28991892
https://doi.org/10.1016/j.ygeno.2021.04.039
https://www.ncbi.nlm.nih.gov/pubmed/33933592
https://doi.org/10.21203/rs.3.rs-1887867/v1
https://doi.org/10.1038/s41591-020-0944-y
https://www.ncbi.nlm.nih.gov/pubmed/32514174
https://doi.org/10.1038/s41590-018-0276-y
https://doi.org/10.1016/j.dci.2014.02.008
https://www.ncbi.nlm.nih.gov/pubmed/24561103
https://doi.org/10.1016/j.dci.2011.11.003
https://doi.org/10.1016/j.celrep.2022.111050
https://doi.org/10.1084/jem.20030286
https://www.ncbi.nlm.nih.gov/pubmed/12782713
https://doi.org/10.1007/s00011-016-0995-1
https://www.ncbi.nlm.nih.gov/pubmed/27752708
https://doi.org/10.1016/j.it.2014.03.001
https://www.ncbi.nlm.nih.gov/pubmed/24703587
https://doi.org/10.4049/jimmunol.2100581
https://www.ncbi.nlm.nih.gov/pubmed/34911770
https://doi.org/10.1186/s13059-020-02210-0
https://www.ncbi.nlm.nih.gov/pubmed/33287869
https://doi.org/10.1038/nri3307
https://www.ncbi.nlm.nih.gov/pubmed/23080391
https://doi.org/10.1038/nature24633
https://www.ncbi.nlm.nih.gov/pubmed/29236685
https://doi.org/10.1038/nature25144
https://www.ncbi.nlm.nih.gov/pubmed/29236683
https://doi.org/10.1038/s41590-020-0714-5
https://doi.org/10.1016/j.bbamem.2013.05.004
https://doi.org/10.1016/j.coisb.2019.10.008
https://www.ncbi.nlm.nih.gov/pubmed/31922054
https://doi.org/10.7150/ijbs.82844
https://www.ncbi.nlm.nih.gov/pubmed/37705737
https://doi.org/10.1016/S1471-4906(00)01812-3
https://www.ncbi.nlm.nih.gov/pubmed/11286708
https://doi.org/10.4049/jimmunol.176.3.1439
https://www.ncbi.nlm.nih.gov/pubmed/16424171


Cells 2024, 13, 692 19 of 19

45. Chen, Y.; Shen, J.; Kasmani, M.Y.; Topchyan, P.; Cui, W. Single-Cell Transcriptomics Reveals Core Regulatory Programs That
Determine the Heterogeneity of Circulating and Tissue-Resident Memory CD8(+) T Cells. Cells 2021, 10, 2143. [CrossRef]
[PubMed]

46. Harly, C.; Kenney, D.; Wang, Y.; Ding, Y.; Zhao, Y.; Awasthi, P.; Bhandoola, A. A Shared Regulatory Element Controls the Initiation
of Tcf7 Expression During Early T Cell and Innate Lymphoid Cell Developments. Front. Immunol. 2020, 11, 470. [CrossRef]
[PubMed]

47. Hosokawa, H.; Rothenberg, E.V. How transcription factors drive choice of the T cell fate. Nat. Rev. Immunol. 2021, 21, 162–176.
[CrossRef]

48. Joshi, N.S.; Cui, W.; Chandele, A.; Lee, H.K.; Urso, D.R.; Hagman, J.; Gapin, L.; Kaech, S.M. Inflammation directs memory
precursor and short-lived effector CD8(+) T cell fates via the graded expression of T-bet transcription factor. Immunity 2007, 27,
281–295. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/cells10082143
https://www.ncbi.nlm.nih.gov/pubmed/34440912
https://doi.org/10.3389/fimmu.2020.00470
https://www.ncbi.nlm.nih.gov/pubmed/32265924
https://doi.org/10.1038/s41577-020-00426-6
https://doi.org/10.1016/j.immuni.2007.07.010

	Introduction 
	Materials and Methods 
	Sample Collection and Processing 
	Processing of scRNA-Seq Data 
	Identification of Cell Clusters 
	Differential Gene Expression Analysis 
	GO Enrichment Analyses 
	Gene Set Variation Analysis of CD8 T Cell Subtypes 
	Pseudotime Trajectory Analysis 
	Cell-Cell Communication Analysis with CellPhoneDB 
	Transcription Factor Analysis 
	Porcine-Human and Porcine-Canine Homology Analysis 

	Results 
	Transcriptional Landscape Reveals Heterogeneity of Porcine Peripheral Blood Monocytes 
	Clustering Analysis Reveals Heterogeneity of T Lymphocytes in Peripheral Blood 
	Differences in Functions and Immunometabolic Patterns among CD8 T Cell Subtypes 
	Pseudotime Trajectory Analysis Reveals Dynamic Heterogeneity among CD8 T Subtypes 
	Single-Cell Network Inference and Cell Communication Analysis Unveil Candidate Regulators and Extensive Intercellular Communication in CD8 T Subtypes 
	Cross-Species Comparison Shows Similarities and Differences between Species 

	Discussion 
	Conclusions 
	References

