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Abstract: Dilated cardiomyopathy (DCM) is the most common cause of heart failure, with a complex
aetiology involving multiple cell types. We aimed to detect cell-specific transcriptomic alterations in
DCM through analysis that leveraged recent advancements in single-cell analytical tools. Single-cell
RNA sequencing (scRNA-seq) data from human DCM cardiac tissue were subjected to an updated
bioinformatic workflow in which unsupervised clustering was paired with reference label transfer to
more comprehensively annotate the dataset. Differential gene expression was detected primarily in
the cardiac fibroblast population. Bulk RNA sequencing was performed on an independent cohort of
human cardiac tissue and compared with scRNA-seq gene alterations to generate a stratified list of
higher-confidence, fibroblast-specific expression candidates for further validation. Concordant gene
dysregulation was confirmed in TGFβ-induced fibroblasts. Functional assessment of gene candidates
showed that AEBP1 may play a significant role in fibroblast activation. This unbiased approach
enabled improved resolution of cardiac cell-type-specific transcriptomic alterations in DCM.

Keywords: heart failure; dilated cardiomyopathy; cardiac fibroblasts; single-cell RNA sequencing

1. Introduction

Cardiomyopathies are a class of diseases characterized by structural and functional
abnormalities of the myocardium that cause significant morbidity, mortality, and economic
strain on global healthcare systems. They are classified into different types and subtypes
based on the underlying pathophysiological changes that result in either hypertrophic,
restrictive, or dilated cardiac phenotypes. DCM is one of the most common causes of HF
and is characterized by ventricular dilation and depressed myocardial performance in the
absence of hypertension, congenital, valvular, or ischemic heart disease [1]. The prevalence
of DCM is approximately 1:250–500 in the adult population [2], with a 5-year mortality of
up to 20% [3] and a significant increase in new cases recorded over the last decade [1,4].

DCM is a multifactorial disease, influenced by both genetic factors (monogenic or
complex) accounting for up to 35–50% [3], and environmental factors (inflammation, infec-
tion, toxins, and chemotherapeutic agents) [5]. DCM can present as clinical systolic heart
failure with reduced ejection fraction (HFrEF) with arrhythmias that may lead to sudden
death [3]. Irrespective of underlying etiology, adverse cardiac remodeling is the hallmark
feature of DCM, with defining pathological features such as myocardial inflammation,
diffuse fibrosis, compensatory hypertrophy, and chamber enlargement that lead to systolic
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dysfunction [5,6]. Although there have been considerable improvements in both pharma-
cological and device-based treatments for DCM to reduce symptoms of HF and improve
cardiac function, morbidity and mortality for patients with DCM are still unacceptably
high, with one- and five-year mortality rates in DCM at approximately 25–30% and 50%,
respectively [5], and 15-year follow-up demonstrating a survival rate of 34% [7].

Aberrant transcriptional and functional changes in multiple cardiac cell types, includ-
ing cardiomyocytes, fibroblasts, endothelial cells, mural cells, and immune cells, are noted
to underlie the pathological phenotype of a DCM heart [6]. More detailed characterization
of cell-specific alterations is required to guide the much-needed development of novel
diagnostic and therapeutic targets, leading to improved disease management and clinical
care of patients with DCM.

ScRNA-seq enables the high-throughput measurement of gene expression in thou-
sands of individual cells simultaneously and its application facilitates the study of mal-
adaptive changes in individual cell types within complex tissues. Use of this technology is
increasing exponentially, with thousands of scRNA-seq data sets having been generated in
various complex disease settings such as cancer, infection, autoimmune disorders, and more
recently HF. The rapid increase in scRNA-seq is matched by a proliferation of single-cell
library preparation platforms, sequencing strategies, and computational workflows, the
combination of which gives rise to quantitatively and qualitatively diverse datasets. In
addition to continued improvements in analytical sensitivity and efficiency in ever-larger
datasets, recent computational advances have increased the capacity to harmonize between
datasets, regardless of initial scRNA-seq strategy. Coupled with the increase in published
single-cell data in repositories, these computational developments raise the prospect of
revisiting datasets of interest, both by employing more advanced analytical tools and by
leveraging more recent gold-standard reference publications, to enhance the interpretation
of published datasets and provide novel insights.

In this study, we aimed to detect cell-type-specific transcriptomic alterations implicated
in DCM. Recent advances in single-cell analytical tools were employed to perform an
integrated analysis of the publicly available adult heart scRNA-seq datasets. Comparative
analysis of heart scRNA-seq datasets to whole-RNA-Seq from an independent cohort of
DCM patients enabled the identification of DCM-specific transcriptional changes that
occur in disease-relevant cell types. These genetic changes, and their relevance to cardiac
functionality, were investigated further in cardiac fibroblasts.

2. Materials and Methods
2.1. Data Retrieval and Pre-Processing

Single-cell RNA-seq datasets for non-HF (n = 14) and DCM (n = 4) adult human
heart samples were retrieved from Gene Expression Omnibus (GEO) under accession codes
GSE109816 and GSE121893. Patient demographic information is available in Supplementary
Table S1, indicating a mean age of 42.8 and 41.3 years in non-HF and DCM, respectively.
The initial dataset of 12,429 cells was subject to additional cell quality filtering, excluding
cells with >25% reads mapping to ribosomal genes, >30% reads mapping to a single gene,
<750 unique genes, and <2000 total counts, resulting in a filtered dataset of 10,242 cells
(6675 control and 3567 HF).

2.2. Normalization, Integration, and Clustering

Cells were partitioned according to their individual of origin and processed in Seurat
(version 3.2.3 [8]) using the SCTransform package (version 0.3.2 [9]) for normalization and
variance stabilization, regressing variance arising from cellular read depth and ribosomal
counts, and subsequently in per-individual iterative pairwise integration using the top
3000 variable genes. Principal Component Analysis was performed on the integrated
dataset, with the first 50 components used as inputs in UMAP and SNN clustering. Clus-
tering was carried out iteratively from resolutions of 0.5 to 2.0 at increments of 0.25, with
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clusters at resolution 0.75 most closely matching distinct cellular populations observed
in UMAP.

2.3. Gene Expression Analysis

Cluster marker genes were detected using the MAST package (version 1.24.1 [10])
using log fold-change and fraction-expressing thresholds of 0.5 and 0.33, respectively, with
clusters annotated by cell type accordingly. MAST was used in differential expression
analysis within cell types between DCM and non-HF cells, with a log fold-change threshold
of 0.15 and a minimum expression fraction of 0.1. Genes passing these thresholds and with
a Bonferroni-corrected p value < 0.05 were considered significantly differentially expressed
between conditions.

2.4. Reference Label Transfer

Adult human single-cell data from Heart Cell Atlas [7] was used as a reference dataset
in the Seurat Label Transfer to project predicted cell-type annotations onto the query HF
dataset based on the gene expression correlation for every cell.

2.5. RNA Sequencing of DCM Patient Cardiac Tissue

The study conformed to the principles outlined in the Declaration of Helsinki. Ethical
Approval for data collection and use of tissue was obtained from the Cleveland Clinic
Institutional Review Board. Cardiac interventricular septal (IVS) tissue was surgically
removed from nine patients with DCM that underwent orthotropic cardiac transplantation
(OCT). Nine patients represented an age- and gender-matched control group with non-HF
hearts who died of non-cardiac causes. These patients donated hearts for OCT. The patient
characteristics for these groups have been previously reported [11]. Surgically excised
cardiac tissue was immediately snap frozen in liquid nitrogen and stored at −80 ◦C until
required. Approximately 30 mg of tissue was physically homogenized via the use of a mo-
torized pellet pestle (Sigma-Aldrich, Dorset, UK). Total RNA was extracted from IVS tissue
homogenate using an RNeasy Fibrous Tissue Mini Kit (Qiagen, Manchester, UK) isolation
kit following manufacturers’ instructions. To confirm the presence of RNAs, samples were
quantified using the Qubit™ RNA Assay Kit (Thermo Fisher, Leicestershire, UK).

Library preparation and next-generation sequencing were carried out by the Queen’s
University Genomics Core Technology Unit. Libraries were prepared from 1 µg of RNA
using TruSeq® Stranded mRNA Library Prep kit (Illumina, Cambridge, UK) following
the manufacturers’ instructions. Library concentrations were measured using a Qubit™
dsDNA HS Assay Kit (Thermo Fisher, Leicestershire, UK). The quality and concentration
of libraries were determined using a Fragment Analyzer (Advanced Analytical, Cheshire,
UK). Libraries were sequenced on a NextSeq 500 System (Illumina, Cambridge, UK).

An analytical workflow on CLC Bio Genomics workbench v10.1.1 (QIAGEN) was
used for sequence analyses. Imported raw sequence FASTQ files were assessed for QC,
trimmed, and extracted; reads were then mapped to HG19. Mature annotated sequences
were assigned experimental groups (non-HF vs. DCM). Gene mapping matrices were
normalized to RPMM and compared between experimental groups for differential gene
expression. Proportion-based statistical analysis (Baggerly’s test, Bonferroni corrected) was
also carried out on the CLC Bio Genomics workbench package.

2.6. Analysis of Mass Spectrometry of Human Left Ventricular Tissue

Proteomic data generated from mass spectrometry-based analysis of left ventricular
heart tissue from patients with no heart failure (n = 7) and patients with dilated cardiomy-
opathy (n = 5) was accessed from ProteomeXchange to evaluate the protein-level expression
changes of AEBP1 in association with DCM (PXD008394) [12].
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2.7. Cell Culture

Primary human ventricular cardiac fibroblast (HCF) cells were purchased from Sci-
enCell Research Laboratories; primary cells isolated from two individual donors were
included in this study. Cells were cultured and maintained in Dulbecco modified Eagle
medium (DMEM; Gibco, Leicestershire, UK), supplemented with 10% fetal bovine serum
(Gibco, Leicestershire, UK) and penicillin–streptomycin antibiotics (Gibco) in a 5% CO2
humidified incubator at 37 ◦C. Cells were not expanded beyond 15 population doublings
in line with suggested conditions provided by ScienCell Research Laboratories. When re-
quired, HCF cells were treated for 72 h with either vehicle or 5 ng/mL human recombinant
transforming growth factor β1 (TGF-β1; Promokine, Heidelberg, Germany) in serum free
media. HCF cells were also stimulated with TGF-β1 in the presence of either 25 nM siRNA
(siRNA) or 25 nM scrambled non-targeting control (scr), for genes that were identified as
upregulated in DCM (LTBP2 and AEBP1).

2.8. Quantitative Real-Time Polymerase Chain Reaction (RT-qPCR)

Total RNA was extracted from cells using the High Pure RNA Extraction kit (Roche,
Sussex, UK) according to the manufacturers’ instructions. Subsequently, 1 µg DNase-free
RNA was reverse transcribed using the High Capacity cDNA Reverse Transcription Kit
(Thermo Fisher Scientific).

Quantitative RT-PCR (RT-qPCR) was carried out using fluorescent SYBR Green (Roche,
Sussex, UK). Primers were designed using Primer Blast (exon and intron spanning when
possible) or purchased from Sigma and are shown in Supplementary Table S2. Ct values
were measured using a LightCycler 480 sequence detector (Roche, Sussex, UK). Relative
fold change in gene expression was calculated with the ∆∆CT method. Expression of B2M,
HPRT, and GAPDH were used as endogenous controls for normalization.

2.9. Western Blotting

Protein expression levels were measured using Western blotting. HCF cell lysates were
lysed in RIPA lysis buffer. Protein concentrations were measured using BCA protein Assay
(Promega, Southampton, UK). Protein lysates (25 µg) and cell supernatants (20 µL) were
electrophoresed on 10% sodium dodecyl sulfate-polyacrylamide gels, and then transferred
onto polyvinylidene fluoride (PVDF) membranes (BioRad, Hercules, CA, USA) using a gel
transfer device. PVDF membranes were blocked in 5% non-fat milk/tris-buffered saline
with 0.01% Tween™ 20 (TBS-T) for 1 h and then incubated with primary antibodies against
α-smooth muscle actin (Merck, Dorset, UK, 1:5000) overnight at 4 ◦C. After washing six
times with TBS-T, the membrane was stained with anti-mouse IgG (CellSignalling, Beverly,
US, 1:10,000) for 1 h. Blots were washed (as described above) and developed using Super-
Signal™ West Pico PLUS Chemiluminescent Substrate (ThermoScientific, Singapore) and
visualized using the Chemgene Film Processor (Protec, Oberstenfeld, Germany). Protein
expression levels were normalized to GAPDH (ProteinTech, Manchester, UK 1:10,000).

2.10. Statistical Analysis

All statistical analyses were performed using R (3.6.3) and Graphpad Prism software
(Version 6). For in vitro investigation, normality was assessed using the Kolmogorov–
Smirnov test, with Gaussian distributed data represented as the mean and standard devia-
tion of the mean (SD), while non-normally distributed data are presented as the median and
interquartile range (IQR). A two-sided, unpaired Student’s t-test was used for two-group
comparison (normal distribution). For non-normally distributed data, a Mann–Whitney U
test was used. Values of p < 0.05 and FDR < 0.05 were accepted as statistically significant.

3. Results
3.1. Optimization and Recharacterization of Single-Cell Transcriptomic Changes in DCM

Unsupervised clustering analysis identified eight clearly distinct cell populations
(Figure 1A,B). Using the non-HF cohort alone, the eight cell populations were manually



Cells 2024, 13, 752 5 of 14

annotated using literature-derived annotation using the most enriched marker genes in
each population: cardiomyocytes (TTN, MHY6, RYR2, NPPA), fibroblasts (DCN, C7, CFD,
ADH1B, APOD), endothelial cells (VWF, IFI27, AQP1, HLA-E, PECAM1), smooth muscle
cells (MYH11, LBH, CALD1, LMOD1, MYLK), pericytes (RGS5, AGT, ABCC9, STEAP4, PDF-
GRB), mesothelial cells (HP, ITLN1, PRG4, PLA2G2A, C3), myeloid cells (CD163, AIF1,
MS4A6A, CCL3L3, CCL4L2), and lymphoid cells (CCL5, PTPRC, TRBC2, CD2, CD52)
(Figure 1C). A comprehensive set of markers for unsupervised clusters and annotated
cell types can be found in Supplementary Tables S3 and S4. Automated cell-type annotation
with Seurat label transfer using the Heart Cell Atlas project6 as a reference identified the
same eight cellular populations (Supplementary Figure S1).
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Figure 1. Enhanced workflow and unbiased automatic cell labelling of human cardiac scRNA data
enhances identification of cardiac cell populations. UMAP reduction of full Wang et al.’s dataset
labelled with (A) unsupervised SNN clustering at 0.75 resolution and (B) after semi-unsupervised
cell-type annotation. (C) Top 5 most highly expressed transcripts for each annotated cell cluster.

As a neuronal cluster was reported in Heart Cell Atlas, supervised examination for neu-
ronal marker genes was applied (NRXN1, NRXN3, KCNMB4, Supplementary Figure S2).
Expression of these markers was low, occurring in few cells across various clusters, indicat-
ing the absence of a specific neuronal cluster in this dataset.

3.2. Cellular Transcriptional Changes in DCM

Identification of transcriptional differences between the non-HF cohort and DCM
cohort was carried out for each cardiac cell type. Major differences in expression in DCM
were identified in four of the predominant cell types: cardiomyocytes (272 upregulated,
143 downregulated genes), endothelial cells (369 upregulated, 162 downregulated), fi-
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broblasts (166 upregulated, 74 downregulated), and pericytes (109 upregulated, 41 down-
regulated). We identified a small number of genes differentially expressed in DCM in
the other cell populations, including smooth muscle cells (14 upregulated, 1 downregu-
lated), myeloid cells (7 upregulated, 2 downregulated), and lymphoid cells (7 upregulated,
1 downregulated) (Figure 2A). The mesothelial cell population did not exhibit any differen-
tial gene expression reaching significance between non-HF and DCM, with this outcome
likely arising from the low numbers of mesothelial cells and variation in their proportions
between individual heart samples.
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Figure 2. Differential transcriptional changes in cardiac cell types in DCM. (A) Number of differ-
entially expressed transcripts in each cardiac cell population in DCM. Circos plots of differentially
expressed genes that were (B) upregulated and (C) downregulated in each of the cardiac cell popula-
tions. Blue lines indicate transcripts that are conserved between different cell populations.

Selected genes commonly altered in cardiomyopathies were queried for differential
expression (Supplementary Figure S3), indicating in particular increased expression of
natriuretic peptides, myosin heavy chain, and troponin genes, and a decrease in myosin
light chain genes across the major cell types. The expression of 11 genes reported to have
strong genetic links to DCM [13] was also queried, of which 7 (FLNC, DES, MYH7, PLN,
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TTN, TNNC1, and TNNT2) demonstrated significant dysregulation in DCM (Supplementary
Figure S4).

The full list of differentially expressed genes identified in DCM for each cardiac cell
type is found in Supplementary Table S5. Several DEGs showed overlap across two or more
cardiac cell types in DCM (Figure 2B). For example, HES1 expression was significantly
upregulated in endothelial cells, fibroblasts, and pericytes, and MYL3 expression was
significantly downregulated in cardiomyocytes, fibroblasts, endothelial cells, and pericytes.
However, we identified subsets of DEGs that were uniquely dysregulated for each cardiac
cell type in DCM (Figure 2B).

3.3. Identification and Validation of Fibroblast-Specific DCM Transcriptomic Changes

Fibroblasts are one of the leading cell types involved in pathological cardiac remodel-
ing in the DCM heart. ScRNA-seq analysis of fibroblasts revealed unique transcriptional
changes in DCM with 166 upregulated and 74 downregulated DEGs identified (Figure 3A).
Pathway analysis revealed that genes upregulated in DCM are associated with TGFβ
receptor signaling pathway (GO:0007179), extracellular matrix organization and remod-
eling (GO:0030198, GO:0030199), regulation of fibroblast proliferation (GO:0048146), re-
sponse to oxidative stress (GO:0006979, GO:0000302) and cytokine-mediated signaling
(GO:0019221) (Supplementary Table S6). Transcripts which were downregulated in fibrob-
lasts from DCM hearts were associated with cardiac tissue morphogenesis (GO:0055008,
GO:0055010), mesenchymal cell proliferation (GO:0010463), migration in cardiac devel-
opment (GO:0060973), mitochondrial electron transport (GO:0006122, GO:0006123), and
response to lipid hydroperoxide (GO:0006982) pathways. Pathway analysis of differen-
tially expressed transcripts was also conducted on other prominent cell types, including
cardiomyocytes, endothelial cells, and pericytes that were analyzed from this scRNA-seq
dataset (Supplementary Table S6).

To independently identify DCM-related transcriptional changes in fibroblasts, car-
diac tissue was profiled from a separate cohort of nine DCM patients and nine non-HF
patients using RNA-seq [10]. Principal component analysis revealed a clear separation in
transcriptional profiles between the DCM and non-HF cohort; there were 182 upregulated
genes and 147 downregulated genes in dCM compared to NF cardiac tissue (Supplemen-
tary Figure S5). Intersecting these differentially expressed myocardial DCM candidate
genes (Supplementary Table S7) with those identified in fibroblasts from the single-cell
analysis revealed n = 12 upregulated and n = 14 downregulated gene candidates which
showed the same directional change in expression (Figure 3B). To further examine these
fibroblast-specific transcriptional changes in DCM, their expression using RT-qPCR was
measured in an in vitro model of TGFβ-induced activation, a cytokine known to be present
at high levels in DCM myocardium [14] and which was found to be upregulated in NF vs
DCM bulk RNAseq (Supplementary Table S7). Activation of cardiac fibroblasts in vitro
with TGFβ was confirmed by induction of profibrotic markers, including alpha smooth
muscle actin (αSMA) and collagen 1 alpha 1 (col1α1). Ten candidate genes demonstrated
the same change in expression upon TGFβ treatment as detected in DCM. Four genes;
AEBP1, LTBP2, SFRP4, and DPT showed a significant elevation in expression in response
to TGFβ (Figure 3C) and expression of TGFBR3, ADH1B, GPX3, MGST1, NID1, and C7
was significantly reduced (Figure 3D). The remaining candidate genes examined in vitro
showed opposing or no change in mRNA expression. We also evaluated changes in candi-
date protein-level expression in proteomic data generated from mass spectrometry-based
analysis of LV heart tissue from patients with no heart failure (n = 7) and patients with
dilated cardiomyopathy (n = 5) [12] and found that only AEBP1 was upregulated in DCM
at the protein level (NF vs. DCM, p = 0.0062 **), concordant with our gene expression data
(Figure 3E). The other candidate proteins evaluated in this data set were not significantly
different between NF and DCM patients.
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Figure 3. Identification and in vitro validation of fibroblast-specific differentially expressed genes in
DCM. (A) Volcano plot representing differentially expressed genes in cardiac fibroblasts from DCM
hearts. (B) Venn diagram depicting identification of disease-relevant candidate genes by comparing
DEGs from bulk RNA-seq of heart tissue with scRNA-seq fibroblast cell data. In vitro validation
of disease-relevant candidates that show significant (C) upregulation and (D) downregulation in
response to 72 h TGFβ activation (n = 5). (E) Proteomic data generated from mass spectrometry-based
analysis of LV heart tissue from non-failure patients (NF) (n = 7) and dilated cardiomyopathy patients
(DCM) (n = 5). (F) RT-PCR analysis of AEBP1 in HCFs transfected with 25 nM AEBP1 siRNA (or
scrambled control) (n = 3). RT-PCR analysis of (G) αSMA and (H) col1α1 in HCFs transfected with
25 nM AEBP1 siRNA (or scrambled control) in the presence or absence of TGFβ1 (n = 4). Protein levels
of (I) αSMA and (K) col1α1 measured in lysates (n = 4) and supernatants (n = 4), respectively, from
HCFs transfected with 25nM AEBP1 siRNA (or scrambled control) in the presence or absence of TGFβ1
using Western blot and densitometry analysis. (J,L) show representative images of Western blots.
* indicates p =< 0.05, ** indicates p =< 0.005, *** indicates p =< 0.0005, **** indicates p =< 0.00005).
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To further assess the functional impact of aberrant transcriptional expression on
fibroblast activation, we conducted siRNA knockdown of the two highest, differentially
expressed candidates (in RNA-seq and scRNA-seq), AEBP1 and LTBP2, and examined their
impact on fibrotic factors in HCFs. Transfection of AEBP1 siRNA resulted in a significant
10-fold reduction in AEBP1 expression (scr vs. siAEBP1, p = 0.005 **) (Figure 3F). In
response to TGFβ activation, siRNA-targeted knockdown of AEBP1 resulted in a significant
reduction in the expression of αSMA (scr vs. siAEBP1, p = 0.0154 *) (Figure 3G) and col1α1
(scr vs. siAEBP1, p ≤ 0.0001 ***) (Figure 3H). The effect of siRNA-targeted knockdown of
AEBP1 on the fibrotic response of HCFs at the protein level was assessed using Western
blot analysis. Results showed a significant reduction in TGFβ-induced αSMA protein
from cell lysates relative to Gapdh protein expression (Figure 3I,J) and reduced col1α1
secretion from HCFs into the cell supernatant (Figure 3K,L). Reduced expression of LTBP2
by siRNA-targeted knockdown demonstrated no functional impact on pro-fibrotic gene
activation in response TGFβ activation (Supplementary Figure S6).

4. Discussion

Transcriptional profiling of the cellular constituents of the heart under pathological
conditions using single-cell genomics offers valuable insights into the molecular changes
that underly complex cardiomyopathies, along with the potential to deliver novel diagnostic
and therapeutic targets to improve the clinical outcome. In this study, we conducted an
integrated analysis of publicly available adult heart scRNA-seq datasets coupled with
whole RNA-seq of cardiac tissue to identify and independently validate disease-associated
transcriptomic changes in cardiac fibroblasts in DCM.

Previous analysis of the single-cell HF dataset conducted using the Wang et al. system
involved high-resolution clustering of cardiac cell populations followed by detection of
changes in sub-cluster proportions [15]. Our methodology followed a more conventional
approach, with unsupervised clustering at a resolution more closely matching the cellular
heterogeneity detected in UMAP, followed by cluster marker gene detection. Clusters
were then manually annotated into distinct cardiac cell types based on their expression of
canonical marker genes. Combined with refined cell-quality filtering and the use of the
intensive batch-correction software SCTransform to more effectively minimize confounding
technical effects, this approach resulted in the demonstrably greater resolution of cardiac
cellular populations.

Furthermore, our analysis employed reference mapping, benefitting from the recent
publication of the human Heart Cell Atlas [6], unavailable at the time of the Wang et al.
publication [13], from which curated cell-type annotations could be projected without bias.
The strong overlap in cardiac cell types between automated and manual annotations indi-
cates that our updated characterization is robust. More effective clustering enhanced the
detection of differential expression and improved cell-type annotation, meaning changes
could be attributed to known cardiac cell types with greater specificity, particularly regard-
ing the clear distinction between smooth muscle and pericytes, and between myeloid and
lymphoid populations, the separation between which was not described in the original
publication. Thus, these analytical changes provided a sounder basis for cell-type-specific
differential expression comparison in DCM.

DCM-relevant effects were detected through differential expression analysis (using
the scRNA-seq optimized DGE package, MAST) to identify transcriptomic changes more
confidently to known cardiac cell types. This contrasts with the approach taken originally
by Wang et al., which focused on the detection of putative subclusters for each cell type,
and their proportional changes during HF [13]. As their subclusters are not related to
known cardiac cell types, the value of changes in cell-type proportion is limited by the
difficulty in relating them to DCM pathophysiology. Our workflow’s cell-type-level focus is
further advantageous as the greater number of cells in each comparison results in increased
power to detect differentially expressed genes in DCM. We, therefore, consider that the



Cells 2024, 13, 752 10 of 14

cell-type-specific differential expression detected with our updated workflow more reliably
reflects disease-relevant changes occurring in DCM.

Fibroblasts are a key cellular contributor to cardiac dysfunction in DCM through
pathological myocardial remodeling. Our cell clustering and integration of transcriptomic
data at the single-cell and the whole-heart level identified 26 genes that were differentially
expressed in fibroblasts in DCM. Of these, 10 genes demonstrated concordant expression
with TGFβ activation in vitro. Four genes, AEBP1, LTBP2, DPT, and SRP4, were signifi-
cantly upregulated along with six genes, TGFBR3, NID1, C7, ADH1B, GPX3, and MGST1,
that significantly reduced in fibroblasts under pathological conditions.

We then aimed to assess the functional role of genes upregulated in DCM fibroblasts.
For two of the four candidates, DPT and SRP4, even in stimulated cells, expression levels
were relatively low. We, therefore, theorized that the knockdown of these genes would
be unlikely to have a functional effect. In contrast, AEBP1 and LTBP2 were the top two
highest expressed genes in both the combined RNA-seq and in the scRNA-seq analysis.
For this reason, only the functionality of AEBP1 and LTBP2 were examined. Transfection of
fibroblasts with siRNA significantly decreased the gene expression of both genes. Reduced
expression of LTBP2 did not have an effective impact on fibroblast stimulation by TGFβ.
However, AEPB1 knockdown significantly diminished the TGFβ activation of fibroblasts,
evident in a substantially dampened induction of the profibrotic genes αSMA and col1α1
in stimulated cells. These data suggest that AEBP1 could be an important key player in
the development of cardiac fibrosis characteristic of DCM, and could pose as a potential
therapeutic target in this condition.

AEBP1 is known to function as a transcriptional repressor and has recently been
identified through scRNA-seq analysis as a crucial fibrosis regulator in αSMA-positive
myofibroblasts [16]. Combined comparative analysis of GEO (transcriptomic) and PRIDE
(proteomic) repository data identified AEBP1 as differentially expressed at both the gene
and protein level as part of a 10-molecule signature of DCM [17]. Data presented in this
study support these findings in that AEBP1 was upregulated at both the gene level and
the protein level in human cardiac tissue. This signature was associated with biological
pathways such as ECM organization, cellular response to stress and response to TGFβ. An
in-depth single-nuclei sequencing analysis evaluating lineage-specific changes in patho-
logical cardiac remodeling of hypertrophic cardiomyopathy (HCM) revealed AEBP1 to
be a key gene involved in cardiac fibroblast activation and HCM-associated cardiac fibro-
sis [18]. Although the results of this study agree with our findings linking AEBP1 to cardiac
fibroblast regulation, their experimental assessment of the functional role of AEBP1 in
cardiac fibroblasts differs from what we observed. They found that AEBP1 knockdown
increased the fibroblast expression of profibrotic factors, and that overexpression of AEBP1
weakened the TGFβ activation of fibroblasts [16]. This conflicts with our data showing
that AEBP1 knockdown attenuated the TGFβ response, both at the gene expression level
and the protein level. This study did not look at the effect of AEBP1 siRNA knockdown
on TGFβ fibroblast activation. Further contradictory evidence on the role of AEBP1 in the
fibrotic response is presented in a study focusing on renal fibrosis. Knockdown of AEBP1
expression again resulted in a diminished fibrotic response both in cultured renal fibrob-
lasts and in an in vivo model of renal fibrosis, which was then linked to the modulation
of the β-catenin signaling pathway [19]. The biological pathways that modulate AEBP1
expression need to be further elucidated to achieve a fuller understanding of its role in the
fibrotic response, specifically in cardiac fibroblast regulation.

LTBP2 is a multifunctional ECM protein with evidence indicating it to have a role
in DCM pathogenesis. Recent efforts utilizing scRNA-seq to profile the DCM heart in
explanted hearts of paediatric DCM patients revealed an increase in the cardiac fibroblast
number and a divergent gene expression profile associated with increasing age [20]. Like
our findings, their work demonstrated that fibroblasts from the myocardium of adolescent
DCM patients expressed higher levels of LTBP2 [20]. Further supporting evidence for the
role of LTBP2 in promoting a dilated phenotype was recently highlighted by Pang et al. in a
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doxorubicin-induced rat model of DCM, wherein myocardial expression was significantly
upregulated. Knockdown of LTBP2 using siRNA resulted in reduced myocardial fibrosis,
inflammation and oxidative stress through a reduction in NF-kB signaling [21]. Evidence
presented in this paper conflicts with these findings in that knockdown of LTBP2 by siRNA
did not impact on the TGFβ induction of cardiac fibroblasts.

Although this study did not examine the functional impact of the remaining candidate
genes in cardiac fibroblasts, interestingly, several of the genes are implicated in disease-
relevant cellular pathways in other fibrotic pathologies, with limited data in the literature
highlighting their direct involvement in DCM pathogenesis. SFRP4 acts as a soluble
modulator of Wnt signaling with elevated expression previously demonstrated in the
hearts of patients with DCM and coronary artery disease [22]. Increased expression of
SFRP4 in cardiac fibroblasts may in fact act as a protective cellular mechanism in the
injured heart as a previous report in the context of ischaemic cardiac injury found that
administration of SFRP4 reduced scar size along with the attenuation of an infarct-related
decline in cardiac function [23].

DPT is an ECM protein with functions in cell-matrix interactions and matrix assembly.
It is thought to play an important role in wound healing through the induction of fibroblast
adhesion and migration through integrin binding [23,24].

TGFBR3 is a transmembrane proteoglycan that is involved in various cellular processes
(e.g., proliferation and apoptosis) mediated through binding to TGF-β [25]. Mounting
evidence suggests that TGFBR3 may in fact mediate anti-fibrotic activity in fibroblasts
through antagonizing the formation of the TGF-β1/TGF-β2 receptor complex along with
inhibition of TGF-β1 signaling [26]. The reduction in TGFBR3 in fibroblasts could be due to
repressive actions of non-coding RNAs such as miR-23b-3p and miR-27b-3p26 to amplify
the pro-fibrotic myocardial environment in DCM [27]. Therapeutic upregulation of TGFBR3
in cardiac fibroblasts by simvastatin has been reported to elicit beneficial anti-fibrotic
action on fibroblasts and improved cardiac function after myocardial infarction [28]. The
application of simvastatin as a potential treatment of DCM is currently being investigated
in a phase II clinical study (NCT03775070).

C7 is a serum glycoprotein that forms a membrane attack complex together with
complement components C5b, C6, C8, and C9 (C5b-9), performing an important role
in innate immunity. Although C7 has not been directly linked to DCM pathology, in-
creased gene expression of the C5b-9 complex has been found in the myocardium of DCM
patients [29] and has been associated with peritubular myofibroblast accumulation in
adriamycin nephropathy [30].

ADH1B is involved in the metabolism of a wide variety of substrates, including
ethanol, retinol, other aliphatic alcohols, hydroxysteroids, and lipid peroxidation products.
A large meta-analysis of 56 epidemiological studies identified the rs1229984 variant of
ADH1B to carry a more favorable cardiovascular profile associated with a reduced risk of
coronary heart disease [31].

NID1 (nidogen) is a basement membrane glycoprotein that interacts with and sup-
ports several other components of basement membrane structure, including collagens
and laminin proteins [32]. Complete nidogen deficiency in mice leads to premature death
associated with cardiac dilation [33]. Furthermore, administration of nidogen and hylau-
ronic acid resulted in improved cardiac function through effects on scar size, scar quality,
and improved angiogenesis after ischaemia reperfusion injury [34], suggesting that NID1
expression in cardiac fibroblasts may facilitate the dilative remodeling of the heart.

Both GPX3 and MGST1 genes are known to play an important role in cellular protec-
tion from oxidative stress mediated by the antioxidative capacity of glutathione. GPX3 is a
selenocysteine-containing enzyme that is primarily expressed in the kidney and functions
to rapidly catalyze the reduction of hydroperoxides (e.g., hydrogen peroxide) and lipid
peroxidases [35]. Reduced circulating levels of GPX3 was significantly associated with an
increased risk of cardiovascular events in patients with atrial fibrillation [36]. Moreover,
knockout of Gpx3 resulted in significant impairment of ventricular function and cardiac
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fibrosis in a murine model of chronic kidney disease [37]. Mechanistically, activation of
cardiac fibroblasts by TGFβ may deregulate the antioxidative capacity in the heart through
GPX3 reduction by its action at the TGFR1 receptor rather than downstream Smad 2/3
signaling [38]. Like GPX3, MGST1 is a membrane-bound enzyme that catalyzes the break-
down of a wide range of endogenous and xenobiotic lipophilic electrophiles and peroxides
to protect cells from oxidative damage [39]. A recent single-cell-analysis study has identi-
fied MGST1 as a common marker for fibroblasts in multiple organs including heart, colon,
bladder, and skeletal muscle [40]. Circulating mRNA expression of expression of MGST1
was significantly increased 7 days after implantation of a left ventricular assisted device in
patients with stage D HF suggesting a potential protective response mechanism to oxidative
stress [41]. Our analysis could suggest that suppression of GPX3 and MGST1 expression
and their antioxidant capacity in cardiac fibroblasts, mediated by TGFβ activation, may
facilitate increased oxidative stress, enhancing detrimental remodeling of the myocardium
in DCM.

5. Conclusions

In conclusion, DCM is a complex pathology involving interactions between multiple
cardiac cell populations. Our analysis workflow improved the resolution of cell types at the
single-cell level, providing more accurate recapitulation of in vivo tissue heterogeneity. This
approach, coupled with transcriptomic data from an independent cohort of DCM cardiac
tissue and an in vitro model enabled the robust detection, identification, and validation of
unique transcriptomic alterations in cardiac fibroblasts in DCM. Furthermore, our study
highlighted AEBP1 as a gene regulating the pro-fibrotic response of cardiac fibroblasts to
TGFβ. Building on other published single-cell studies, identification of these 10 validated
genes, showing dysregulation in cardiac fibroblasts, indicates that they may be relevant to
DCM pathophysiology and highlights their potential value for further investigation. This
may facilitate the development of novel fibroblast-specific targets in advancing therapeutic
treatment of DCM.
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