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Abstract: Glaucoma is a heterogeneous group of optic neuropathies characterized by a progressive
degeneration of the retinal ganglion cells (RGCs), leading to irreversible vision loss. Nowadays, the
traditional therapeutic approach to glaucoma consists of lowering the intraocular pressure (IOP),
which does not address the neurodegenerative features of the disease. Besides animal models of
glaucoma, there is a considerable need for in vitro experimental models to propose new therapeutic
strategies for this ocular disease. In this study, we elucidated the pathological mechanisms leading
to neuroretinal R28 cell death after exposure to glutamate and hydrogen peroxide (H2O2) in order
to develop new therapeutic approaches for oxidative stress-induced retinal diseases, including
glaucoma. We were able to show that glutamate and H2O2 can induce a decrease in R28 cell viability
in a concentration-dependent manner. A cell viability of about 42% was found after exposure to
3 mM of glutamate and about 56% after exposure to 100 µM of H2O2 (n = 4). Label-free quantitative
mass spectrometry analysis revealed differential alterations of 193 and 311 proteins in R28 cells
exposed to 3 mM of glutamate and 100 µM of H2O2, respectively (FDR < 1%; p < 0.05). Bioinformatics
analysis indicated that the protein changes were associated with the dysregulation of signaling
pathways, which was similar to those observed in glaucoma. Thus, the proteomic alteration induced
by glutamate was associated with the inhibition of the PI3K/AKT signaling pathway. On the other
hand, H2O2-induced toxicity in R28 cells was linked to the activation of apoptosis signaling and
the inhibition of the mTOR and ERK/MAPK signaling pathways. Furthermore, the data show a
similarity in the inhibition of the EIF2 and AMPK signaling pathways and the activation of the
sumoylation and WNT/β-catenin signaling pathways in both groups. Our findings suggest that
the exposure of R28 cells to glutamate and H2O2 could induce glaucoma-like neurodegenerative
features and potentially provide a suitable tool for the development of new therapeutic strategies for
retinal diseases.
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1. Introduction

Retinal diseases are a significant health concern as they can cause irreversible blindness
by affecting various parts of the retina [1]. These diseases are commonly caused by inflam-
mation and oxidative stress or other pathological conditions that can lead to metabolic
disorders [2,3], resulting in the death of retinal cells or adjacent supporting tissues. There
are several types of retinal diseases, including age-related macular neurodegeneration
(AMD), diabetic retinopathy (DR) and glaucoma.

Glaucoma is a group of eye diseases characterized by the progressive degeneration
of retinal ganglion cells (RGCs) and an irreversible loss of vision [4]. Glaucoma affects
more than 70 million people worldwide, with approximately 10% suffering from bilateral
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blindness. This makes it the leading cause of irreversible blindness in the world [4]. In
addition, approximately 4% to 7% of individuals over the age of 40 have a prevalence of
ocular hypertension (OHT), but only about 1% of the risk group develops glaucoma per
year [5]. With a prevalence of 3.54% in people aged 40 to 80 years, the number of glaucoma
patients worldwide was estimated to be 64.3 million in 2013, and the projection for 2040
is 111.8 million people [6]. To date, the exact biological mechanism of glaucoma is not
fully understood, but besides increased intraocular pressure (IOP), which is the main risk
factor, other concomitant pathological factors affecting the eye have been proposed, such
as increased glutamate levels [7], alterations in nitric oxide (NO) metabolism [8], vascular
alterations [9], autoimmunity [10] and oxidative damage caused by reactive oxygen species
(ROS) [11,12]. Nowadays, the management of the IOP still represents the main therapy
for glaucoma, but it is not sufficient to fully prevent disease progression. Therefore, the
development of new perspectives for the treatment of glaucoma represents an attractive
field for the future. To this end, the development of models such as the experimental
animal model (EAM) of glaucoma has greatly contributed to the understanding of the
pathological mechanisms of glaucoma [13] and to the development of new therapeutic
approaches [14]. Nevertheless, there is a recognized need for in vitro models of glaucoma
in order to allow broad screening of potential glaucoma drug candidates and to reduce the
quantity of animals used for experimental purposes.

Glutamate is an essential amino acid that acts as a major excitatory neurotransmitter in
the central nervous system and the retina [15]. Therefore, glutaminergic neurons represent
the main excitatory system of the brain, playing an important role in the regulation of
neurological functions in mammals [15]. However, the effects of glutamate in the brain and
retina are exerted through several receptors, namely the metabotropic glutamate receptors
(mGluR) and the ionotropic glutamate receptors (iGluR), which include the N-methyl-D-
aspartic acid (NMDA), α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) and
kainic acid (KA) receptors [16]. In general, the stimulation of ionotropic receptors by gluta-
mate leads to Ca2+ influx and the depolarization of the postsynaptic membrane, thereby
promoting excitatory neurotransmission [17]. On the contrary, excessive stimulation of
ionotropic receptors by glutamate might trigger an ionic imbalance, leading to cell death
through a process called excitotoxicity [18,19]. Moreover, glutamate toxicity may also result
in an imbalance of the redox system due to a blockage of the cystine/glutamate antiporter,
which inhibits the cystine uptake necessary for the production of the intracellular reducing
agent glutathione. This in turn leads to an increase in ROS production, resulting in cell
dysfunction and apoptosis [20].

The R28 cell line is a retinal precursor cell line that was established from a postnatal
day 6 rat retina culture immortalized with the adenovirus 12S E1A gene (NP-040507) in a
replication incompetent viral vector [21]. The particularity of the 12S E1A gene is its ability
to stimulate rodent cell growth without tumorigenesis [22]. However, the R28 progenitor
cell line was found to predominantly express retinal ganglion cell and glial cell markers [23].
In recent years, R28 retinal precursor cells have been used for numerous studies, including
in vitro toxicity [24,25], neuroprotection [26,27] and retinal transplantation [28].

The aim of this study was to elucidate the pathological mechanisms underlying
neuroretinal R28 cell death after exposure to glutamate and hydrogen peroxide (H2O2) in
order to develop new therapeutic approaches for oxidative stress-induced retinal diseases,
including glaucoma.

2. Materials and Methods
2.1. R28 Cell Culture

R28 cells were cultured in T75 flasks (Thermo Scientific, Roskilde, Denmark) containing
DMEM/Ham’s F-12 liquid medium with stable glutamine (Bio&SELL GmbH, Nuremberg,
Germany) supplemented with 10% fetal bovine serum (FBS) (Gibco, Paisley, UK) and 1%
penicillin–streptomycin (Gibco, Schwerte, Germany). Cells were passaged every 2 days
and incubated at 37 ◦C in 5% CO2 to reach confluence.
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2.2. Glutamate- and Hydrogen Peroxyde (H2O2)-Induced Toxicity in R28 Cells

The R28 cells (4 × 104 cells) were placed in 96-well plates and incubated with the
DMEM/Ham’s F-12 liquid medium supplemented with 10% FBS and 1% penicillin–
streptomycin for 24 h at 37 ◦C. Subsequently, the culture medium was replaced with
a red phenol-free DMEM/F-12 medium (Gibco, Paisley, UK) supplemented with 10% FBS
with different concentrations of glutamate (0, 2, 3, 4, 5, 7, 9, 10 and 20 mM) and H2O2 (0, 10,
30, 50, 80, 100, 150, 200, 350, 500, 800 and 1000 µM) and without any additive as a control.
Thereafter, the R28 cells were incubated for 24 h at 37 ◦C (n = 4). The R28 cells’ viability was
determined using the MTS assay. The MTS reagent (CellTiter 96® AQueous One Solution
Cell Proliferation Assay; Promega Corporation, Madison, WI, USA) consists of tetrazolium
compounds and an electron coupling reagent (phenazine ethosulfate). The experiment
is based on the ability of viable cells to reduce the reagent to a soluble compound called
formazan. The amount of produced formazan is therefore measured by absorbance at
490 nm and is directly proportional to the number of living cells in the culture. Following
treatment with glutamate and H2O2, 20 µL of MTS reagent was added to each well and
incubated for 2 h at 37 ◦C in 5% CO2. Afterwards, the absorbance was measured on a
Multiscan Ascent photometer (Thermo Fisher Scientific, Rockford, IL, USA). A cell viability
of about 42% (p = 2.1 × 10−4) was observed after exposure to 3 mM of glutamate and about
56% (p = 1.8 × 10−3) after exposure to 100 µM of H2O2, and this was considered a stress
parameter for further analysis (see Figure 1).
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Figure 1. Evaluation of the glutamate- and H2O2-induced toxicity in R28 cells in vitro. R28 cells were 
cultured in medium and exposed to concentrations of glutamate ranging from 0 to 20 mM (A) and 
H2O2 ranging from 0 to 1 mM (B) for 24 h at 37 °C. The cell viability was determined by the MTS 
assay. The data showed that glutamate and H2O2 could induce a dose-dependent decrease in R28 
cell viability in vitro. A cell viability of 42% and 56% was observed after exposure to 3 mM of glu-
tamate and 100 µM of H2O2, respectively. 
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(Leica Microsystems GmbH, Wetzlar, Germany), harvested by scraping and stored at −20 
°C in 1.5 mL tubes. Prior to homogenization, the tubes were filled with 300 µL of Tissue 
Protein Extraction Reagent, T-PER (Thermo Fisher Scientific, Rockford, IL, USA), as well 
as a 1% protease and phosphatase inhibitor cocktail (Thermo Fisher Scientific, Rockford, 
IL, USA), and subsequently subjected to homogenization with a Bullet Blender® Storm 24 
homogenizer (Next Advance, Inc., New York, NY, USA) as described in our previous 
studies [29,30]. The samples were then centrifuged, and the supernatant containing the 
proteins was collected in new 1.5 mL tubes. Proteins were extracted from supernatants 
containing T-PER buffer and introduced into 200 µL of phosphate-buffered saline (PBS) 

Figure 1. Evaluation of the glutamate- and H2O2-induced toxicity in R28 cells in vitro. R28 cells were
cultured in medium and exposed to concentrations of glutamate ranging from 0 to 20 mM (A) and
H2O2 ranging from 0 to 1 mM (B) for 24 h at 37 ◦C. The cell viability was determined by the MTS
assay. The data showed that glutamate and H2O2 could induce a dose-dependent decrease in R28 cell
viability in vitro. A cell viability of 42% and 56% was observed after exposure to 3 mM of glutamate
and 100 µM of H2O2, respectively.
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2.3. Mass Spectrometry Analysis
2.3.1. Sample Preparation and In-Solution Digestion

For the mass spectrometry (MS) analysis, 5 × 106 cells were placed in 6-well plates and
exposed to either 3 mM of glutamate or 100 µM of H2O2 or left untreated as a control (n = 3
per group). After 24 h, the cells were morphologically examined by light microscopy (Leica
Microsystems GmbH, Wetzlar, Germany), harvested by scraping and stored at −20 ◦C
in 1.5 mL tubes. Prior to homogenization, the tubes were filled with 300 µL of Tissue
Protein Extraction Reagent, T-PER (Thermo Fisher Scientific, Rockford, IL, USA), as well
as a 1% protease and phosphatase inhibitor cocktail (Thermo Fisher Scientific, Rockford,
IL, USA), and subsequently subjected to homogenization with a Bullet Blender® Storm
24 homogenizer (Next Advance, Inc., New York, NY, USA) as described in our previous
studies [29,30]. The samples were then centrifuged, and the supernatant containing the
proteins was collected in new 1.5 mL tubes. Proteins were extracted from supernatants
containing T-PER buffer and introduced into 200 µL of phosphate-buffered saline (PBS)
using an Amicon 3 kDa centrifugal filter device (Millipore, Billerica, MA, USA), and
protein measurement was performed using the Pierce BCA protein assay kit (Thermo
Fisher Scientific, Rockford, IL, USA) according to the manufacturer’s protocol. After that,
10 µg of protein from each sample was collected and dried using a vacuum concentrator
(Eppendorf AG, Hamburg, Germany) and then stored at −20 ◦C for further analysis.

The tryptic digestion of proteins was performed as described in our previous stud-
ies [31,32]. In brief, protein fractions were dissolved in 20 µL of 10 mM ammonium bicar-
bonate (ABC) and sonicated for 10 min on ice. Subsequently, 6 µL of 100 mM dithiothreitol
(DTT) in 10 mM ABC was added and incubated for 30 min at 56 ◦C. After that, 6 µL of
200 mM iodoacetamide (IAA) in 10 mM ABC was added and incubated for 30 min at RT in
the dark. The reduced and alkylated proteins were digested overnight with trypsin solution
(Promega, Madison, WI, USA) at a sample ratio of 1:20 at 37 ◦C. The next day, the digestion
was quenched with 10 µL of 0.1% formic acid (FA), evaporated in a vacuum concentrator
at 30 ◦C to dryness and stored at −20 ◦C. Prior to the LC-MS/MS analysis, tryptic peptides
were purified with SOLAµ™ HRP SPE spin plates (Thermo Fisher Scientific, Rockford, IL,
USA) following the manufacturer’s protocol.

2.3.2. LC-MS Analysis

The liquid chromatography mass spectrometry (LC-MS) analysis was performed using
a Hybrid Linear Ion Trap–Orbitrap MS system (LTQ–Orbitrap XL; Thermo Fisher Scientific,
Rockford, IL, USA) coupled to an EASY-nLC 1200 system (Thermo Fisher Scientific, Rock-
ford, IL, USA) [29,30,33]. The peptide separation was performed using an analytical column
(75 µm × 50 cm, nanoViper, C18, 2 µm, 100 Å) (Thermo Fisher Scientific, Rockford, IL, USA)
using a 60 min gradient for the elution of peptides as follows: 15–40% B (0–30 min), 40–60%
B (30–35 min), 60–90% B (35–45 min) and 90–10% B (45–60 min). Solvent A was 0.1% formic
acid (FA) in water and solvent B was 0.1% FA in 80% acetonitrile (ACN). The LTQ–Orbitrap
was operated in positive ionization and in the data-dependent acquisition mode to auto-
matically switch from Orbitrap-MS to LTQ-MS/MS acquisition. The recording of full-scan
MS spectra (from m/z 300 to 2000) was completed in the orbitrap with a resolution of 30,000
at 400 m/z and a target gain control setting of 1 × 106 ions. The polydimethylcyclosiloxane
ions m/z 445.120025 were used as the lock mass for the internal calibration. The dynamic
exclusion mode was adjusted as follows: number of repetitions = 2; repetition time = 30 s;
exclusion list size = 100; exclusion time = 90 s; and exclusion mass width = ±20 ppm. The
five most intense precursor ions were selected for additional fragmentation in the ion trap
with collision-induced decay (CID) fragmentation using the normalized collision energy
set at 35%.

2.3.3. Protein Identification and Quantification

The acquired LC-MS dataset was analyzed with MaxQuant v. 2.1.3.0 (Max Planck
Institute for Biochemistry, Martinsried, Germany). The tandem MS spectra were searched
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against Uniprot databases for Homo sapiens, Rattus norvegicus and Mus musculus using stan-
dard parameters: a peptide mass tolerance of ±30 ppm, a fragment ion tolerance of 0.5 Da,
tryptic cleavage, maximum 2 missing cleavage motifs, carbamidomethylation as a fixed
modification, and acetylation (N-terminal protein) and oxidation as variable modifications.
The protein annotation research was conducted with three different databases to allow max-
imal identification of the peptides because of the limited annotation of the Rattus norvegicus
database (8172 proteins) compared to the Mus musculus (17,137 proteins) and Homo sapiens
(207,304 proteins) databases. In addition, the use of several databases was reported to allow
higher and more complete peptide identification [29,34,35]. Moreover, it has been shown
that rat and mouse organisms share a gene homology estimated at 83–100%, and this is
approximately 66–82% between rat and human organisms [36]. The peptide and protein
identification was performed using a target-decoy-based false discovery rate (FDR) < 1%.

2.3.4. Statistical Analysis and Bioinformatics

The data generated by MaxQuant (“proteinGroups.txt”) were used for statistical
analysis with Perseus software version 1.6.13.0 (Max Planck Institute of Biochemistry, Mar-
tinsried, Germany). The LFQ intensities of the identified proteins were log2-transformed
and filtered for possible contaminants and misassigned protein identifications. The identi-
fied proteins needed to be recovered in the three biological replicates in at least one study
group to be considered for further analysis. Missing protein intensity values were imputed
based on the normal distribution of the data (width: 0.3, downshift: 1.8). The significantly
changed protein expressions between the control and treated groups (with glutamate and
H2O2) were identified by a Student’s two-sided t-test with p values < 0.05. To illustrate the
heat map of differentially expressed proteins between the different groups, a hierarchical
clustering based on the Euclidean distance was performed. In addition, the functional
annotation and the signalling pathway analyses were carried out using Ingenuity Pathway
Analysis software v. 1-04 (IPA, Ingenuity QIAGEN; Redwood City, CA, USA) [29,34].

2.4. Microarray Analysis
2.4.1. Slide and Sample Preparation

Microarray manufacturing was performed in our lab using a noncontact microar-
ray printer (SciFLEXARRAYER S3; Scienion, Berlin, Germany). The HTRA2 antibodies
(Proteintech GmbH; Manchester, UK) were spotted onto nitrocellulose-coated microarray
slides (AVID Oncyte, NC 16 Pad slides; Grace Bio-Labs, Bend, OR, USA) in triplicate. An
amount of 40 µg of cell lysates from R28 cells exposed to glutamate and H2O2 as well as
untreated controls were prepared in labeling buffer (0.05 M sodium borate buffer, pH 8.5)
and subsequently labeled with a fluorescent dye (DyLight 650 NHS Ester; Thermo Fisher
Scientific, Rockford, IL, USA). Samples were incubated with 1 µL of dye overnight at 4 ◦C
in the dark. In addition, a negative control containing only the labeled buffer as well as
a positive control comprising a pooled sample were also included in this experiment. To
stop the labeling reaction, 10 µL of quenching solution (Tris-HCl, pH 8.8) was added to
the samples and incubated for 30 min at room temperature in the dark. Unbound dye
was removed using Zeba desalting plates (Zeba Spin Desalting Plates, 7k MWCO; Thermo
Fisher Scientific, Rockford, IL, USA) according to the manufacturer’s protocol.

2.4.2. Microarray Incubation and Image Acquisition

The prepared slide was mounted in a 16-well incubation chamber (ProPlate Multiwell
Chambers; Grace Bio-Labs, Bend, OR, USA) and subsequently incubated with blocking
buffer (Super G; Grace Bio-Labs, Bend, OR, USA) for 1 h at 4 ◦C to improve the signal-to-
noise ratio. Then, the blocking buffer was discarded, and the slide was washed three times
with PBST (phosphate-buffered saline; PBS with 0.5% Tween-20). Afterwards, the slide was
incubated with 40 µg of subgroup-labeled sample proteins (n = 3 per subgroup) overnight
at 4 ◦C in a cooling shaker. In addition to the labeled buffer, another group was incubated
with only PBS as an additional negative control. After incubation, the residual sample
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was removed, and the slide was washed twice with PBST and twice with ultrapure water.
Finally, the slide was dried for 2 min in a SpeedVac at 30 ◦C. Immediately after drying,
the slide was imaged using a CCD camera-based array reader (SensoSpot; Sensovation,
Radolfzell, Germany). Then, the slide was scanned at 25 ms and 100 ms exposure times in
the red channel. The images were saved as 16-bit TIF files.

2.4.3. Data Processing and Statistical Analysis

The quantification of spot intensity was performed using Imagene software (Imagene
5.5; BioDiscovery Inc., Los Angeles, CA, USA). Spots that did not meet quality control
criteria were flagged and removed from further analysis. Prior to statistical evaluation, the
microarray data were preprocessed. Thus, the local background intensity was removed
from the spot intensity to calculate the net signal intensities, and the triple-spot signals
were averaged. Afterwards, a graphical presentation was produced and a two-sided t-test
with a p value < 0.05 was performed using statistica version 13 (Statsoft; Tulsa, OK, USA) to
identify significant changes in protein expression between the control and stressed groups
(glutamate and H2O2).

3. Results
3.1. Glutamate- and H2O2-Induced Toxicity in R28 Cells

To assess glutamate- and H2O2-induced toxicity, R28 cells were exposed to different
concentrations of glutamate and H2O2 for 24 h at 37 ◦C. The viability of the R28 cells was
determined using the MTS assay according to the manufacturer’s protocol. A decrease
in cell viability in a concentration-dependent manner of the stress factors (glutamate and
H2O2) was observed (see Figure 1). After 24 h, a cell viability of 42% was observed after
exposure to 3 mM of glutamate, and 56% was observed after exposure to 100 µM of
H2O2. These parameters were considered stress conditions for further experiments. Prior
to cell homogenization and MS analysis, a microscopic analysis was performed under
a light microscope (Leica Microsystems GmbH, Wetzlar, Germany). This showed the
morphological alteration and degeneration of the R28 cells after 24 h of exposure to 3 mM
of glutamate and 100 µM of H2O2 (see Figure 2).
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Figure 2. Morphological changes in R28 cells due to glutamate- and H2O2-induced toxicity. The
R28 cells were cultured in a medium without stressor (control) (A) or exposed to 3 mM of glutamate
(B) and 100 µM of H2O2 (C) for 24 h at 37 ◦C. After exposure to 3 mM of glutamate and 100 µM of
H2O2, marked morphological alterations and the degeneration of R28 cells were observed.
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3.2. LC-MS Analysis

To explore the molecular mechanisms induced by glutamate and H2O2 on the R28
cells, we performed a quantitative LC-ESI-MS analysis of the cells after exposure to 3 mM
of glutamate and 100 µM of H2O2, as well as without any treatment, considered the control,
for 24 h at 37 ◦C (complete data in Supplementary File S1). A total of 2249 and 2252 proteins
were identified in the R28 cells after exposure to glutamate and H2O2, respectively, com-
pared to the control (FDR < 1%). The majority of the proteins in both groups (glutamate
and H2O2) were identified in the Rattus norvegicus database (1002 proteins), followed by
the Mus musculus (707 and 706 proteins) and Homo sapiens (538 and 542 proteins) databases
(see Supplementary Files S2 and S3). The statistical analysis of proteomic data revealed
that 193 and 311 proteins were significantly altered in the cells exposed to glutamate and
H2O2, respectively, compared to the control cells (FDR < 1%; p < 0.05).

3.2.1. Proteomic Alterations in R28 Cells Exposed to Glutamate

Glutamate-induced toxicity on R28 cells led to the differential expression of 193 pro-
teins. Thus, 80 proteins were highly expressed, while 113 proteins were found in low
abundance in the cells exposed to glutamate compared to the untreated cells (p < 0.05;
see Supplementary File S2). In particular, proteins like peptidyl-prolyl cis–trans iso-
merase NIMA-interacting 1 (PIN1), annexin A3 (ANXA3), alpha-crystallin B chain (CRYAB),
thioredoxin-like protein 1 (TXNL1) and heat shock protein 70 (Hspa9/Hsp70) were upregu-
lated, while catenin beta-1 (CTNNB1), integrin alpha-V (ITGAV), serine/threonine-protein
kinase mTOR (MTOR), serine/threonine-protein phosphatase 2A 65 kDa regulatory sub-
unit A beta isoform (PPP2R1B) and histone deacetylase 1 (HDAC1) were hardly expressed
in the cells exposed to glutamate (p < 0.05; see Figure 3 and Supplementary File S2).

3.2.2. Proteomic Alterations in R28 Cells Exposed to H2O2

A total of 311 proteins were significantly altered in the cells exposed to H2O2 (p < 0.05;
see Supplementary Files S3). In particular, 176 proteins, including isocitrate dehydroge-
nase (IDH2), 60S ribosomal proteins (RPLs), 40S ribosomal proteins (RPSs), BAG family
molecular chaperone regulator 2 (BAG2), Ras-related protein Rap-1A (RAP1A), the signal
transducer and activator of transcription 1 and 3 (STAT1 and STAT3), and eukaryotic
translation initiation factor 3 subunit D (EIF3D), were downregulated, whereas 135 pro-
teins, including high-temperature-requirement protein A2 (HTRA2), 14-3-3 protein gamma
(YWHAG), thioredoxin-like protein 1 (TXNL1), cystatin-B (CSTB), heat shock protein
70 (Hspa9/Hsp70), annexin A1 (ANXA1) and small ubiquitin-related modifiers 2 and 4
(SUMO2 and SUMO4), were upregulated in the cells treated with H2O2 compared to the
control (p < 0.05; see Figures 4 and 5 and Supplementary File S3).

3.2.3. Top Canonical Pathways as Well as Diseases and Biological Functions Associated
with the Significantly Differentially Expressed Proteins in R28 Cells after Exposure to
Glutamate and H2O2

To investigate the biological processes involved in the decrease in R28 cell viability af-
ter exposure to glutamate and H2O2, we performed an ingenuity pathway analysis (IPA) to
identify the most affected canonical pathways (see Figure 6) as well as diseases and biologi-
cal functions (see Figure 7) related to differentially expressed proteins in both study groups.
Interestingly, glutamate treatment inhibited phosphatidylinositol 3-kinases/protein ki-
nase B (PI3K/AKT) signaling (z-score = −1). In contrast, beside apoptosis signaling
(z-score = 0.447), which was activated, the mammalian target of rapamycin (mTOR) sig-
naling (z-score = −0.447) and extracellular signal-regulated kinases/mitogen-activated
protein kinase (ERK/MAPK) signaling (z-score = −1) pathways were inhibited by H2O2-
induced oxidative stress in the R28 cells. However, exposure to glutamate and H2O2
showed similarities in the inhibition of the expression of eukaryotic initiation factor 2 (EIF2)
signaling (z-score = −2.236 and −2.713) and AMP-activated protein kinase (AMPK) signal-
ing (z-score = −1.341 and −1.414), as well as the activation of the sumoylation signaling
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pathway (z-score = 1.633 and 2.236) and WNT/β-catenin signaling (z-score = 0.447 and 1
for glutamate and H2O2, respectively).
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similar expression levels of altered proteins in R28 cells exposed to glutamate and H2O2 compared
to CTRL (p < 0.05). Similar to the H2O2 group, HTRA2 was found to be highly expressed in the
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Strikingly, the biological functions associated with differentially expressed proteins in
the cells exposed to H2O2 included the activation of networks involved in apoptosis (z-score
= 2.14) and the inhibition of clusters involved in the folding of proteins (z-score = −1.09)
and transport of proteins (z-score = −1.54). However, an increase in organismal death
(z-score = 2.41 and 3.21 for glutamate and H2O2, respectively) and the catabolism of pro-
teins (z-score = 0.92 and 1.51) as well as a decrease in cell survival (z-score = −2.93 and
−1.79) and cell viability (z-score = −3.06 and −1.78) were observed in the R28 cells exposed
to both stressors (see Figure 7A).

3.3. Microarray Analysis

For the validation of the significantly altered proteins identified by mass spectrometry,
we performed a quantitative analysis of the marker protein HTRA2 using microarrays in
the different study groups (CTRL, glutamate and H2O2). The statistical analysis of the
data revealed that HTRA2 was found in significantly high abundance in the H2O2-exposed
cells compared to the control (p = 0.04; see Figure 8), and this was in agreement with
the results obtained by mass spectrometry (see Supplementary File S3). Similar to the
MS results, the data analysis also showed an increase in HTRA2 expression in the cells
exposed to glutamate (see Figure 8), but this was not significant (p = 0.33; see Figure 5 and
Supplementary File S2).
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Figure 6. Top enriched canonical pathways. The hierarchical clustering shows the most affected
canonical pathways related to significantly altered proteins in the R28 cells exposed to glutamate
and H2O2 compared to the control. (A) exhibits the regulation of canonical pathways and biological
functions. The negative regulation is depicted by the blue color and the positive regulation by the
orange color based on activation z-scores of <−2 and >4. (B) was determined by the default IPA
threshold [−log (p-value) > 0] between significantly changed proteins identified in our datasets and
molecules in the respective pathways.
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Figure 7. Top significantly affected biological functions in R28 cells after exposure to glutamate
and H2O2 compared to untreated cells. (A) shows the regulation of biological functions. The
downregulation is highlighted in blue and the upregulation in orange based on activation z-scores of
<−4 and >3. (B) represents the hierarchical clustering of biological functions according to the −log10
(p-value) difference between significantly altered proteins identified in our datasets and molecules in
the respective pathways.
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Figure 8. Validation of the marker protein HTRA2 using microarrays. The box plot depicts the
expression level of the HTRA2 protein, validated with microarrays. Showing similar trends to the
results obtained by MS analysis, HTRA2 was identified with significantly higher expression in the
cells exposed to H2O2 compared to the untreated CTRL (p < 0.05). The HTRA2 protein was also
identified in high abundance in the glutamate-exposed group compared to the control, but this was
not statistically significant (p > 0.05).

4. Discussion

In recent years, the establishment of disease models such as glaucoma models has
emerged as an effective tool for the understanding of pathological mechanisms and for
the investigation of innovative therapeutic approaches to prevent RGC loss. Thus, the aim
of this study was to propose a cell culture model based on neuroretinal R28 cells for the
development of new therapeutic approaches for retinal diseases, such as glaucoma. To
this end, we investigated the ability of glutamate and hydrogen peroxide (H2O2) to induce
neuroretinal cell death in vitro. However, we were able to show a decrease in R28 cell
viability in a concentration-dependent manner for both stressors (see Figure 1).

Glutamate-induced toxicity in R28 cells was characterized by the differential ex-
pression of 193 proteins, of which 80 were highly abundant and 113 were downregu-
lated (see Supplementary File S2). These modifications were also accompanied by pro-
found perturbations in signaling pathways (see Figure 6A) and biological functions (see
Figure 7A) crucial for cellular homeostasis. Accordingly, our data revealed an inhibition
of PI3K/AKT signaling (z-score = −1), which was coupled with a decrease in proteins
like catenin beta-1 (CTNNB1), integrin alpha-V (ITGAV), serine/threonine-protein kinase
mTOR (MTOR), serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A beta
isoform (PPP2R1B) and Ras-related protein Rap-1A (RAP1A) in the R28 cells exposed to
glutamate compared to the control cells (see Supplementary Figure S1A). This finding was
in agreement with previous studies from other groups in which the inhibition of PI3K/AKT
signaling was observed in retinal tissues in animal models of glaucoma [37,38]. However,
phosphatidylinositol 3-kinase (PI3K) is an enzyme that catalyzes the phosphorylation of the
inositol ring of membrane-localized phosphoinositides, thus generating phosphorylated
phosphoinositides like phosphatidylinositol-3,4,5-triphosphate (PI(3,4,5)P3) [39]. These
phosphorylated phosphoinositides can induce the phosphorylation of the AKT protein
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at the activation loop (Thr308) [40]. However, the complete activation of the AKT pro-
tein requires phosphorylation at two sites, namely the activation loop (Thr 308) and the
hydrophobic motif (Ser 473), which is phosphorylated by the rictor–mTOR complex [41].
Then, fully activated AKT can phosphorylate many substrates in the cytoplasm and nucleus,
which plays an important role in cellular processes such as apoptosis [42], the cell cycle [43],
cell proliferation [44], cell energy metabolism [45] and gene regulation [46]. Interestingly,
RAP1A, which is a member of the RAS protein family, and ITGAV were also reported to be
involved in the regulation of PI3K/AKT signaling [47–50]. However, it has been shown that
inhibition of PI3K/AKT signaling can lead to cell death by apoptosis [51]. In contrast, the
activation of PI3K/AKT signaling is able to suppress apoptosis and promote the increased
viability of RGCs in glaucoma [37,38,52].

The proteomic data obtained from the H2O2-exposed R28 cells revealed an activation
of apoptosis signaling (see Figure 6A), which is a well-described pathological event in glau-
coma [53,54]. However, the activation of apoptosis signaling was particularly characterized
by an increase in HTRA2 protein expression (see Supplementary Figure S1C). Thus, the
significant increase in HTRA2 expression was validated by microarray technology in the
cells exposed to H2O2 (see Figure 8). In particular, HTRA2 is a multifunctional protein
that plays an important role in the induction of apoptosis in cells under stress [55,56].
Moreover, it has been shown that the overexpression of HTRA2 induces cell death in the
injured retina [57,58]. In addition, we were able to show in our previous studies that the
inhibition of HTRA2 protease activity by small synthetic CDR1 peptides can increase RGCs’
viability in vitro [31,59]. Based on these results, we could suggest a possible involvement of
HTRA2 in the apoptotic process related to glaucoma. Another protein related to apoptosis
signaling was CDK1, which was found to be downregulated in the R28 cells exposed to
H2O2. CDK1 is a protein involved in the regulation of cellular processes such as the cell
cycle and transcription [60,61]. However, some studies have shown that CDK1 inhibition
in cells under stress might lead to cell cycle dysfunction and apoptosis [62,63].

The H2O2-induced oxidative stress in the R28 cells was further demonstrated by the
inhibition of mTOR signaling (see Figure 6A), associated with decreased expression of
ribosomal proteins such as 40S ribosomal proteins S (RPS13, RPS14, RPS27L, etc.) and
proteins responsible for translation initiation like EIF3A and EIF3D (see Supplementary
Figure S1D). Interestingly, mTOR is a serine/threonine kinase that plays a crucial role in
several cellular processes, including cell growth and proliferation, cytoskeleton organiza-
tion, transcription, protein synthesis and ribosomal biogenesis [64]. In addition, various
reports have suggested that mTOR can positively regulate different steps of ribosome
biogenesis, such as ribosomal RNA transcription and processing, as well as ribosomal
protein synthesis [65,66]. Nevertheless, it has been shown that increased oxidative stress is
able to suppress the mTOR signaling pathway, resulting in impaired ribosomal functions,
which could lead to apoptosis [67,68]. In addition, the impairment of ribosomal biogenesis
could lead to endoplasmic reticulum (ER) stress [69], which is one of the pathological
events resulting in cell death in glaucoma [70] as well as in diabetic retinopathy (DR) and
age-related macular degeneration (AMD) [71]. These arguments could be supported by the
fact that an inhibition of biological functions involved in the folding of proteins and the
transport of proteins, as well as an activation of the catabolism of proteins, was shown in
the IPA analysis (see Figure 7A).

In addition to mTOR, the proteomic data also showed an inhibition of extracellular
regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) signaling (see Figure 6A)
in the cells exposed to H2O2. Our data revealed that, except for the YWHAG and CRK pro-
teins, which were upregulated, the majority of the proteins clustered in this pathway were
downregulated (see Supplementary Figure S1E). These included serine/threonine-protein
phosphatase 2A proteins (PPP2R1B and PPP2R2A), Ras-related protein Rap-1A (RAP1A)
and Ras-related C3 botulinum toxin substrate 1 (RAC1), as well as signal transducer and
activator of transcription 1 and 3 (STAT1 and STAT3). However, the ERK/MAPK signaling
pathway is a pathway consisting of signaling cascades that play an important role in the
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control of cellular processes such as cell proliferation, cell survival and apoptosis [72]. In ad-
dition, H2O2-induced oxidative stress has been reported to inhibit serine/threonine-protein
phosphatase 2A protein activity, which modulates the Raf-1 kinase-induced activation of
ERK/MAPK signaling [73–75]. Moreover, the role of ERK/MAPK is still controversial, as its
activation can exert either pro-apoptotic or anti-apoptotic functions in mammalian cells [76].
Nevertheless, many studies have shown the involvement of ERK/MAPK signaling in the
pathological process of glaucoma [77,78], but its exact role remains to be elucidated.

Besides the differentially expressed signaling pathways in the cells exposed to either
glutamate or H2O2, the data analysis showed some similarities in the expressions of certain
metabolic pathways in the cells exposed to both stressors. Thus, exposure to glutamate and
H2O2 showed similarities in the inhibition of the EIF2 signaling pathway (see Figure 6A).
EIF2 is a translational factor that induces and regulates the translation of mRNA into
proteins [79]. However, the phosphorylation of EIF2 in response to oxidative stress has
been reported to reduce its ability to induce translation, resulting in a decrease in protein
synthesis [80], which could lead to apoptosis [81,82]. Accordingly, our data showed a
decrease in the expression of proteins associated with this signaling pathway, like 60S
ribosomal proteins L (RPL14, RPL21, etc.) and 40S ribosomal proteins S (RPS5, RPS24, etc.)
(see Supplementary Figure S1F), which are found to be key players in protein synthesis. In
addition, an increased level of phosphorylated EIF2 is associated with ER stress-induced
RGC death in glaucoma [83]. Moreover, Liu Yang et al. (2016) showed that blocking EIF2
phosphorylation might promote the neuroprotection of RGCs and preserve visual function
in glaucoma [84].

Another similarity in both groups was shown by the inhibition of AMPK signaling (see
Figure 6A) and the decrease in its associated proteins, including PFKM, PFKP, PPP2R1B,
PPP2R2A, RAB6A, RAB8A and PRKAR2A (see Supplementary Figure S1G). However,
AMPK is an enzyme that plays an essential role in biological processes such as glucose and
lipid metabolism, transcription, cell growth and cell polarity [85]. In line with our results,
Duygu Sag et al. (2008) showed that pro-inflammatory stimuli are able to inhibit AMPK
activity in macrophages [86]. In addition, the inhibition of AMPK signaling could promote
mitochondrial metabolism dysfunction, resulting in decreased ATP production [87]. In-
terestingly, the majority of proteins (PFKM, PFKP, PPP2R1B, PPP2R2A and PRKAR2A)
connected to AMPK signaling were found to be key players in glycolysis, which represents
the first step in ATP biosynthesis [88]. Thus, the downregulation of these proteins may
suggest a decrease in energy metabolism in the R28 cells exposed to glutamate and H2O2.
Furthermore, a decline in energy metabolism has been shown to be involved in neurode-
generative diseases such as Alzheimer’s and Parkinson’s diseases [89], as well as retinal
diseases, such as DR [90], AMD [91] and glaucoma [92].

In the same way, the data also showed an activation of the sumoylation pathway in
the R28 cells exposed to both stressors (see Figure 6A). Sumoylation is a post-translational
modification characterized by the conjugation of small ubiquitin-like modifier (SUMO) pro-
teins to the lysine residues of target proteins, thereby regulating several biological functions
such as the cell cycle, transcription, subcellular transport and DNA repair [93]. Similar to
ubiquitination, sumoylation is involved in the targeting and degradation of proteins by
the ubiquitin–proteasome system (UPS) [94]. Moreover, it might act as a sensor regulating
homeostasis in the ER and mitochondria in cells under stress [95,96]. Nevertheless, Felio-
gioni et al. (2011) showed that the over-activation of the sumoylation pathway can induce
cell death by apoptosis [97]. In addition, the sumoylation pathway has been associated
with the pathological mechanisms of neurodegenerative diseases like Alzheimer’s, Parkin-
son’s and Huntington’s diseases [98–100]. Furthermore, an increased level of sumoylated
proteins was shown in an ex vivo model of retinal degeneration [101], which could sug-
gest a possible involvement of the sumoylation pathway in the neurodegenerative events
observed in glaucoma.

Another striking feature in the R28 cells stressed by glutamate and H2O2 was the acti-
vation of WNT/β-catenin signaling (see Figure 6A), which was mediated by the downreg-
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ulation of its related proteins, namely casein kinase 2 subunit alpha (CSNK2A2), CTNNB1,
HDAC1 and PPP2R1B, as well as an increase in peptidyl-prolyl cis–trans isomerase NIMA-
interacting 1 (PIN1) (see Supplementary Figure S1B). WNT/β-catenin signaling is a key reg-
ulator of cellular metabolism, including cell proliferation, tissue maintenance and remodel-
ing [102]. However, it has been shown that oxidative stress is able to inhibit histone deacety-
lases (HDAC) [103,104] and serine/threonine phosphatase 2A proteins like PPP2R1B [73],
which could stimulate the activation of WNT/β-catenin signaling [105,106]. Moreover,
PIN1 has been shown to be a positive regulator of WNT/β-catenin signaling [107]. Inter-
estingly, Martowicz et al. (2019) reported that the activation of WNT/β-catenin signaling
is involved in retinal angiogenesis [108], which could lead to glaucoma [109]. In addition,
some studies have shown that the overexpression of WNT/β-catenin signaling could ex-
acerbate the pathological features of retinal diseases such as AMD and DR through the
induction of retinal inflammation and oxidative stress [110,111].

5. Conclusions

In conclusion, the findings of this study showed that glutamate- and hydrogen perox-
ide (H2O2)-induced toxicity in R28 cells could exhibit similar pathological events to those
observed in glaucoma. This may provide a solid basis for using the neuroretinal R28 cells as
a tool to develop new therapeutic approaches for oxidative stress-induced retinal diseases.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/cells13090775/s1: Supplementary File S1: Output data resulting
from the MaxQuant analysis of the MS raw data; Supplementary File S2: MS identification of proteins
in the glutamate-exposed cells compared to the control and the statistical analysis of significantly
altered proteins in both groups; Supplementary File S3: MS identification of proteins in the cells
exposed to H2O2 compared to the control and the statistical analysis of significantly differentially ex-
pressed proteins in the two groups; Supplementary Figure S1: Differential expression of significantly
changed proteins involved in the most affected canonical signaling pathways after the exposure of
R28 cells to glutamate and H2O2 (FDR < 1%; p < 0.05).
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