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Abstract: This review delves into the groundbreaking impact of induced pluripotent stem cells (iPSCs)
and three-dimensional organoid models in propelling forward neuropathology research. With a
focus on neurodegenerative diseases, neuromotor disorders, and related conditions, iPSCs provide a
platform for personalized disease modeling, holding significant potential for regenerative therapy
and drug discovery. The adaptability of iPSCs, along with associated methodologies, enables the
generation of various types of neural cell differentiations and their integration into three-dimensional
organoid models, effectively replicating complex tissue structures in vitro. Key advancements in
organoid and iPSC generation protocols, alongside the careful selection of donor cell types, are
emphasized as critical steps in harnessing these technologies to mitigate tumorigenic risks and other
hurdles. Encouragingly, iPSCs show promising outcomes in regenerative therapies, as evidenced by
their successful application in animal models.

Keywords: iPSCs; organoids; Alzheimer’s disease; epilepsy; Parkinson’s disease; spinal cord injury

1. Introduction

The investigation of neuropathologies frequently encounters challenges in establishing
suitable study models. Neurodegenerative disorders like Alzheimer’s disease (AD) pose
significant hurdles due to their complex interplay of extracellular and intracellular factors.
For instance, understanding the immune response of patients to pathological protein
aggregates like Aβ plaque, the distribution of intracellular neurofibrillary tangles (NTF),
and the density of neuritic plaques proves particularly intricate [1]. In neurodevelopmental
disorders, delving into the early stages of the disease poses a particular challenge when
attempting to replicate it in cellular and animal models. This complexity is evident in
conditions like temporal lobe epilepsies [2,3]. Conversely, when it comes to tissue injuries
such as spinal cord injury (SCI) and strokes, animal models predominantly serve as the
primary investigative tool, while treatment emerges as the principal obstacle [4,5]. Across
all these scenarios, there exists a shared objective in exploring the potential for developing
disease-specific models or therapeutic interventions.

Induced pluripotent stem cells (iPSCs) were first generated from mouse fibroblasts [6].
Subsequent studies confirmed the ability to differentiate these cells into the main neural
cell types, including neurons, astrocytes, and oligodendrocytes [7]. The interest in the
use of iPSCs in the field of neuropathology is due to the modeling and treatment of rare
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and genetically altered diseases. So iPSCs have presented the possibility for cell patient-
derived disease modeling, presenting somatic mutations of interest and simulating disease
phenotypes, such as AD [8]. In addition, iPSCs also present therapeutic potential in the
field of regenerative therapy [9]. In this concise review, we employ a deliberate review
methodology and emphasize experimental models for neuropathologies utilizing iPSCs,
with a particular focus on organoid models and the prospective utilization of these cells in
therapy and drug-screening pipelines.

2. Generation and Characterization of iPSCs

Self-renewal and pluripotency are fundamental attributes of embryonic stem cells
(ESCs). Self-renewal refers to the remarkable ability to continuously proliferate without
committing to a specific cell fate when cultured in vitro. Pluripotency, on the other hand,
indicates the remarkable potential to differentiate into various cell types derived from
the three primary embryonic germ layers [10,11]. The generation of iPSCs signifies a
remarkable achievement in cellular reprogramming, providing a unique avenue to leverage
the regenerative capabilities of pluripotent cells.

The formation of iPSCs was initially showcased in the groundbreaking research of Shinya
Yamanaka and his team, who pinpointed a set of transcription factors capable of converting
adult somatic cells into a pluripotent state. These factors, namely, Oct4, Sox2, Klf4, and c-Myc
(OSKM), have since become synonymous with iPSC reprogramming [6,12]. In recent years,
iPSCs have been employed across various applications, such as autologous cell therapy [13],
experimental disease modeling [14,15], and as platforms for drug discovery and therapeutic
screening [16]. In recent years, a wide range of protocols for iPSC generation has emerged.
In the sections below, we summarize the key differences in reprogramming techniques
employed for iPSC generation.

2.1. Which Cells Can Be Reprogrammed?

Somatic cells are specialized cells with distinct functions, such as skin cells, blood
cells, or nerve cells. The concept of reprogramming posits that virtually every somatic
cell in the human body harbors the potential to undergo transformation into an iPSC
(Figure 1). Despite this, the efficiency and kinetics of reprogramming can vary depending
on the donor cell type. Fibroblasts from both mice and humans continue to be the most
prevalent cell types utilized for experimental reprogramming purposes [17]. However, in
recent years, there has been a growing interest in other cell types due to their availability,
therapeutic significance, and reprogramming simplicity. An example of this is CD133+
cord blood cells, which necessitate only OCT4 and SOX2 for iPSC generation [18]. Human
primary keratinocytes exhibit the capability to undergo reprogramming at a rate twice as
fast and with 100 times greater efficiency compared to fibroblasts [19]. Additionally, these
cells offer the advantage of being obtainable through the cultivation of plucked hair from
patients [20].

Urine samples also serve as a readily accessible source of cells that can be repro-
grammed into iPSCs. Both renal tubular cells and exfoliated renal epithelial cells found in
urine have demonstrated successful reprogramming into human iPSCs (hiPSCs) [21,22].
Functional cardiomyocytes derived from urinary cells within the cardiovascular system
have displayed the ability to generate action potentials. This phenomenon has been ob-
served both in vitro and in vivo following the differentiation of reprogrammed induced
pluripotent stem cells (iPSCs) via lentiviral vector gene transduction [23,24].

Another relevant cell source for reprogramming is blood. Peripheral blood mononu-
clear cells (PBMCs) can be easily isolated from blood samples and stand as one of the most
popular somatic cell sources for iPSC generation [25]. Both terminally differentiated mature
B and T lymphocytes were able to generate iPSCs after reprogramming protocol [26–28],
although reprogrammed T cells have been shown to induce spontaneous T cell lymphomas
in mice, limiting the therapeutic applications of these cells [29]. Thus, depending on
the goal, it is recommended that protocols be used to eliminate lymphocytes from the
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PBMCs [30]. An advantage of selecting PBMCs as the donor cells for reprogramming is
that these cells can be cryopreserved and reprogrammed at a later time without compro-
mising the kinetics and efficiency of reprogramming [31], thus enabling the utilization of
frozen samples stored in blood banks worldwide [32]. It is important to highlight that
several ethical, legal and social issues coexist with the availability of biological samples to
researchers. Research ethics committees around the world have used policies to protect
the interests of research participants, such as confidentiality, ownership, export, storage
and secondary use of samples with due consent, obeying specific regulations that differ
according to each country [33].
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Figure 1. Primary cultures can be derived from various tissues including skin, blood, neurons, and
urine. Cellular reprogramming for iPSC generation can be conducted using different combinations of
transcription factors, with the Yamanaka factors (OSKM) remaining the most commonly employed.
Similarly, there are diverse tools available to facilitate cell transfection for reprogramming, such as
MMLV, SENDAI virus, liposome, and transposons.

Cell type, degree of differentiation, and maturation level all exert an influence on
iPSC generation efficiency. In mice, it has been documented that immature cells undergo
reprogramming more readily than terminally differentiated cells [34]. Additionally, a
separate study showed that hematopoietic stem and progenitor cells can yield up to
300 times more iPSC colonies compared to terminally differentiated lymphocytes [35].
Hence, selecting the appropriate cell type is a pivotal consideration prior to commencing
any experiment. This decision typically hinges on cell accessibility and impacts the need
for external factors, as well as the efficiency and kinetics of reprogramming.

2.2. The Reprogramming Recipe

The reprogramming factors, OSKM, remain the most commonly utilized method
for generating iPSCs. However, in recent years, numerous alternatives have been de-
scribed to refine reprogramming protocols. These include exploring other transcription
factor combinations and introducing new molecules aimed at enhancing the efficiency of
iPSC generation.

Given that the molecules Klf4 and c-Myc are classified as proto-oncogenes, researchers
have sought substitute candidates to mitigate potential tumorigenic risks linked with these
molecules. One of the initial alternative reprogramming methods was outlined by Yu
and colleagues, who utilized Oct4 and Sox2 in conjunction with Nanog and Lin28. This
approach resulted in a reprogramming efficiency akin to that achieved with Yamanaka’s
OSKM combination [36]. An approach to reprogram mouse embryonic fibroblasts (MEFs)
into iPSCs using three factors has also been developed [37]. This technique involved Oct4,
Sox2, and the orphan nuclear receptor Esrrb, achieving similar efficiency compared to the
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OSKM protocol. Subsequent studies have further refined strategies to reprogram cells
using only two transcription factors, including various combinations of Oct3/4, Sox2, Klf4,
and c-Myc [38–42] (Figure 1).

To enhance efficiency and expedite iPSC generation, additional transcription factors
have been explored for their potential to induce cellular reprogramming. Many of these
factors are genes typically active during early development, playing a pivotal role in main-
taining the pluripotent potential of specific cells that ultimately form the inner cell mass
(ICM) in the pre-implantation embryo and contribute to embryonic development. Among
the core pluripotency transcription factors are Oct4, Sox2, and Nanog. Co-expression
of Nanog with the OSKM factors has been shown to halve the time required for colony
appearance compared to OSKM alone [43]. Other pluripotency transcription factors, such
as UTF1 and SALL4, have also been found to enhance iPSC generation when co-expressed
with the OSKM factors [44,45]. Building on these findings, James Thomson devised a
novel combination of transcription factors, incorporating Oct4, Sox2, Nanog, and Lin28
(OSNL), also referred to as the “Thomson factors” [36]. Additionally, Yu and colleagues
explored various combinations of transcription factors, including Oct4-Sox2-Nanog-Klf4
and Oct4-Sox2-SV40LT-Klf4, to generate iPSCs [46]. These studies demonstrate that beyond
the initially described OSKM factors, multiple pluripotency-related genes can be employed
in different combinations to activate the pluripotency genetic program and induce cellular
reprogramming into iPSCs.

Other molecules known to regulate cellular processes critical for iPSC generation and
maintenance have also been employed to enhance reprogramming efficiency. Proteins
that promote proliferation, such as telomerase reverse transcriptase (TERT) and the SV40
large T antigen (SV40LT), have been shown to increase colony formation when combined
with OSKM [47]. Chemical compounds that positively regulate cell cycle progression,
such as mitogen-activated protein kinase kinase (MAPKK) inhibitors, have also been
demonstrated to increase the number of iPSC colonies obtained from reprogrammed neural
precursor cells [48]. MicroRNAs (miRNAs) are also known to influence pluripotency and
reprogramming [49], and several miRNAs have been tested for their capacity to increase
iPSCs generation. Among these, several miRNAs from the miR-290 cluster were able to
increase the number of colonies following reprogramming compared to cells using the
OSKM factors alone [50]. These miRNAs are believed to be downstream effectors of c-
Myc signaling but induce a population of iPSCs that is more homogeneous compared
to c-Myc [51]. Numerous cells signaling pathways are regulated by miRNAs, and their
potential effects on iPSCs production have been extensively reviewed elsewhere [52,53].

Encouragement for exploring safer reprogramming methods has stemmed from con-
cerns regarding potential genetic alterations and the heightened risk of tumorigenesis
associated with integrative reprogramming strategies. It has been proposed that small
chemical molecules could regulate gene expression, thereby promoting the pluripotency
program without inducing changes in the cell genome. The first chemically induced iPSCs
were generated by replacing Oct4 with the small molecule forskolin [54]. A small-molecular
combination known as “VC6T”, comprising valproic acid (an HDAC inhibitor), CHIR99021
(a GSK3 inhibitor), E-616452 (a TGF-β inhibitor), and tranylcypromine (an LSD1 inhibitor),
facilitated the reprogramming of mouse cells with only Oct4 being genetically induced [55].
Recently, Guan et al. introduced another protocol for generating iPSCs solely through
chemical molecules to reprogram human fibroblasts [56]. They highlighted the importance
of an initial intermediate state of dedifferentiation for the small molecules to facilitate the
complete reprogramming phase [56].

Another promising approach involves employing a variation in CRISPR technology
to express the OSKM factors. This method utilizes a modified form of the Cas9 enzyme
with inactive nuclease activity (dCas9), fused to either repressive or activating transcrip-
tional domains. This enables CRISPR-mediated transcriptional interference (CRISPRi) or
activation (CRISPRa), respectively [57]. Therefore, CRISPRa allows for the activation of
gene expression in one or a specific group of genes.
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Recently, CRISPRa has been successfully used to reprogram human skin fibroblasts
and human leukocytes into iPSCs [58,59]. These studies have illustrated that CRISPRa
represents an advanced method for iPSC generation, enabling faster and more efficient
reprogramming compared to conventional protocols [58,59]. Moreover, single-cell RNA
sequencing (scRNA-seq) analyses have revealed that cells reprogrammed using CRISPRa
transition to the pluripotent state with high fidelity, displaying the uniform expression of
pluripotency genes and minimal heterogeneity [59].

The versatility of the CRISPRa technique has also been described in direct reprogram-
ming models, where mouse fibroblasts were converted into neurons through the induction
of a single transcription factor [60,61]. These studies underscore that with an understanding
of the genes essential for converting one cell type into another, the CRISPRa technique
emerges as a reliable tool for executing this reprogramming process. This method holds the
potential for achieving higher efficiency at a reduced cost and within a shorter timeframe.

Epigenetic modifications, encompassing DNA methylation and histone modifications,
govern gene expression without altering the underlying DNA sequence. Throughout
iPSC reprogramming, these epigenetic marks are reset to resemble those characteristic of
embryonic stem cells (ESCs) [62,63]. This resetting of the epigenetic landscape is crucial for
the successful conversion of differentiated cells into pluripotent stem cells [62]. Hence, the
application of chemical molecules that regulate DNA methylation or chromatin modifica-
tions can enhance reprogramming in numerous cell types [64–66]. Treatment with histone
deacetylase (HDAC) inhibitors, such as hydroxamic acid (SAHA), trichostatin A (TSA),
valproic acid (VPA), and butyrate, has been shown to improve reprogramming in mouse
embryonic fibroblasts (MEFs) [64,67,68]. Additionally, VPA has induced pluripotency in
dermal fibroblasts and neonatal human foreskin fibroblasts (HFFs) when combined with
Oct4 and Sox2 [69].

In summary, the identification of molecules that promote pluripotency and sustain
stem cell states is paramount, given the relatively low success rates observed in current
iPSC generation protocols. Taking into account a cell’s transcriptome and epigenetic profile
is critical for selecting suitable molecules, thereby ensuring that the reprogramming process
yields a sufficient number of pluripotent cell colonies.

2.3. Reprogramming Factor Delivery Systems

Originally, the OSKM transcription factors have been delivered into mouse and human
fibroblasts using Moloney murine leukemia virus (MMLV)-derived retroviruses [70,71].
Subsequently, reprogramming was also reported using Lentivirus-based vectors [71].
Lentiviral vectors, typically derived from HIV, offer a higher cloning capacity and the
ability to infect both dividing and non-dividing cells, often resulting in higher infection effi-
ciency rates compared to MMLV-based models [72]. Additionally, Tet-inducible lentiviruses
for reprogramming allow for the controlled expression of reprogramming factors [73].
However, despite achieving acceptable efficiency, their integration into the host genome
has raised safety concerns.

Since then, a variety of new delivery systems have emerged, utilizing non-integrative
viral vectors such as Sendai virus and adenovirus, as well as non-viral methods including
liposomes and vectors based on piggyBac transposon. [74]. (Figure 1).

General delivery systems employed in iPSCs reprogramming have been extensively
reviewed elsewhere [72–74]. Each delivery method presents both advantages and limita-
tions, making the selection of an appropriate delivery system an important issue to resolve
before proceeding to reprogram somatic cells into iPSCs.

3. Organoid Models
What They Are, How They Work, and Applications

An organoid is defined as a cell culture in a 3D structure obtained from stem cells
(embryonic or reprogrammed) that after induction differentiation must consist of organ-
specific cell types that self-organize. These structures are designed and function in a manner
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that leads to the expression of characteristics akin to various tissues and organs, including
the kidneys, lungs, intestines, brain, and retina, as demonstrated in numerous studies [75,76]
(Figure 2). Three-dimensional organoids are formed from human pluripotent stem cells
(hPSCs), such as iPSCs and ESCs [77]. In the realm of organoids derived from iPSCs, there
exists the potential to harness the combination of self-organization and differentiation
capacity through genetic tools. This enables the guidance of these cells and structures
toward any specific organ, a capability that could prove fundamental in the treatment of
diseases [78]. In a more practical sense, organoids hold immense potential for application
in advanced therapies such as organ repair through transplantable structures, as well as in
drug studies. Moreover, they serve as invaluable tools for understanding the pathological
mechanisms underlying certain diseases [79].
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Figure 2. Organoids can be produced from iPSC cultures using three-dimensional cultivation
techniques. Derived from iPSC cultures, these organoids can mimic various organ-specific tissues,
serving as invaluable models for studying a wide range of diseases. Alzheimer’s disease (AD),
amyotrophic lateral sclerosis (ALS), autism spectrum disorder (ASD), Canavan disease (CD), epilepsy,
frontotemporal dementia (FTD), Huntington’s Disease (HD), Parkinson’s disease (PD), spinal cord
injury (SCI), stroke, and traumatic brain injury (TBI).

Concerning the utilization of iPSC organoids for transplantation therapies, various
protocols have been developed, primarily focusing on neural differentiation to address neu-
rological disorders like Alzheimer’s disease, Parkinson’s disease, and epilepsy (Figure 2).
In this context, integrating genome-editing techniques via the CRISPR/Cas9 system can
aid in modulating gene expression, thus presenting a promising therapeutic avenue for
these diseases [80].

In the field of neuroscience, neural organoid models have become essential for study-
ing various aspects of the brain, particularly neurodegenerative diseases. Their significance
lies in their ability to replicate key characteristics of human brain development, which
cannot be thoroughly analyzed using animal models alone [77,78]. The application of
organoids enabled the formation of “mini-brains” with very specialized zones and struc-
tures such as radial glial cells and cerebral cortex, to model human microcephaly [81–83].

This methodology has progressed to the point where it is now feasible to generate highly
specialized cells such as oligodendrocytes and astrocytes, and subsequently, to develop even
more specialized structures in the advanced stages of neural development [84,85]. n addition
to 3D organoid models, 2D models are also utilized to study brain structures, as these
models facilitate the formation of neural networks [82]. However, 3D models stand as
superior candidates for studying and treating neurological diseases [80].
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4. Organoid Models in Neurological Diseases

The generation of organoids for studying neurological diseases has been presented as
an important strategy for neuropathologies of different orders. Table 1 presents the main
examples of neurological diseases studied from the generation of organoids.

4.1. Alzheimer’s Disease

Alzheimer’s disease (AD) is a neurodegenerative disorder marked by gradual memory
loss, cognitive impairment, and a decline in the ability to perform daily tasks indepen-
dently, ultimately becoming the leading cause of dementia [86]. The pathology of AD
is characterized by the accumulation of Tau protein and the formation of amyloid beta
plaques, which lead to structural changes in the brain, resulting in neuronal destruction and
synaptic impairment. As a result, the molecular profile of AD is typified by the presence of
amyloid beta and phosphorylated tau protein.

Another significant aspect of AD is its multifactorial nature, with a notable genetic
component, where the apolipoprotein E (APOE) gene and its alleles (APOE2, APOE3, and
APOE4) serve as risk factors for Alzheimer’s disease [87]. Specifically, the APOE4 allele has
been strongly associated with the presence, heritability, and progression of AD [88]. Various
experimental approaches, including in vivo, in silico, and in vitro methods, have been
employed to comprehend and potentially treat AD. However, none have been able to fully
replicate the pathological features observed in the human AD brain, despite the significant
progress and promising outcomes achieved [89]. Currently, there are three commonly used
methods to model AD in cerebral organoids:

Aftin-5 (Aβ42 agonist): In this model, there is an induction of APP amyloid precursor
protein (Aβ) using Aftin-5 (an Aβ42 inducer that increases the production and secretion of
soluble extracellular amyloid peptides). Aftin-5 treatment leads to a reproducible disruption
of the physiological balance between Aβ42 and Aβ40, generating an AD-like condition in
human cerebral organoids [90].

Organoids derived from familial AD (FAD): This model was established by generat-
ing iPSC-derived brain organoids from patients with familial Alzheimer’s disease (FAD)
carrying APP duplications or mutations in the presenilin 1 (PSEN1) gene. Such a model
can effectively recapitulate the crucial aspects of the pathology, including the presence of
amyloid beta plaques and tau protein accumulation. Moreover, it provides insight into
the temporal dynamics of P-tau level increases, contributing to a more comprehensive
understanding of disease progression [91,92]. Another variation of this same model is the
use of stem cells from patients carrying a missense mutation in the PSEN1 gene linked to
early-onset AD. In this case, the cerebral organoids exhibit the same Aβ and P-tau protein
aggregates as the previous model [93,94].

Model with APOE3 allele: Due to the significant association between the APOE gene
and its impact on AD, organoid models with induced mutations in this gene have been
developed. This model involves employing gene-editing techniques such as CRISPR/Cas9
to convert APOE3 to APOE4 in iPSCs derived from patients with sporadic Alzheimer’s
disease. This is because the APOE4 variant exerts a stronger genetic influence on AD
compared to other variants. In this study, it was observed that APOE4 neurons exhibited
an increased number of synapses and an increased secretion of Aβ42 compared to APOE3
cells [95].

4.2. Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized
by the gradual degeneration of motor neurons in the brain and the spinal cord. This
degeneration leads to progressive muscle weakness, ultimately culminating in paralysis
and, in many cases, death. ALS can manifest in individuals as early as their first or second
decade of life, although it can also onset at later ages [96]. ALS typically starts with a
localized impact and gradually spreads, resulting in symptoms that initially manifest as
mild cramps or weakness in the limbs or bulbar muscles. Over time, these symptoms
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progress to the paralysis of nearly all skeletal muscles [97]. In terms of prevalence, the
majority of ALS cases are sporadic, accounting for approximately 90% of cases, while
only about 10% are hereditary, known as familial ALS (FALS). Family genes implicated
in ALS are involved in various mechanisms, including proteostasis, RNA binding, and
axonal transport. Specifically, genes such as SOD1, TDP-43, and PFN1 are associated with
these processes, respectively [98]. One study utilized iPSC lines derived from both healthy
controls and individuals affected by ALS. These iPSC lines were used to generate organoids
comprising sensory neurons, motor neurons, astrocytes, and other mesodermal derivatives,
including vasculature, microglia, and skeletal muscle. Interestingly, motor neurons derived
from organoids of ALS-affected patients exhibited compromised Neuromotor Junctions
(NMJs). Additionally, iPSC lines carrying mutations in the TARDBP, SOD1, and PFN1
genes were generated to validate the model further, confirming once more the impairment
in NMJs [99].

4.3. Attention Deficit Hyperactivity Disorder

Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder
distinguished by symptoms of inattention, impulsivity, and hyperactivity. These symptoms
typically manifest in early childhood and may persist even in adulthood [100,101]. ADHD
compromises cognitive, behavioral, and affective domains of attention processing and
executive function, response inhibition and impulsive behavior, and hyperactivity [101].
The integration of clinical, neurodevelopmental, and cognitive aspects is crucial in un-
derstanding the symptoms of ADHD. Research indicates that structural alterations in
the cerebral cortex among individuals with ADHD impact cognitive processes including
emotion regulation, response inhibition, and attention [102,103]. Organoid models offer a
valuable approach to elucidate various aspects of neurodevelopmental disorders such as
ADHD [104]. In a particular study, iPSC-derived telencephalon organoids from individuals
with ADHD were utilized. Notable differences were observed between organoids derived
from individuals with ADHD and those from the control group. Specifically, the ADHD
group exhibited reduced cell proliferation and differentiation, along with disparities in the
proportion of symmetric and asymmetric cell division. These findings suggest that the
observed alterations may play crucial roles in the pathogenesis of ADHD [105].

4.4. Autism Spectrum Disorder

Autism spectrum disorder (ASD) represents a set of neurodevelopmental disorders
with defined behavioral implications. ASD is characterized by a series of conditions,
such as persistent deficits in social communication, interaction and repetitive patterns
of behaviors, interests, and activities [106]. The etiopathogenesis is multifactorial with
complex interactions between genetic and environmental factors [107]. ASD typically
manifests in infancy or early childhood, arising from the interplay of genetic and non-
genetic factors, which may act independently or in concert to contribute to its development.
Over the past two decades, there has been a progressive increase in the prevalence of
autism spectrum disorders (ASDs) [108]. ASD is notably more prevalent in men than in
women, with data from the 2016 ADDM network indicating that ASD occurs approximately
four times more frequently in men [109]. According to the DSM-5 criteria, the diagnosis
of ASD requires the presence of at least two typical behavior patterns. Examples of
these behaviors include repetitive motor movements, insistence on sameness or adherence
to routines, echoing others’ words, hand flapping, finger snapping, fixation on specific
interests, and intense attachment to particular objects [110,111]. Various factors contribute
to the prevalence of ASD, including maternal factors such as advanced maternal age,
obesity, diabetes mellitus, and maternal infection during pregnancy. Perinatal and neonatal
factors such as umbilical cord complications, fetal distress, low birth weight or being small
for gestational age, congenital malformations, and hyperbilirubinemia are also implicated.
Extensive research aimed at unraveling the genetic mechanisms of ASD has identified
over 800 genes associated with the condition. Additionally, hundreds of chromosomal
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aberrations and dozens of syndromes have been recognized. The etiology of ASD involves
a complex interplay between genetic inheritance and environmental factors, which are
further influenced by epigenetic processes [112]. The utilization of iPSC models and iPSC-
derived organoids has been instrumental in advancing our understanding of the genetic and
neurochemical mechanisms underlying ASD, as well as in exploring potential treatments
for the condition. One of the pioneering studies in this field involved the generation of
iPSC-derived brain organoids from individuals affected by idiopathic ASD [113]. The
study revealed abnormalities in the proliferation and maturation of neurons, along with
an upregulation in the expression of the transcription factor FOXG1, which correlated
with the heightened production of inhibitory neurons. These findings underscore the
significance of the FOXG1 gene and propose it to be a promising therapeutic target for the
management of ASD [107,113]. The application of organoid iPSC models from patients
with ASD made it possible to understand the mechanics and influence of genes in the
etiopathogenesis of ASD. Several genes have been related to chromatin remodeling and
gene transcription (MECP2, MEF2C, HDAC4, CHD8, and CTNNB1) and synaptic functions
(GRIN2B, CACNA1, CACNA2D3, SCN2A, GABRA3, and GABRB3) [114]. Moreover, the
utilization of cerebral organoids in ASD research has unveiled various phenotypes linked
to genetic variations, impacting transcriptional pathways, morphological features, and the
development of neuronal networks [115,116]. The utilization of iPSCs provides unique
opportunities to investigate brain development and the ramifications of its dysregulation in
neurodevelopmental disorders such as ASD. By incorporating the patient’s genetic makeup,
organoid models enable the modeling of ASD while preserving the individual’s genetic
background and mimicking the 3D structural complexities of the brain. Furthermore, an
additional study delved into the impact of a single mutation in autism spectrum disorders
(ASDs) using brain organoids. Transcriptomic analysis of these organoids, harboring a
mutation in the CHD8 gene, unveiled the differential expression of key genes such as
DLX6-AS1 and DLX1, which are associated with interneuronal differentiation in the CHD8
knockout organoids [117].

4.5. Canavan Disease

Canavan disease (CD) is a rare leukodystrophy stemming from the loss of function in
the aspartoacylase (ASPA) gene within modified ASPA-expressing mature oligodendrocytes
of the central nervous system (CNS) and characterized by macrocephaly, neurodevelop-
mental delays, and tone abnormalities [118]. The phenotypic spectrum of Canavan disease
(CD) ranges from the more severe typical CD, which accounts for 90% of cases worldwide,
to the less severe atypical CD, affecting the remaining 10%. Symptoms typically manifest
between three and five months of age for neurodevelopmental issues in typical CD, while
atypical CD symptoms become evident within the first year of life [119]. The utilization
of iPSCs in the study of Canavan disease (CD) remains relatively limited, with only four
studies exploring this subject for various objectives. Among these studies, two focused on
engrafting mice with ASPA gene-edited iPSCs [120,121] and utilized iPSCs derived from
CD subjects as a study model. Another study involved engrafting mice with wild-type
ASPA gene iPSCs [122] but did not specifically target CD as a study model. Notably, only
one study developed a 3D culture protocol specifically tailored for CD, a rare leukodystro-
phy resulting from the loss of function in the aspartoacylase (ASPA) gene, which affects
altered ASPA-expressing mature oligodendrocytes of the CNS [123]. Despite the limited
number of articles, all of them have demonstrated promising results in treatment, modeling,
and potentially translational studies.

4.6. Epilepsy

Epilepsy comprises a diverse array of central nervous system (CNS) disorders charac-
terized by an elevated susceptibility to seizures [124]. Seizures arise when neural networks
are irregularly formed or disrupted by abnormal structural, infectious, or metabolic issues,
resulting in anomalous firing patterns within a specific area of the brain (focal epilepsy) or
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across the entire brain (generalized epilepsy) [125]. Around 50 million people of all ages
worldwide have their lives negatively affected by epilepsy [126].

Utilizing iPSC-derived neurons from individuals with epilepsy can provide valuable
insights into the molecular and pathological mechanisms underlying certain epilepsy
phenotypes [83]. Therefore, it becomes feasible to investigate neuronal behavior without
relying on resected brain tissue. Incorporating editing techniques can further enhance the
findings in studies utilizing iPSCs for epilepsy models [80].

For diseases associated with known mutations, cellular models derived from iPSCs
become particularly appealing. Conversely, for epileptogenic cortical malformations or
developmental epileptic encephalopathies, experimental models utilizing organoids gain
prominence, as they enable the creation of intricate multi-tissue cultures.

4.7. Frontotemporal Dementia

Frontotemporal dementia (FTD) manifests as a neurodegenerative clinical syndrome
marked by progressive deficits and alterations in behavior, executive function, motor skills,
and language [127]. The World Health Organization (WHO) estimates that over 55 million
individuals worldwide currently suffer from dementia, with low- and middle-income
nations contributing 60% of these cases. Moreover, approximately 10 million new cases are
reported annually [128]. Presently, the incidence of FTD is estimated at 1.61 to 4.1 cases
per hundred thousand individuals per year [129]. These values allow us to state that
frontotemporal dementia is the second most prevalent subtype of dementia, with rates
ranging from 3% to 26% [130]. FTD predominantly affects individuals aged between 45 and
65, although cases have been observed in individuals under 30 years of age. While over
half of FTD cases are sporadic, up to 40% of cases have a familial history associated with
dementia, psychiatric disorders, or motor symptoms. Notably, at least 10% of FTD cases
exhibit an autosomal dominant inheritance pattern [131]. Several genes are implicated
in the manifestation of FTD symptoms. The GRN gene is accountable for approximately
60% of all cases of inherited frontotemporal lobar degeneration. Another significant gene
associated with frontotemporal lobar degeneration is C9orf72, mutations in which con-
tribute to about 25% of familial cases and represent the most prevalent genetic cause of both
frontotemporal dementia and amyotrophic lateral sclerosis [132]. Several biological mecha-
nisms that lead to frontotemporal lobar degeneration have been identified and investigated.
However, the cause and many other questions remain unanswered [127]. Various studies
utilizing iPSCs have contributed significantly to the understanding of disease mechanisms
and potential treatments. In the context of FTD, a study employing human iPSC brain
organoids expressing tau-V337M elucidated distinct mechanisms linked to MAPT mutation.
This research delineated a sequence of events preceding neurodegeneration, uncovering
molecular pathways associated with glutamate signaling as potential therapeutic targets for
intervention in FTD [133]. Another study employing a derived brain organoid slice model
successfully recapitulated the pathological conditions of C9ORF72 ALS/FTD. Within these
organoids, distinct disruptions of transcription, proteostasis, and DNA repair in astroglia
and neurons were observed. Consequently, patient-specific iPSC-derived cortical organoid
slice cultures represent a reproducible translational platform for investigating preclinical
mechanisms of ALS/FTD, as well as novel therapeutic strategies [134].

4.8. Huntington’s Disease

Huntington’s disease (HD) is a neurodegenerative disease caused by a CAG trinu-
cleotide repeat increase in the huntingtin gene (HTT) [135]. The HTT mutation can lead to
protein aggregation, disrupting cellular processes, particularly the basal ganglia and corti-
cal regions of the brain [136,137]. The neuronal dysfunction ultimately leads to choreiform
movements, psychiatric symptoms, dystonia, bradykinesia, and dementia [137,138].

Since HD is caused by a genetic mutation, current treatments primarily focus on
managing symptoms through pharmacological interventions targeting mainly dopamine
modulation [139,140]. Indeed, a more comprehensive understanding of the pathophysiol-
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ogy and progression of the disease is imperative to develop enhanced treatment options.
Various in vitro and in vivo models have been employed to scrutinize the disease mecha-
nisms, encompassing the introduction of the HTT mutation or the insertion of CAG repeats
into the cells of both invertebrate and vertebrate animal models [141,142]. While these
models have proven instrumental in unraveling the fundamental mechanisms of neuronal
dysfunction and neurotransmitter dysregulation, they fall short in recapitulating the more
intricate and clinical manifestations of the disease. One promising alternative has been
studying the disease using cells from patients carrying the mutated gene. The scarcity of
biological material can be overcome by integrating the iPSC technology into these models.
In 2008, the Daley laboratory pioneered the creation of human iPSC-based models for Hunt-
ington’s disease (HD). Notably, they successfully developed the initial iPSC line from an
HD patient with 72 CAG repeats. The cells were subsequently transformed into GABAergic,
DARPP32-positive neurons, underscoring the potential of iPSCs to be directed into striatal
neurons, a critical cell type vulnerable to degeneration in HD [143–145]. Subsequently,
other groups developed additional iPSC cell lines from different patients [146–148].

Using iPSCs from patients to model HD has revealed many cellular alterations caused
by the mutation. Genes related to DNA damage control pathways were downregulated
in neurons derived from iPSCs (iNeurons) from patients with high CAG repeat muta-
tions [149]. The malfunction of DNA damage repair systems can be connected to the
somatic instability and mosaicism observed in HD [150]. HD-derived iNeurons showed
multiple abnormalities in neuronal patterning [151,152] and an observed persistent mi-
totic population [153]. These changes in neuronal differentiation patterns can be linked to
alterations in neurodevelopmental gene expression profiles linked to HD.

Changes in gene expression are believed to be one of the mechanisms that lead to
neurodegeneration in HD. Comparisons of gene expression between iNeurons derived from
HD iPSCs and gene-corrected control lines revealed the upregulation of the transforming
growth factor beta (TGF-β) pathway in HD [154]. Studies conducted on iNeurons from
additional HD patients further corroborate this finding [155–157]. Recently, the National
Institutes of Health (NIH) established a consortium known as the “HD iPSC Consortium” to
explore gene expression and functional changes linked to HD. RNA sequencing (RNA-seq)
analysis conducted by this consortium revealed transcriptomic alterations in numerous
pathways related to the development and master regulators of neurogenesis [157].

Overall, the utilization of iPSCs to comprehend the pathophysiology of HD has
unveiled numerous pathways that could be targeted therapeutically to potentially mitigate
the disease. Given that iPSCs can be differentiated into various cell subtypes found in brain
tissue, including microglia and astrocytes, it would be intriguing to investigate whether
the observed alterations in iNeurons persist in cell–cell interaction models.

4.9. Multiple Sclerosis

Multiple sclerosis (MS) is a chronic, inflammatory, and autoimmune disease char-
acterized by demyelination and axonal lesions in focal and generalized regions of the
brain and spinal cord. This pathological hallmark results in axonal damage to neurons
in both white and gray matter areas. Clinically, MS manifests a range of characteristic
symptoms that can lead to irreversible neurological disability and cognitive decline. The
etiology of MS is multifactorial, influenced by complex gene–environment interactions,
including genetic inheritance and lifestyle factors such as night work, excessive alcohol
or caffeine consumption, and a history of infectious mononucleosis [158–160]. In 2020,
it was estimated that there were 2.8 million people with MS worldwide. The disease is
predominantly found in individuals of European descent, but it is relatively rare among
individuals of Asian, African, and Native American ethnicities [161]. In terms of gender,
MS is more prevalent in women, occurring twice as often as in men. By age group, MS
generally affects young adults, ages 20 to 40, although some patients experience a demyeli-
nating event during childhood or adolescence, typically with a form of multiple sclerosis
called relapsing-remitting or relapsing-remitting MS (RRMS) [162,163]. The heritability
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of MS is polygenic, involving polymorphisms in several genes, each associated with a
slight increase in the risk of developing the disease. Notably, the HLA class I and HLA
class II genes confer the highest risk of MS transmission [158,164]. The use of iPSC-derived
organoids is essential both to understand the mechanisms of MS and its clinical subtypes
and to try to apply therapies to improve the affected areas and inhibit the effects of MS.
The utilization of iPSC-derived organoids is crucial for comprehending the mechanisms
underlying MS and its clinical subtypes, as well as for exploring potential therapeutic
interventions to ameliorate affected areas and mitigate the effects of MS. A study involving
iPSC organoids derived from both MS patients and healthy individuals revealed several key
insights into MS pathology. Organoids derived from MS patients exhibited a diminished
proliferation capacity compared to those from healthy controls, likely due to a reduction
in the pool of stem cells. Furthermore, there was a notable decrease in SOX2+ cells and
Olig2+ oligodendrocytes in MS organoids compared to controls, indicating a compromised
capacity for differentiation and remyelination in MS patients and their subtypes [165].
hiPSCs can be used in the formation of oligodendrocyte progenitors generated and applied
in biomedical studies. The process begins with the formation of the embryoid body, and
the standardization of cells using a combination of factors T3, OLIG2, SOX10, A2B5, NG2,
PDGFRα, and O4. After 3 weeks of differentiation, OPCs will form oligodendrocyte units
with small subpopulations of GFAP+ astrocytes (~1%) and MAP2+ neurons (~5%) [166].
García et al. developed a human oligodendrocyte model specific to primary progressive MS.
They achieved this by transducing NPCs derived from two hiPSC lines from primary pro-
gressive MS patients with SOX10 lentivirus. Their findings revealed that all lines, whether
from healthy or diseased individuals, generated O4+ cells and MBP+ cells within 22 days
post-transduction, exhibiting morphology and markers characteristic of intermediate and
late oligodendrocytes. This organoid model offers a valuable opportunity to model MS and
explore its mechanisms [167].

4.10. Parkinson’s Disease

Parkinson’s disease (PD) is a devastating neurodegenerative disorder characterized
by the progressive loss of dopaminergic neurons in the substantia nigra region of the brain,
leading to a reduction in dopamine levels and impaired fine motor coordination. Clinically,
PD presents with symptoms such as bradykinesia, muscle rigidity, resting tremors, and
postural instability. Pathologically, the disease is characterized by the presence of Lewy
body aggregates composed of α-synuclein protein. Genetic factors play a significant role
in PD, with several genes implicated in both dominant and recessive familial forms of
the disease. These genes include SCNA, LRRK2, PINK1, PARK2 (parkin), and GBA1,
along with others such as DJ-1, PARK9 (ATP13A2), SJ-1, and VPS35. Given the complex
nature of PD, there is ongoing debate regarding potential in vitro techniques for therapeutic
intervention and understanding various aspects of the disease [168].

Indeed, recent advancements in using induced pluripotent stem cells (iPSCs) and
3D brain organoid models offer promising avenues for understanding the pathogenesis
of Parkinson’s disease (PD) and identifying potential therapeutic targets. By deriving
neurons from patients with PD and forming organoids, researchers can analyze pathogenic
mechanisms in detail and conduct drug-screening experiments. While therapeutic measures
to modify the course of PD are still lacking, the use of iPSCs and organoid models holds
great promise for advancing our understanding of the disease and developing novel
therapeutic interventions [169]. Some organoid models are presented below:

α-synuclein (SNCA) model: α-synuclein is a protein that assumes different confor-
mations dictated by cellular stress and is involved in neurodegenerative diseases such
as PD [170]. Mutations of A53T mutant α-synuclein or α-synuclein accumulation in neu-
rons lead to increased nitrosative stress, mitochondrial dysfunction, disrupted synaptic
connectivity, transcriptional changes in synaptic signaling genes, and reduced ratio of
α-synuclein tetramer to monomer, important factors in the pathogenesis of PD [171]. The
iPSC-derived neuron model has triplicated levels of α-synuclein and could be a good model
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for understanding the morphophysiological divergences between healthy neurons and
mutant neurons from PD patients.

LRRK2 model: Leucine-rich repeat kinase 2 (LRRK2) is a multikinase involved in
roles in neurite outgrowth, phosphorylation of multiple proteins, and endocytic sorting via
interactions with Rab-GTPases. Mutations in the gene encoding LRRK2 imply a significant
risk for PD as well as other factors [172]. LRRK2 organoid models showed increased levels
of oxidized dopamine and lysosomal receptor for chaperone-mediated autophagy. Also,
neurons in this model have greater apoptotic activity, reducing neurite growth. Interestingly,
LRRK2 also demonstrated irregularities in synaptic vesicle recycling, leading to disrupted
synaptic vesicle endocytosis and decreased vesicle density in neurons.

PINK1 model: PINK1 (PTEN-induced kinase 1) is a phosphatase and tensin (PTEN)
homologous protein/kinase. PINK1 localizes to the mitochondrial membrane after its
depolarization, where it phosphorylates Parkin. Together, PINK1 and Parkin regulate
mitochondrial health, and mutations in either related genes are associated with autosomal
recessive diseases and early-onset forms of PD. A model with iPSC-derived neurons from
patients expressing nonsense (Q456X) or missense (V170G) PINK1 exhibits mitochondrial
defects, including impaired recruitment of Parkin to mitochondria [173].

GBA model: The GBA1 gene is responsible for encoding glucocerebrosidase (GCase) or
β-glucosidase, a lysosomal enzyme that catalyzes the hydrolysis of glucosylceramide (Glc-
Cer) into glucose and ceramide, but also the hydrolysis of D-glucosyl-N-acylsphingosine
into D-glucose and N-acylsphingosine. Studies have confirmed that there is a relationship
between PD and GBA mutations, including insertion, deletion, frameshift, and point muta-
tions in GBA. Approximately 5–10% of PD patients carry GBA1 mutations. The result of
the GBA mutation is the accumulation of lipids in neurons. In this PD model, alterations
of GBA and GCase substrates, glycolipids glucosylceramide (GlcCer), and glucosylsph-
ingosine (GlcSph) are found at increased levels, resulting in defective action of cellular
organelles of neurons, making neurons more vulnerable to apoptosis [169].

Idiopathic Parkinson’s: The neuron-based organoid model of idiopathic Parkinson’s
seeks to understand aspects of the disease that do not necessarily involve genetic aspects
while also seeking to understand PD. Interestingly, it has been shown that neurons derived
from patients with idiopathic PD have decreased mitochondrial respiration, increased levels
of oxidized dopamine and oxidized DJ-1, and decreased GCase enzyme activity [174].

4.11. Spinal Cord Injury

Spinal cord injury (SCI) refers to damage inflicted upon the spinal cord, leading
to a debilitating neurological and pathological condition. It profoundly impacts motor,
sensory, and autonomic functions, and can also have far-reaching effects on psychological,
social, and vocational aspects, significantly diminishing the patient’s overall well-being
and reducing life expectancy [175].

Over the past three decades, the global prevalence of spinal cord injury (SCI) has seen
a notable increase, rising from 236 to 1298 cases per million inhabitants. Additionally, it
is estimated that between 250,000 and 500,000 new cases of SCI occur worldwide each
year. This increase in prevalence underscores the significance of SCI as a global health
concern and highlights the need for continued research and advancements in treatment
and prevention strategies [176].

Initially, SCI arises from mechanical trauma (primary injury) to the spinal cord. This
trauma may result from a fracture, dislocation, compression, shear, laceration, and other
forms of injuries to the spine or intervertebral disc that compromise the structure of the
spinal cord. Consequently, a secondary injury arises, which involves a cascade of events that
are characterized by ischemia and physiological changes such as pro-apoptotic signaling
and peripheral inflammation, cellular infiltration, release of pro-inflammatory cytokines
and cytotoxic debris (DNA, ATP, and reactive species of oxygen) that cyclically increase the
harsh post-injury situation that can result in an expansion of the lesion zone of the affected
neural tissue [177].
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In any case, evaluating the status of each injury resulting from SCI is essential for
making therapeutic decisions. Due to the different aspects involved in the pathology of
SCI, different therapeutic strategies have been proposed to treat neurodegenerative events
and reduce neuronal damage resulting from SCI [178].

These efforts consist of developing neuroprotective and neuroregenerative therapies
that promote neuronal recovery and improve outcomes. These therapies include spinal pre-
cautions (logrolling and cervical collar) and protection against other injuries. Additionally,
there are treatment options, both surgical and pharmacological, although the efficacy of
some of these treatments is still under debate. The pharmacological treatments employed
often target alpha-adrenergic and beta-adrenergic functions with the aim of reducing the
effects of SCI by controlling pressure and interfering with the mechanisms of action of
inflammatory cytokines [176,177].

Although significant progress has been made in the understanding and treatment of
LM, a definitive cure has yet to be made a reality due to the complexity of the pathology.
However, new therapies based on induced pluripotent stem cells (iPSCs) and organoid
models are currently, being studied to promote the treatment of patients affected by SCI
and/or other neuromotor diseases. Cell-based treatments include transplants of autologous
Schwann cells, olfactory ensheathing cells, mesenchymal stem cells, neural precursor cells,
oligodendrocyte progenitor cells, and macrophages to the affected area [175].

Furthermore, iPSC can be used to construct 3D organoid models customized according
to the aspects of each disease studied. In the case of SCI, some components studied are part
of the structures affected by SCI [179].

Among the organoid models studied are early neuroectodermal cells generated from
astrocytes and programmed through the overexpression of OCT4 and p53, along with the
supply of molecules such as CHIR99021, SB431542, RepSox, and Y27632. Direct reprogram-
ming of astrocytes into neurons may pave the way for in vivo neural organogenesis from
endogenous astrocytes for the repair of central nervous system injuries [180].

Another study generated a three-dimensional culture system and protocol for the
production of human spinal cord-like organoids (hSCOs), recapitulating the neurulation-
like morphogenesis of the early spinal cord. hSCOs exhibited neurulation-like tube-forming
morphogenesis, cellular differentiation into the major types of spinal cord neurons as well
as glial cells, and mature synaptic functional activities, among other features of spinal cord
development. In this study, the hSCOs generated were used to screen for antiepileptic drugs
that can cause neural tube defects. hSCOs may also facilitate the study of human spinal
cord development and the modeling of diseases associated with neural tube defects [181].

Organoids modeling the ventral spinal cord have been successfully generated, ex-
hibiting the capacity to differentiate into various constituent cell types, including motor
neurons, excitatory V2a interneurons, inhibitory Renshaw interneurons, and astrocytes.
The presence of this heterogeneous cellular composition within the organoid framework
provides a platform for elucidating the complex pathological mechanisms underlying
spinal cord injuries (SCIs). Emerging evidence underscores the significance of cell-to-cell
interactions within the three-dimensional microenvironment, emphasizing their pivotal
role in deciphering the cellular intricacies governing SCI pathology [182].

4.12. Stroke

Stroke, a cerebrovascular disease resulting from a disruption of blood flow to the brain,
stands as a primary cause of neurological impairment and mortality among the elderly
population globally. Despite advancements in risk factor management and therapeutic
interventions, there persists a concerning rise in the incidence of stroke cases [183]. Since
the inception of iPSCs for stroke research, the primary focus has been on cell engraftment,
driven by the promising history of stem cell engraftment in ameliorating stroke outcomes.
Animal models typically employed include the rodent middle cerebral artery occlusion
model for ischemic stroke and intracranial hemorrhagic models for hemorrhagic stroke.
While iPSC engraftment in stroke rodent models is hampered by tumorigenicity concerns,
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both models have exhibited favorable outcomes, including neurological protection and re-
duced inflammatory responses [184]. Stroke is a tough disease to model in vitro due to the
involvement of its tissue heterogeneity. The most common in vitro models for stroke entail
oxygen and glucose deprivation. The use of iPSCs has already been reported in this 2D
model [185]. Another in vitro model for studying stroke that uses iPSCs involves modeling
cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopa-
thy (CADASIL), which leads to vessel weakening due to the accumulation of the NOTCH3
protein. This condition is associated with mutations in the NOTCH3 gene, resulting in the
gain or loss of cysteine residues in specific exons. iPSCs have been successfully utilized
to model this disease, offering insights into its pathogenesis and potential therapeutic
interventions [186–188]. Given this context, the utilization of organoids derived from iPSCs
has emerged as an attractive model for simulating vessel weakening and neurological
damage characteristic of stroke conditions in a 3D in vitro setting [189,190].

4.13. Traumatic Brain Injury

Traumatic brain injury (TBI) is defined as a severe injury to the head resulting from a
forceful impact. Its clinical manifestations are diverse and multifaceted, often encompass-
ing edema, traumatic axonal injury, contusion, and hematoma. TBI is a leading cause of
mortality and disability, affecting an estimated 69 million individuals worldwide [191]. TBI
poses significant challenges for both in vitro and in vivo modeling. In vivo models often
struggle to accurately replicate the human response to injury due to differences between
human and mouse brains. On the other hand, in vitro models may fall short in capturing
the complex interplay of processes that occur throughout the entire body [192]. TBI is
divided into two major injuries: The primary injury (PI) occurs in the form of the impact
and structural damage simultaneously, causing axonal shear, cell death, and inflammation,
enabling the most common clinical signs and even death [193]. Multiple processes that
occur during an extended period and include a cascade of metabolic, neuroinflammatory
response, and degenerative changes [194], which may lead to several neurodegenerative
diseases, including AD, chronic traumatic encephalopathy (CTE), PD, and other forms of
dementia or movement disorders characterize the secondary injury (SI) [195–197]. The
utilization of iPSCs in TBI research primarily centers around potential regenerative thera-
pies and in vitro modeling studies. Various research groups have successfully developed
TBI-related assays employing the iPSC technology. The majority of these studies concen-
trate on specific modeling targets, such as the primary impact (PI) effects [198,199], SI
neuroinflammatory response [200], and PI traumatic axonal injury [201].

A protocol developed by Santiago-Ramirez et al. in 2021 introduced a potential
approach using 3D organoids to evaluate the effects of TBI. These organoids, derived from
iPSCs reprogrammed from fibroblasts, exhibited a variety of cells and structures found
in the brain and displayed behavior akin to the cerebral cortex. However, despite the
promising results, this model still lacks certain cell types and structural components needed
to fully replicate the spectrum of the TBI pathology [202].

Another strategy to study TBI is based on iPSCs (NS/PS), which, through genome
editing, expressed the yeast cytosine deaminase/uracil phosphoribosyl transferase enzyme-
prodrug gene (yCD-UPRT)These NS/PS exhibited high expression of yCD-UPRT. which
was observed in in vivo bioluminescent imaging and histopathological analyses in mice
models of TBI. The result obtained was that the group treated with NS/PS showed im-
provement when compared to the control group. Furthermore, significant functional
improvements in motor skills and prevention of brain atrophy were observed in mice
treated with NS/PCs. Prevention of brain atrophy was observed in mice transplanted with
NS/PCs [192].

In a particular study, iPSCs were derived from reactive glial cells extracted from
the adult neocortex affected by TBI. The iPSC generation process involved the use of
retroviruses and four transcription factors, i.e., Oct4, Sox2, Klf4, and c-Myc, in an in situ
approach, where iPSCs were induced within the tissue affected by TBI. These iPSCs subse-
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quently differentiated into abundant neural stem cells, which further matured into various
cell types, including neurons and glia. Remarkably, effective brain repair was observed,
characterized by the presence of numerous neurons exhibiting typical neuronal morphology,
complete with axons, dendrites, and the ability to generate action potentials [203].

Table 1. Organoid models generated for studying several neuropathological diseases.

Organoid Type Disease Cell Type Result Reference

Cerebral
Organoid AD iPSC Modeling sporadic Alzheimer’s disease in human brain

organoids under serum exposure [204]

Cerebral
Organoid AD hiPSC

Mechanisms of hyperexcitability in Alzheimer’s disease
hiPSC-derived neurons and cerebral organoids vs.

isogenic controls
[205]

Cerebral
Organoid AD iPSC Modeling amyloid beta and tau pathology in human

cerebral organoids [206]

Disease Stem Cell AD iPSC Familial Alzheimer’s disease mutations in PSEN1 lead to
premature human stem cell neurogenesis [207]

Disease Stem Cell AD iPSC and hiPSC iPSC-derived human microglia-like cells to study
neurological diseases [208]

Cerebral
Organoid AD iPSC

APOE4 exacerbates synapse loss and neurodegeneration
in Alzheimer’s disease patients’ iPSC-derived

cerebral organoids
[209]

Cerebral
Organoid AD iPSC

A logical network-based drug-screening platform for
Alzheimer’s disease representing pathological features of

human brain organoids
[210]

Cerebral
Organoid AD iPSC

Loss of function of the mitochondrial peptidase PITRM1
induces proteotoxic stress and Alzheimer’s disease-like

pathology in human cerebral organoids
[211]

Cerebral
Organoid AD iPSC Tau pathology epigenetically remodels the neuron-glial

cross-talk in Alzheimer’s disease [212]

Disease Stem Cell AD iPSC
APOE4 causes widespread molecular and cellular

alterations associated with Alzheimer’s disease
phenotypes in human iPSC-derived brain cell types

[95]

Disease Stem Cell AD iPSC
Type I interferon signaling drives microglial dysfunction

and senescence in human iPSC models of Down
syndrome and Alzheimer’s disease

[213]

Cerebral
Organoid AD iPSC Acetylation changes tau interactome to degrade tau in

Alzheimer’s disease animal and organoid models [214]

Cerebral
Organoid PD hiPSC Modeling G2019S-LRRK2 sporadic Parkinson’s disease

in 3D midbrain organoids [215]

Cerebral
Organoid PD hiPSC

Lewy body-like pathology and loss of dopaminergic
neurons in midbrain organoids derived from familial

Parkinson’s disease patient
[216]

Midbrain
Organoid PD hiPSC

Human iPSC-derived midbrain organoids functionally
integrate into striatum circuits and restore motor
function in a mouse model of Parkinson’s disease

[217]

Neurospheres PD hiPSC and iPSC Patient-derived three-dimensional cortical neurospheres
to model Parkinson’s disease [218]

Midbrain
Organoid PD hiPSC and iPSC

Neurodevelopmental defects and neurodegenerative
phenotypes in human brain organoids carrying
Parkinson’s disease linked DNAJC6 mutations

[219]

Midbrain
Organoid PD iPSC Microglia integration into human midbrain organoids

leads to increased neuronal maturation and functionality [220]

Cerebral
Organoid PD iPSC Use of 3D organoids as a model to study idiopathic form

of Parkinson’s disease [221]

Cerebral
Organoid PD iPSC

The Parkinson’s disease-associated mutation
LRRK2-G2019S alters dopaminergic differentiation

dynamics via NR2F1
[222]

Cerebral
Organoid

Rett
syndrome hiPSC Identification of neural oscillations and epileptiform

changes in human brain organoids [223]
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Table 1. Cont.

Organoid Type Disease Cell Type Result Reference

Cerebral
Organoid TLE iPSC Modeling genetic epileptic encephalopathies using

brain organoids [224]

Cerebral
Organoid TSC hiPSC Amplification of human interneuron progenitors

promotes brain tumors and neurological defects [225]

Motor neurons
study ALS iPSC Aberrant axon branching via Fos-B dysregulation in

FUS-ALS motor neurons [226]

Sensorimotor
organoids ALS iPSC

Human sensorimotor organoids derived from healthy
and amyotrophic lateral sclerosis stem cells form

neuromuscular junctions
[99]

Cerebral
Organoid ALS iPSC Spinal cord extracts of amyotrophic lateral sclerosis

spread TDP-43 pathology in cerebral organoids [227]

Motor neurons
and brain
organoids

ALS and FTD iPSC
CRISPR/Cas9-mediated excision of ALS/FTD-causing
hexanucleotide repeat expansion in C9ORF72 rescues

major disease mechanisms in vivo and in vitro
[228]

Cerebral organoid
slice model ALS and FTD iPSC

Human ALS/FTD brain organoid slice cultures display
distinct early astrocyte and targetable

neuronal pathology
[134]

Brain organoids ALS and FTD iPSC Granulin loss of function in human mature brain
organoids implicates astrocytes in TDP-43 pathology [229]

Motor neurons ALS hiPSC Exploring motor neuron diseases using iPSC platforms [230]

Cerebral
organoids FTD iPSC

ELAVL4, splicing, and glutamatergic dysfunction
precede neuron loss in MAPT mutation

cerebral organoids
[133]

Molecular study FTD iPSC
Pathological progression induced by the frontotemporal

dementia-associated R406W tau mutation in
patient-derived iPSCs

[231]

iPSC-derived
astrocytes MS iPSC

iPSC-derived reactive astrocytes from patients with
multiple sclerosis protect cocultured neurons in

inflammatory conditions
[232]

Model study MS iPSC
Selective PDE4 subtype inhibition provides new

opportunities to intervene in neuroinflammatory versus
myelin-damaging hallmarks of multiple sclerosis

[233]

RRMS and PPMS
iPSC cellular

models
MS iPSC Generation of RRMS- and PPMS-specific iPSCs as a

platform for modeling multiple sclerosis [234]

Cerebral
organoids MS iPSC

Cerebral organoids in primary progressive multiple
sclerosis reveal stem cell and oligodendrocyte

differentiation defect
[165]

Model study MS iPSC Generation and characterization of four multiple
sclerosis iPSC lines from a single family [235]

Cerebral
organoids ASD iPSC Single-cell brain organoid screening identifies

developmental defects in autism [236]

Forebrain
organoids/Molecular

study
ASD iPSC

Cortical overgrowth in a preclinical forebrain organoid
model of CNTNAP2-associated autism

spectrum disorder
[237]

Organoids/Molecular
study ASD iPSC FOXG1-dependent dysregulation of GABA/glutamate

neuron differentiation in autism spectrum disorders [113]

Brain organoids ASD iPSC Superoxide dismutase isozymes in cerebral organoids
from autism spectrum disorder patients [238]

Organoids/Molecular
study ASD iPSC

CRISPR/Cas9-mediated heterozygous knockout of the
autism gene CHD8 and characterization of its

transcriptional networks in cerebral organoids derived
from iPSC cells

[239]

Cell Therapy TBI Rat

Combining enriched environment and induced
pluripotent stem cell therapy results in improved
cognitive and motor function following traumatic

brain injury

[240]
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Table 1. Cont.

Organoid Type Disease Cell Type Result Reference

Cell Therapy TBI Mice
Controlled cortical impact model of mouse brain injury

with therapeutic transplantation of human induced
pluripotent stem cell-derived neural cells

[241]

Cerebral
Organoid TBI hiPSC Modeling traumatic brain injury in human

cerebral organoids [198]

Cell Therapy CD Mice Cell-based therapy for Canavan disease using human
iPSC-derived NPCs and OPCs [122]

Cerebral
Organoid Stroke hiPSC

Gene expression profiles of human cerebral organoids
identify PPAR pathway and PKM2 as key markers for

oxygen glucose deprivation and reoxygenation
[242]

iPSC derived
telencephalon

organoids
ADHD iPSC

Telencephalon organoids derived from an individual
with ADHD show altered neurodevelopment of early

cortical layer structure
[105]

Model study ASD and
ADHD iPSC Modeling human cerebellar development in vitro in

2D structure [243]

Molecular study ADHD iPSC

Generation of a human induced pluripotent stem cell
(iPSC) line from a 51-year-old female with

attention-deficit/hyperactivity disorder (ADHD)
carrying a duplication of SLC2A3

[244]

Model study ADHD iPSC

Generation of four iPSC lines from peripheral blood
mononuclear cells (PBMCs) of an

attention-deficit/hyperactivity disorder (ADHD)
individual and a healthy sibling in a Caucasian family

in Australia

[245]

Model study ADHD iPSCs and NSCs

Growth rates of human induced pluripotent stem cells
and neural stem cells from

attention-deficit/hyperactivity disorder patients: a
preliminary study

[246]

Molecular study HD iPSC
An alternative splicing modulator decreases mutant HTT
and improves the molecular fingerprint in Huntington’s

disease patient neurons
[247]

Molecular study HD iPSC-derived
neurons (Mice)

CryoET reveals organelle phenotypes in Huntington’s
disease patient iPSC-derived and mouse

primary neurons
[248]

Model study HD iPSC-derived
neural cells

Bioenergetic deficits in Huntington’s disease
iPSC-derived neural cells and rescue with

glycolytic metabolites
[249]

Model study HD iPSC-derived
neural cells

Extracellular vesicles improve GABAergic transmission
in Huntington’s disease iPSC-derived neurons [250]

Legend: AD—Alzheimer’s disease; ADHD—attention-deficit/hyperactivity disorder; ALS—amyotrophic lateral
sclerosis; ASD—autism spectrum disorder; CD—Canavan disease; HD—Huntington’s disease; FTD—frontotemporal
dementia; MS—multiple sclerosis; PD—Parkinson’s disease; TLE—temporal lobe epilepsy; TSC—tuberous
sclerosis complex.

4.14. Limitations in the Use of Organoid Models

While organoid models offer numerous advantages, it is important to acknowledge
their limitations, particularly in the context of disease treatment approaches. One critical
consideration is their efficacy, as they may not fully replicate the complex microenviron-
ments found in native tissues and organs. This can pose a significant limitation when
translating findings from organoid studies into effective treatments [79].

iPSC-derived organoids present several overarching deficiencies. These encompass
issues such as inadequate reproducibility due to variations in culture conditions yielding
inconsistent experimental outcomes. Additionally, achieving a precise cell type composi-
tion akin to that of native tissues or organs poses challenges, resulting in size and shape
heterogeneity. Moreover, organoids often lack crucial components including vasculature,
immune cells, neural innervation, and specific morphological attributes, limiting their abil-
ity to effectively recapitulate physiological tissue environments. Furthermore, functional
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capabilities are frequently absent or limited in organoids, posing obstacles for studying
complex biological processes and disease mechanisms. Based on these points, it has become
a current objective to improve organoid protocols to both reduce these in vitro and organ
effects and to promote better adaptation and expression of organ characteristics [78].

5. iPSC-Based Therapies for Neurological Diseases

It is likely possible to model iPSCs into all somatic cell types [251]. Indeed, investi-
gations have pivoted towards leveraging this potential to model specific diseases at the
cellular level, particularly those driven by genetic mutations. Patient-derived iPSCs have
emerged as a focal point for conducting high-throughput screens aimed at elucidating the
developmental mechanisms underlying various pathologies [252]. Therefore, iPSCs have
been widely used in research strategies for pharmacological screening and regenerative
therapy [253].

The objective of employing stem cell treatment strategies for regenerative therapy is
to achieve the remission of pathological changes present in affected tissue, along with the
potential to restore lost function resulting from localized damage [254]. The proliferative
and differentiating capabilities of this cell type offer the potential for tissue regeneration in
conditions requiring surgical resection or tissue loss, such as spinal cord injury (SCI) [255].
iPSCs in the context of regenerative therapy become valuable due to the patient-derived
cells, which prevent tissue rejection, in addition to promoting recovery of function [256].

Currently, numerous studies are investigating the regenerative potential of iPSCs for
neuropathologies. Animal model studies focused on spinal cord injury (SCI) have shown
promising results, with high success rates in motor function recovery [257–259]. There have
been groups that have attempted to prevent loss of function in animal models of stroke and
ischemia [260,261]. In temporal lobe epilepsy, it was carried out to graft modified iPSCs to
non-epileptogenic GABAergic neurons [262–264]. Even the use of iPSCs has become the
target of study as a potential treatment of diseases by replacing tissue in which surgical
intervention would not occur, such as the case of PD, metachromatic leukodystrophy
(MLD), and HD [265–267]. Within all these pathologies, iPSCs have great regenerative and
replacement potential for damaged tissue due to the possibility of editing cells to overcome
the alterations resulting from the pathology [254].

Pharmacological tests conducted in vitro using various human cell models often
face challenges in accurately mimicking the pathology. However, iPSCs offer a valuable
opportunity to generate patient-specific cellular models, enabling the investigation of
cellular mechanisms underlying diseases [268]. Although iPSCs are less commonly utilized
in drug screening, they possess valuable properties for research purposes. Patient-derived
cells obtained through iPSCs are highly specific, and the process of acquiring them is less
invasive, making them excellent candidates for in vitro study models [269].

The modeling of diseases using iPSCs has seen a significant increase in interest, driven
by the need for more precise investigations into pathologies. In diseases such as Alzheimer’s
disease (AD), where the pathology is well understood, established drugs have been tested
using iPSC-based models to evaluate their efficacy [270]. Currently, the direct use of new
drugs in iPSC-based models is uncommon. However, strategies involving the use of iPSCs
as a means to validate drug efficacy are increasingly being utilized in cellular models
(Table 2) [271].

iPSCs are still under investigation to address their major challenges. While their
pluripotent nature is advantageous for forming teratomas, which helps confirm their
identity in early-stage studies, their tumorigenic potential is a significant concern for cell
therapy. Studies have reported the formation of gliomas in the brain in graft therapy
investigations [271]. Since the inception of iPSC research, numerous groups have identi-
fied significant risks associated with these cells, particularly concerning their tumorigenic
potential linked to transgenic C-MYC expression and viral integration. Furthermore, the
Single Cell Transcriptomics methodology has been bolstering disease modeling efforts,
enabling a deeper understanding of genetic mechanisms such as gene expression. It is
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also instrumental in characterizing cell subtypes and identifying novel drug candidates.
For instance, Fernandes et al. employed single-cell transcriptome analysis to identify and
characterize cellular heterogeneity in human iPSC-derived dopamine neurons. Their study
revealed distinct dopaminergic neuron subtypes within iPSC cultures, particularly after
exposure to cytotoxic effects and genetic stressors induced by the drug felodipine [272].
Indeed, another study harnessed the Single Cell Transcriptomics methodology to cultivate
organoids with precise developmental features and cell type characteristics of their target
organ. This technique enabled the differentiation and selection of cell subgroups represent-
ing the desired organ characteristics while excluding cells that did not align with those
features [273,274].

Hence, ongoing studies aimed at utilizing iPSCs for engraftment purposes are delv-
ing deep into examining alterations within the generated cellular model to preempt any
undesired modifications [275,276]. Despite the challenges identified in the application of
the technique, well-established groups have expressed keen interest in utilizing human
pluripotent stem cells (hPSCs) for therapeutic purposes in humans [277].

Table 2. iPSC usage in cell therapy and drug screening for several neuropathologies.

Trial Type Disease Target Result Reference

Cell Therapy AD Rat The transplanted rats rescued Alzheimer’s cognition. [278]

Cell Therapy AD Mouse
Grafted mice showed improved memory, synaptic plasticity, and

reduced AD brain pathology, including a reduction in amyloid and
tangle deposits.

[279]

Drug
Screening AD hiPSC β-secretase inhibitor IV (BSI) and γ-secretase inhibitor XXI/compound

E (GSI) showed similar effects as screening in other models. [280]

Drug
Screening AD hiPSC Docosahexaenoic acid (DHA) treatment alleviated the stress responses

in the AD neural cells. [270]

Drug
Screening AD hiPSC

The anthelminthic avermectins increase the relative production of short
forms of Aβ and reduce the relative production of longer Aβ fragments

in human cortical neurons.
[281]

Cell Therapy HD Mice iPSCs survived and differentiated into region-specific neurons in both
mice groups without tumor formation. [282]

Cell Therapy HD Mice
Grafted mice showed a significant increase in lifespan. In iPSC groups,

animals showed significant improvement in motor functions and
grip strength.

[283]

Cell Therapy HD Rat
Grafted rats showed significant behavioral improvements for up to

12 weeks. iPSCs enhanced endogenous neurogenesis and reconstituted
the damaged neuronal connections.

[166]

Cell Therapy HD Mice Improved neuronal dysfunction by SUPT4H1-edited iPSC grafts. [284]

Cell Therapy MLD Mice
Transplantation of ARSA-overexpressing precursors into

ARSA-deficient mice significantly reduced sulfatide storage up to
300 µm from grafted cells.

[285]

Cell Therapy MLD Mice

Grafts of iPSCs into neonatal and adult immunodeficient MLD mice
stably restored arylsulfatase A (ARSA) activity in the whole CNS and a

significant decrease in sulfatide storage when ARSA-overexpressing
cells were used.

[165]

Cell Therapy PD Rat iPSC graft differentiated into mature mDA neurons that survive over
long term and restored motor function. [286]

Cell Therapy PD Mice hiPSCs differentiated into mDA neurons and long-term motor
functional recovery was achieved after transplantation. [287]

Cell Therapy PD Rat
Grafted iPSCs could survive in Parkinsonian rat brains for at least

150 days, and many of them differentiated into tyrosine hydroxylase
(TH)-positive cells.

[288]

Cell Therapy PD Rat

Intranigral engraftment to the ventral midbrain demonstrated that
mDA progenitors cryopreserved on day 17, and cells had a greater
capacity than immature mDA neuron cells to innervate over long

distances to forebrain structures.

[289]
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Table 2. Cont.

Trial Type Disease Target Result Reference

Cell Therapy PD Rat hiPSC-derived dopaminergic progenitor cells integrate better into the
striatum of neonates than older rats. [290]

Cell Therapy PD Mice
More than 90% of the engrafted cells differentiated into the lineage of
mDA neurons, and approximately 15% developed into mature mDA

neurons without tumor formation.
[291]

Cell Therapy PD Rat There was a neural remodel of basal ganglia circuitry and
no tumorigenicity. [292]

Cell Therapy PD Mice
iPSCs matured into mDA neurons, reverse motor function, and

established bidirectional connections with natural brain target regions
without tumor formation.

[217]

Cell Therapy SCI Rat Transplanted cells displayed robust integration properties, including
synapse formation and myelination by host. [293]

Cell Therapy SCI Mice
Due to DREADD expression, it was shown a significant decrease in
locomotor dysfunction in SCI-grafted mice, which was exclusively

observed following the neurons’ maturation.
[294]

Cell Therapy SCI Mice The combination of iPSC graft and rehabilitative training therapy
significantly improved motor functions. [295]

Cell Therapy SCI Rat
Neuro-pluripotent cells derived from iPSC were able to survive and

differentiate into both neurons and astrocytes, which improved
forelimb locomotor function.

[296]

Cell Therapy Stroke Mice
Combination of electroacupuncture and iPSC-derived extracellular

vesicle treatment ameliorated neurological impairments and reduced
the infarct volume and neuronal apoptosis in MCAO mice.

[297]

Cell Therapy Stroke Pig
Tanshinone IIA nanoparticles increased iPSC engraftment, enhanced
cellular and tissue recovery, and improved neurological function in a

translational pig stroke model.
[298]

Cell Therapy Stroke Rat Increased glucose metabolism and neurofunctional in
iPSC-transplanted rats. [299]

Cell Therapy Stroke Rat
Graft of iPSCs inhibited microglial activation and expression of
proinflammatory cytokines and suppressed oxidative stress and
neuronal death in the cerebral cortex at the ischemic border zone.

[300]

Cell Therapy Stroke Mice
Graft survived well and primarily differentiated into GABAergic

interneurons and significantly restored the sensorimotor deficits of
stroke mice for a long time.

[301]

Cell Therapy Stroke Rat
Generated oligodendrocytes survived and formed myelin-ensheathing
human axons in the host tissue after grafting onto adult human cortical

organotypic cultures.
[302]

Cell Therapy TLE Mice A much-reduced frequency of spontaneous recurrent seizures in
grafted animals. [262]

Legend: AD—Alzheimer’s disease; HD—Huntington’s disease; MLD—metachromatic leukodystrophy; PD—Parkinson’s
disease; SCI—spinal cord injury; TLE—temporal lobe epilepsy; mDA—midbrain dopaminergic. SCI and PD
papers presented are only from 2023 and 2022 due to the large number of publications.

6. Conclusions and Future Perspectives

The utilization of induced pluripotent stem cells (iPSCs) in the investigation of neu-
ropathologies offers a promising avenue for comprehending complex diseases and ex-
ploring potential therapeutic interventions. The advent of iPSCs represents a significant
advancement in cellular reprogramming, enabling the creation of patient-specific models
that effectively recapitulate the characteristics of diverse neurological disorders [303].

The versatility of induced pluripotent stem cells (iPSCs) in differentiating into key
neural cell types, including neurons, astrocytes, and oligodendrocytes, has greatly facili-
tated the development of patient-derived disease models for various conditions such as
Alzheimer’s disease (AD), Parkinson’s disease (PD), epilepsy, spinal cord injury (SCI),
stroke, traumatic brain injury (TBI), Canavan disease (CD), autism spectrum disorder
(ASD), attention deficit hyperactivity disorder (ADHD), and multiple sclerosis (MS). More-
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over, the ability to manipulate iPSCs using gene-editing techniques has further expanded
their utility, allowing researchers to study specific disease-related mutations [168,304].

The importance of selecting appropriate donor cell types and optimizing reprogram-
ming protocols cannot be overstated. Continuous efforts are essential to improve efficiency
and safety in induced pluripotent stem cell (iPSC) generation. While concerns about their
applicability persist, particularly regarding tumorigenesis, several studies using animal
models have reported positive results without tumor formation. Despite the controversy
surrounding the use of iPSCs as therapies, ongoing research is shedding light on their
potential benefits (Table 2).

The integration of induced pluripotent stem cells (iPSCs) into organoid models marks
a significant advancement, enabling the in vitro recreation of 3D tissues. Derived from
iPSCs, organoids offer a unique platform for studying complex structures like the brain
and have yielded insights into the pathogenesis of neurodegenerative diseases such as
Alzheimer’s disease (AD) and Parkinson’s disease (PD). Through the detailed exploration
of organoid models tailored to each neurological condition, including specific genetic
mutations and treatment approaches, this technology demonstrates immense potential in
disease-modeling and drug-screening endeavors.

While induced pluripotent stem cells (iPSCs) offer tremendous potential for regen-
erative therapies, there are inherent challenges and limitations that must be addressed.
Enhancements in organoid protocols are necessary to improve reproducibility, specificity,
and functional characteristics. Moreover, the careful consideration of the tumorigenic po-
tential of iPSCs underscores the importance of rigorous investigations and implementation
of safety measures in their application for cell therapy [305,306]. Issues related to iPSC
study models include their specificity, which is advantageous for mutation-specific diseases
but challenging for sporadic, multifactorial, and epigenetic-dependent diseases such as
Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis
(ALS). In rodent models of iPSCs used for drug screening, the translational efficacy of
developed drugs has been limited, highlighting the value of using human iPSCs (hiPSCs).
However, using hiPSCs generated from patient-specific cells for drug screening across
diseases with diverse origins may compromise the effectiveness of therapy. Therefore, there
is a need to discover new drug targets and standardize phenotypes for diseases like AD.
Additionally, understanding the lack of translational potential for a particular treatment
across multiple patients is crucial for effectively treating individual patients modeled with
iPSCs [307]. Therefore, having a data bank for each modeled iPSC is of major importance.

In summary, the extensive investigation into iPSCs and their role in modeling neu-
rological diseases, developing organoids, and exploring potential therapies offers a com-
prehensive view of the current research landscape in this field. The ongoing endeavors to
improve techniques and overcome limitations highlight a dedication to advancing iPSC-
based methodologies for gaining deeper insights into neuropathologies and fostering the
development of innovative treatments.

7. Future Perspectives

Regenerative medicine seeks to repair and rejuvenate impaired organs or tissues,
aiming to bring back their original form and function. Currently, clinical trials are being
conducted to explore cell therapies aimed at replenishing vital cell types lost due to various
diseases. For instance, in Parkinson’s disease, efforts are focused on replacing neurons [308].
In vivo reprogramming is increasingly seen as an appealing alternative to address the
technical challenges associated with the iPSC technology, such as ex vivo reprogramming
and large-scale expansion.

The process of in vivo reprogramming takes place amidst a distinctive cellular and
extracellular milieu rich in tissue-specific biochemical and mechanical cues. Under these
circumstances, cells are generated displaying a greater level of maturation compared to
those reprogrammed in vitro [309]. For it to be successful, the identification of appropriate
cell sources is crucial. Ideally, these initial cells should be abundant and permissive to
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reprogramming. Two types of macroglial cells, namely, astrocytes and oligodendrocyte
progenitor cells (also referred to as NG2 glia), have been extensively investigated as prime
candidates for conversion into induced neurons [310]. NG2 glia possess the ability to
self-renew and exhibit high proliferation rates, characteristics that may mitigate the risk
of depleting the native population crucial for maintaining tissue homeostasis [311]. For
the insights gained from these animal studies to be applicable in clinical settings, it is
imperative to attain robust reprogramming within diseased organs safely. Additionally,
comprehensive regulatory protocols are required to unify and regulate the endeavors of
both academic and industry sectors effectively.
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