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Abstract: We used mitochondrial sequences and nuclear microsatellites to investigate population
structure of gray foxes (Urocyon cinereoargenteus) and the evolutionary origins of the endemic island
fox (Urocyon littoralis), which first appeared in the northern Channel Islands <13,000 years ago and in
the southern Channel Islands <6000 years ago. It is unclear whether island foxes evolved directly from
mainland gray foxes transported to the islands one or more times or from a now-extinct mainland
population, already diverged from the gray fox. Our 345 mitochondrial sequences, combined with
previous data, confirmed island foxes to be monophyletic, tracing to a most recent common ancestor
approximately 85,000 years ago. Our rooted nuclear DNA tree additionally indicated genome-
wide monophyly of island foxes relative to western gray foxes, although we detected admixture
in northern island foxes from adjacent mainland gray foxes, consistent with some historical gene
flow. Southern California gray foxes also bore a genetic signature of admixture and connectivity to a
desert population, consistent with partial replacement by a late-Holocene range expansion. Using our
outgroup analysis to root previous nuclear sequence-based trees indicated reciprocal monophyly of
northern versus southern island foxes. Results were most consistent with island fox origins through
multiple introductions from a now-extirpated mainland population.

Keywords: gray fox; island fox; Urocyon cinereoargenteus; Urocyon littoralis

1. Introduction

Many wide-ranging taxa evolved through alternating periods of range expansion in
interglacial periods and range contractions into glacial refugia during glacial periods [1].
Glacial refugia typically were buffered from climatic extremes and, therefore, tended to
harbor populations with the longest continuous histories and experienced high rates of
speciation. The California Floristic Province (CFP) in western North America represents
such a refugium [2]. The Pacific Crest mountain ranges (Sierra Nevada and Cascades)
bound the eastern flank of the CFP and were glaciated during the late Pleistocene. This
glaciated mountain chain served to retain the climate-stabilizing influence of the Pacific
Ocean and presented barriers to animal movement, especially during glacial periods.
Relative to the basins and deserts east of the Pacific Crest (hereafter, Desert ecoregion),
which experienced large climatic oscillations during the Pleistocene, the stable climate and
insularity of the CFP has resulted in preserving a more ancient record of ancestry in the
DNA of some of its most vagile taxa [3–5].

The genus, Urocyon, represents a particularly enigmatic taxon within the CFP that
includes two currently recognized species: the geographically widespread gray fox (Urocyon
cinereoargentus) and the endemic island fox (U. littoralis). The island fox, which occurs only
on the Channel Islands off the coast of Southern California and was named a distinct species
primarily because of its smaller stature (~half-sized) and distinctive ecology, is thought
to be of extremely recent origin [6]. Exactly how recent is unclear, but mitochondrial
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evidence indicated that it was no earlier than the Wisconsinan glacial period and as recent
as the early Holocene [3]. Although Urocyon east of the Great Plains is currently regarded
as conspecific with gray foxes west of the Great Plains, this grouping is paraphyletic
with respect to island foxes; western and eastern gray foxes are characterized by deeply
divergent (~1 MY), reciprocally monophyletic clades that are as divergent from one another
as those corresponding to sister species [3,7]. Thus, despite the current taxonomy, from a
strictly phylogenetic perspective, the eastern gray fox represents an outgroup relative to
western gray and island foxes [3,7,8]. In this context, our interest in the current study was
focused on western Urocyon (gray and island foxes).

The island fox is thought to have diverged from western gray foxes only about 13 kya,
which is too recent to expect reciprocal monophyly between these named species [3,8–12].
Phylogenetic expectations for such a recent speciation event are incomplete lineage sorting
(i.e., paraphyly) between gray and island foxes or for island foxes to exhibit monophyly
consistent with a small founder population, in which case the most recent common ancestor
would be no more than 13 ky divergent. Based on existing mitochondrial data, island fox
matrilines form a monophyletic clade that has been estimated at 87–50 kya, which is tens of
thousands of years before island foxes were thought to have inhabited the islands [3,7–12].
However, few gray foxes from Southern California have been sequenced, leaving open the
possibility that additional sampling will identify mainland gray foxes also clustering in the
island fox clade (i.e., negating its apparent monophyly). Alternatively, it is possible that the
two species diverged on the mainland tens of thousands of years before island foxes were
brought to the islands and before humans occurred on the landscape, as was previously
hypothesized ([13–15], cited in [10]).

Evidence that island foxes were introduced to the northern Channel Islands by hu-
mans during the early Holocene <13,000 years ago is based primarily on paleontological
and archaeological data, including radiocarbon dating of the oldest known specimen at
7600 BP [8,10–12,16]. Although foxes occur today on three northern islands (Santa Cruz,
San Miguel, and Santa Rosa) separated from each other and the mainland by >10 km of
open ocean, these islands formed a single super-island (Santarosae) prior to 9.5 kya. All
known Urocyon specimens from the islands have borne the diminutive phenotype of extant
island foxes. Thus, it remains unclear whether these original introductions involved gray
foxes that rapidly evolved their small size on the islands or whether the island and gray
foxes diverged prior to the island introductions [10,11]. Island fox populations of the three
inhabited southern islands (San Nicolas, San Clemente, and Santa Catalina) were founded
later, <6000 years ago [8,12,16]. In contrast to the northern islands, the southern islands
were separated by >35 km from each other and the mainland. The source of introductions
to the southern islands is traditionally presumed to be the northern islands, although mito-
chondrial data suggest that they more likely reflect three independent introductions from
an as-of-yet unidentified population [3]. No fossils or faunal remains of any intermediate
phenotype have been found on island or mainland, suggesting rapid evolution of the island
phenotype at least once and possibly multiple times, or post-Pleistocene extirpation of a
more divergent mainland form from which the islands were populated independently [12].

Our current understanding of the phylogenetics of gray and island foxes is primarily
limited to inferences from mitochondrial data, which reflect only a single maternally
inherited genealogy. Although several nuclear DNA studies of island foxes have explored
relationships among island populations, few gray fox populations (i.e., from the mainland)
were included in any of these studies, nor were outgroups included, thereby leaving it
unknown whether island foxes exhibit nuclear genetic monophyly with respect to western
gray foxes [17–20].

Here, we add new samples from a broad range of southern coastal California and
east of the CFP to previous samples, cumulatively more than doubling those used for
mitochondrial sequencing by Goddard et al. [3]; we use both mitochondrial and nuclear
markers to investigate the antiquity of gray fox populations, their relationships to island
foxes, and whether outgroup-rooted analyses of western Urocyon that include large num-
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bers of gray foxes, particularly from Southern California, supports the mitochondrial and
nuclear genetic monophyly of island foxes. Lastly, we describe the contemporary genetic
structure of gray foxes throughout the CFP and the neighboring Desert ecoregion. Because
males tend to be disproportionately responsible for gene flow among smaller canids, we
anticipated higher gene flow reflected in nuclear markers than in maternally inherited
mitochondrial data [21].

2. Materials and Methods
2.1. Samples

We used a total of 382 samples, including 166 previously published [3] and 216 new
samples (Figure 1A; Supplementary Table S1). Samples included 329 western gray foxes
primarily from California and Nevada, and, for reference, 31 eastern gray foxes from
Georgia, USA. Because previous studies of island foxes thoroughly sampled the nuclear
and mitochondrial genomes on all six inhabited islands and found them to be relatively
homogeneous within island populations [18–20], we needed only a small sample from
some of the islands to address our questions. In total, we used 22 island foxes mostly from
the southern islands of San Clemente (n = 11), San Nicolas (n = 6), and Santa Catalina
(n = 1), along with the northern island of Santa Cruz (n = 4). The 329 western gray fox
samples were primarily from the CFP, including the North-Coast mountains (n = 83),
Central Valley (n = 93), Cascades and northern Sierra Nevada (n = 47), Central Coast
(n = 14), and Southern California (including two from northern Mexico, n = 51). The
Southern California population was composed of two subpopulations, the Santa Monica
Mountain population, which was directly adjacent to the northern Channel Islands, and
the southern subpopulation, which occurred along the coast south of the Santa Monica
Mountains and was adjacent to the southern Channel Islands (Figure 1B). Additionally, we
obtained 41 samples from the Desert ecoregion, including the eastern slope of the Sierra
Nevada Range, Great Basin Desert of Nevada, and a single sample from Yakima County,
Washington. For spatial analyses of allele or haplotype frequencies of subsamples, we
defined sampling sites of western gray foxes as centroids among geographically proximate
specimens occurring in the same habitat ecoregion (Figure 1).

Samples included tissue (n = 47), blood (n = 110), mouth swabs (n = 4), and 221
noninvasively collected samples (n = 211 scats, n = 10 hair). Tissue samples were collected
either post-mortem or as part of other studies from live individuals captured and released.
Field collection procedures were approved by the University of California, Davis, Animal
Care and Use Committee (IACUC No. 17860), the National Park Service Institutional
Animal Care and Use Committee, and the California Department of Fish and Wildlife
through scientific collecting permits and memoranda of understanding.

2.2. Laboratory Procedures

We extracted DNA from tissue using the DNeasy® tissue kit (Qiagen Inc., Hilden,
Germany) and from scats using the QiaAmp® Stool Kit (Qiagen, Inc.) according to man-
ufacturer’s instructions except that we eluted in 50 µL of buffer to concentrate DNA [22].
The mitochondrial DNA sequencing was as described previously [3], resulting in 785 bp
(422 bp D loop, 363 bp cytochrome b). We accessioned all new haplotypes in GenBank (ac-
cession Nos. OP373713–OP373719). Ideally, genomic methods, such as restriction-site based
reduced representation sequencing, could be used for our study. However, such methods
require high-quantity and high-quality DNA and our samples, including many road-killed
carcasses and noninvasive samples, were necessarily characterized by a wide range of DNA
quality, most of which would be insufficient to allow such genomic methods. We, therefore,
used 20 microsatellite loci in three PCR multiplex reactions (see Supplementary Table S2 for
primer sequences, concentrations, and dye sets). The DNA concentrations for blood and
tissue extracts typically ranged 5–200 ng/µL and for fecal extracts, <1 ng/µL. Rather than
quantitating DNA concentration for each sample, for efficiency and based on protocols de-
veloped for a wide range of similarly variable wildlife samples in our laboratory, we diluted
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all tissue extracts 100-fold prior to conducting PCRs and, for poor genotypes (e.g., allele
peak heights smaller than standard peak heights), either reran undiluted or discarded. We
also ran tissue-based PCRs separately from noninvasive DNA-based PCR, which were run
in duplicate and combined into consensus sequences. Comparison of replicate genotypes
indicated an average allelic dropout rate for noninvasive samples of 2.2% (SD = 4.4%). The
PCR reactions were 10 µL (tissue DNA) or 11 µL (fecal/hair DNA), including 5 µL Qiagen
multiplex master mix, 1 µL Q-solution, and primers at reaction concentrations ranging 0.25
to 1.00 µM (Supplementary Table S2), with 1 µL (tissue) or 2 µL (fecal/hair) of sample DNA.
The thermal profile was 95 ◦C for 15 min, 33 cycles of 94 ◦C for 30 s, 58 ◦C for 90 s, and 72 ◦C
for 60 s, followed by 72 ◦C for 10 min. We separated alleles using an ABI 3730 capillary
sequencer in conjunction with Genescan 500 LIZ (Applied Biosystems) size standards and
called peaks manually in STRand software (https://vgl.ucdavis.edu/STRand; accessed
30 April 2022).

Currently in published pdf Correctly displayed

Figure 1. (A). Map of 382 western gray fox (Urocyon cinereoargenteus) and island fox (U. littoralis)
samples (red dots) with sampling sites defined by ellipses. Colors of ellipses indicate the broader
regional samples used in population tree and genetic diversity statistics. Island fox samples are shown
on the four sampled Channel Islands. Black-filled polygons indicate previously glaciated portions
of the Sierra Nevada Range. Not shown are a single sample from Yakima County, Washington
(Desert sample) and samples from the eastern gray fox in Georgia. (B). Inset: names of the six
fox-inhabited Channel Islands and two subpopulations of mainland Southern California: the Santa
Monica Mountains (including Simi Hills) and the southern subpopulation.

2.3. Data Analysis

Based on local distributions of several mitochondrial haplogroups and their ages
as estimated using rho statistics [23,24], Goddard et al. [3] demonstrated that gray foxes,
sampled primarily from northern California, reflected relatively stable maternal ancestry
long-pre-dating the last glacial maximum. Thus, our primary interest in adding mito-
chondrial data in this study from Southern California and the deserts to the east of the
Pacific Crest was to examine relationships to island foxes, the stability of Southern Cal-
ifornia populations over this same time period, as well as the relationships of southern
and northern California foxes and all of those in the CFP (i.e., both southern and northern

https://vgl.ucdavis.edu/STRand
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California) to those east of the CFP. We constructed a haplotype network using the same
166 sequences used by Goddard et al. [3] along with the additional ones introduced in
this study (Supplementary Table S1) and the median-joining algorithm [25] implemented
in Networks (v 10.2.0.0). We weighted transversions 2:1 over transitions and weighted
cytochrome-b substitutions 2:1 over D-loop substitutions. We rooted the network based on
eastern gray foxes, and estimated ages of selected haplogroups in terms of the average num-
ber of substitutions separating ancestral and descendant nodes, or rho [23,24] assuming a
mutation rate of 10.8% per million generations (2 years), equivalent to an expectation of one
substitution every 11,795 generations (23,590 years) in the combined 785 bp cytochrome b
and D loop sequence [3].

Prior to microsatellite analyses, we removed noninvasive samples (scats, hair) reflect-
ing duplicates of the same individual and close relatives among all samples. Specifically,
we assessed the pairwise relatedness within spatially defined samples (Figure 1) using a
maximum likelihood estimator, implemented in ML Relate [26] and removed individual
genotypes as necessary to ensure that no relatedness estimate between remaining indi-
viduals was greater than 0.375, which is the halfway point between that expected for
second-order and first-order relatives. From remaining samples, we estimated observed
and expected heterozygosity and average numbers of alleles per locus using microsatellite
toolkit [27]. We estimated allelic richness, which adjusts for uneven sample sizes, and FIS in
FSTAT (Version 2.9.3.2; [28,29]). We tested for deviations in Hardy–Weinberg and gametic
disequilibrium using permutation tests, followed by sequential Bonferroni corrections [30].

We used a Bayesian model-based approach implemented in program Structure v2.3.4 [31]
to visualize geographic distributions of genetic clusters relative to bioregions [4,32]. We
used the admixture model assuming correlated allele frequencies [33]. To assess likelihood
associated with a range of predefined numbers of clusters (K), we initially conducted
10 runs at each of K = 1 to 8 clusters, with each run composed of 20,000 Markov chain
Monte Carlo (MCMC) cycles, the first 10,000 cycles discarded as burn-in. We plotted
average (and SD) logarithm of the probability of the data [LnP(D)] versus K as a guide to
assist interpretations of cluster profiles at each level of K. We then conducted a final run at
each of the best-supported levels of K consisting of 550,000 MCMC cycles (with the first
50,000 discarded), which was used for obtaining estimates of ancestry fractions (q).

To test the relative influences of isolation-by- (geographic) distance and discrete popu-
lation structure, we also assessed partial correlations among pairwise distance matrices
using a partial Mantel permutation test [34] in program Passage v 2.0 [35]. Specifically, we
assessed whether Nei’s genetic distance (DA; [36]) was greater between sampling locations
in different clusters than between sampling locations in the same cluster, while removing
effects of geographic distance and vice versa. The independent variable matrices were
of geographic (i.e., Euclidean) distance and cluster, which was defined in terms of the
predominant cluster assignment of individuals within the sampling site. We used the
cluster assignments from the admixture analysis described above at K = 3. The geographic
distance matrix included distances measured around the San Francisco Bay and Delta
estuary, which we assumed to present an absolute barrier to gene flow (e.g., [32]). In the
cluster matrix, zeros indicated pairs of locations within the same cluster and ones indicated
pairs of locations in different clusters.

To assess monophyly in island foxes, as well as other footprints of deeper phylo-
geographic structure, we estimated a neighbor-joining tree from the microsatellite data
based on DA with node support based on bootstrapping across loci. We rooted the tree
to eastern gray foxes as an outgroup because other canids were too divergent (~10 MY)
for microsatellite-based comparisons. Contrary to the current taxonomic recognition of
the eastern gray fox as conspecific with the western gray fox and with the island fox as a
distinct species, however, island foxes and western gray foxes represent a monophyletic
group relative to the eastern gray fox (based on rooting to other canid genera [3,7,8]). The
analysis was performed in program Populations [37].
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3. Results
3.1. Mitochondrial

We obtained 179 new 785-bp mitochondrial sequences, which we added to 166 previ-
ously published sequences [3] to obtain 345 sequences in total (Supplementary Table S1).
In addition to previously published haplotypes ([3]; GenBank accession Nos. KP888884-
KP888897; KP888858-KP888883), we obtained several novel haplotypes (GenBank accession
Nos. OP373713–OP373719). Despite the inclusion of 48 samples from Southern California
(n = 46) and northern Mexico (n = 2), however, none had haplotypes falling within the
island fox haplogroup (Figure 2). Most haplotypes from the Santa Monica Mountains
(n = 28 of 33), along with those from the Central Coast (n = 9 of 14), grouped in the D-
15 haplogroup, which we estimated to be approximately 15,000 years old (rho = 0.623,
SD = 0.325). Except for the most basal haplotype (D-15), this haplogroup was not found
anywhere else, suggesting that the matriline had been represented in the area since before
island foxes were putatively introduced to the islands (i.e., <10,000 years ago; [8,12,16]).
However, the D-15 haplotype itself occurred 50 km south of the Santa Monica Mountains.
No other haplotypes from this haplogroup occurred in the 17 foxes sampled in the southern
subpopulation. Thus, the distribution of haplotypes differed between the Santa Monica
Mountains, nearest to the northern Channel Islands, and the southern subpopulation, closer
to the southern Channel Islands. Rather than forming a closely related haplogroup, the
southern subpopulation haplotypes reflected three unrelated haplogroups, consistent with
admixture from range expansions. The D-15 haplotype was also common in northern
California and the light gray haplogroup was common to the Desert ecoregion (Figure 2).

Currently in published pdf Correctly displayed

Figure 2. Mitochondrial diversity in gray foxes (Urocyon cinereoargenteus) and island foxes (U. littoralis)
in the California Floristic Province and the Desert ecoregion separated by the Pacific Crest mountains.
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(A). a median-joining network composed of 785 bp of cytochrome b and D loop sequence, illustrating
several haplogroups and their estimated ages based on rho statistics and a substitution rate of 10.8%
per million generations (5.4%/MY); branch lengths are proportional to the number of substitutions
and node sizes are proportional to the number of samples; red and yellow (D-9) haplogroups are
endemic to northern California, whereas the D-15 haplogroup, except for the basal haplotype D-15
itself, are endemic to Southern California and Central Coast; the island fox haplogroup is endemic
to the Channel Islands. (B). a map of haplotype pie charts corresponding to the 15 subsamples,
with colors corresponding to nodes in panel A; black-filled polygons along the Pacific Crest indicate
the location of glaciers during the Pleistocene epoch. (C). enlarged portion of Southern California,
illustrating individual locations jittered for visibility and color-coded according to the nodes in panel
A; two samples from Mexico were based solely on cytochrome-b haplotypes (U).

3.2. Microsatellites

We successfully genotyped 273 of the 380 samples at an average of 19.5 (SD = 1.2)
microsatellite loci, including 119 of the 197 (60%) noninvasive samples. After excluding
duplicates (n = 33) and close relatives (n = 47), we retained 193 genotypes for subsequent
analyses, including 188 from Island foxes (n = 20) and western gray foxes (n = 168) and 5
from eastern gray foxes (Supplementary Table S3).

3.2.1. Population Diversity

Measures of genetic diversity were higher for western gray fox population samples
than for island foxes (Table 1). A slight and similar heterozygote deficiency (positive
FIS) was evident in the 5 western gray fox population samples (significant in 4 of them),
consistent with internal substructure. Most measures of diversity were highest in Southern
California and the Desert ecoregion.

Table 1. Population genetic statistics based on 20 microsatellite loci for 188 island foxes (Urocyon
littoralis) and western gray foxes (U. cinereoargenteus) from 4 islands and 5 mainland sampling
locations in western North America, including expected heterozygosity (He; under Hardy–Weinberg
expectations), observed heterozygosity (Ho), average numbers of alleles per locus (NA), allelic
richness (AR), and inbreeding coefficient (FIS).

Sample n He (SE) Ho (SE) NA (SE) AR (SE) FIS (SE)

Island foxes (all) 1 20 0.43 (0.07) 0.15 (0.02) 3.15 (0.36) 2.21 (0.19) 0.59 (0.08) *
S. Clemente Island 11 0.27 (0.06) 0.19 (0.03) 2 (0.21) 0.29 (0.09) *
S. Nicolas Island 6 0.04 (0.02) 0.04 (0.02) 1.16 (0.09) −0.14 (0.1)

Deserts 13 0.70 (0.06) 0.58 (0.03) 6.6 (0.63) 3.51 (0.25) 0.17 (0.04) *
North Coast 42 0.61 (0.05) 0.52 (0.02) 5.7 (0.65) 2.89 (0.22) 0.17 (0.04) *

Cascades/Sierras 26 0.61 (0.06) 0.57 (0.02) 6.4 (0.70) 3.04 (0.26) 0.07 (0.03)
Southern California (all) 38 0.68 (0.05) 0.58 (0.02) 6.9 (0.63) 3.32 (0.22) 0.17 (0.05) *

Santa Monica Mtns 24 0.64 (0.05) 0.55 (0.02) 5.6 (0.50) 0.13 (0.05) *
Southern subpopulation 14 0.70 (0.05) 0.61 (0.03) 6.2 (0.73) 0.12 (0.05) *

Central Coast 11 0.63 (0.06) 0.62 (0.03) 5.1 (0.48) 3.16 (0.24) 0.02 (0.05)
Central Valley 38 0.63 (0.05) 0.56 (0.02) 6.7 (0.67) 3.07 (0.24) 0.12 (0.03) *

1 Island foxes (all) include 17 from the two islands shown in italics as well as 3 more from Santa Catalina (n = 1)
and Santa Cruz (n = 2) Islands. * FIS significantly different than zero at p < 0.05.

3.2.2. Genetic Structure

The admixture analysis at K = 2–5 revealed hierarchical structure (Figure 3;
Supplementary Table S3). At K = 2, gray foxes of the Desert ecoregion, Southern Cali-
fornia, and the Central Coast, as well as Island foxes, all clustered together as distinct
from gray foxes in northern California. At K = 3–5, Island foxes were differentiated from
western gray foxes, although island foxes on Santa Cruz Island and, to a lesser extent, Santa
Catalina Island, were assigned significant portions of their ancestry to the same cluster
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as Central Coastal and Southern California gray foxes. As K increased from 2 to 5, the
gray fox cluster with which these island foxes were apportioned partial ancestry became
more spatially limited, consistent with a closer relationship to the most geographically
proximate mainland population. The relatively large extent of the Desert cluster regardless
of K suggested high or recent connectivity throughout that ecoregion. This observation was
consistent with the fossil record, which indicates an absence of gray foxes in that region
until it was recently colonized through a post-Pleistocene population expansion [3]. At
all levels of K, gray foxes spanning Southern California and the Desert ecoregion (eastern
California, Nevada, and north to Washington) assigned to the same widespread genetic
cluster. In contrast, 4 genetic clusters of western gray fox occurred within a relatively
small portion of the CFP. Notably, at K = 5, microsatellites recovered a similar structure in
Southern California as that suggested by the mitochondrial data. Specifically, the Santa
Monica Mountains and Central Coast foxes clustered together whereas the remaining foxes
of Southern California (i.e., southern subpopulation) were more admixed, sharing variable
amounts of ancestry with the same cluster and with the Desert cluster (Figure 3B).

To better clarify relationships among island populations and with the mainland gray
foxes, we performed a more local admixture analysis restricted to the 69 samples from
the islands, Central Coast, and Southern California (both subpopulations), which further
resolved relationships (Supplementary Figure S1). At K = 3, the southern subpopulation
was distinguished from the Santa Monica Mountain subpopulation and Central Coast
population. At K = 4, island foxes were completely distinct from gray foxes, and northern
and southern islands were distinct from each other except for the individual on Santa
Catalina Island, which was admixed between Santa Cruz (northern) Island and the two
other southern islands. This admixture of the Santa Catalina Island fox was consistent with
previous findings suggesting recent (possibly in the past century) human introductions
of foxes from Santa Cruz to Santa Catalina Island [3,8,17]. At K = 5, San Nicolas Island
clustered as distinct. As with the corresponding analysis using all populations (Figure 3),
the island foxes from the northern island (Santa Cruz) clustered most closely with Southern
California gray foxes, but, in this analysis, those of the southern subpopulation.

Next, to further explore genetic structure of western gray foxes, we assessed conti-
nuity of gene flow using the full western gray fox data set. We observed a significant
isolation-by-distance relationship (Mantel’s r = 0.69, p = 0.001), but the partial Mantel test
(which controlled for geographic distance) nevertheless supported an additional effect
of genetic cluster membership when tested at K = 3 (rcluster-dist = 0.29; p = 0.04). This
effect was relatively weak as reflected by the difference in elevations of the trend lines
for isolation-by-distance within versus between clusters (Figure 4). The partial Mantel
correlation between genetic distance and geographic distance, holding cluster distance
(0,1) constant (rgeog-dist = 0.65; p = 0.001), was similar to the simple Mantel correlation that
ignored cluster membership, suggesting that geographic distance accounted for most of
the geographic structure.

A nuclear DNA population tree based on DA estimated from the microsatellites and
rooted to the eastern gray fox sample was largely concordant with structure inferred from
the admixture analysis above. Specifically, the tree indicated high bootstrap support (97%)
for reciprocally monophyletic clades corresponding to island foxes and western gray foxes
(Figure 5). Among California gray foxes, the Cascades and northern Sierra Nevada (Pacific
Crest), Central Valley, and North Coast clustered closely together distinct from those of
Southern California and the Central Coast with high bootstrap support.
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Figure 3. Admixture analysis of 188 western gray foxes (Urocyon cinereoargenteus) and island foxes 
(U. littoralis) with 20 microsatellite loci conducted in program Structure, assuming K = 2, 3, 4, and 5 
clusters. (A). Sample locations represented on maps as dots colored corresponding to the genetic 

Figure 3. Admixture analysis of 188 western gray foxes (Urocyon cinereoargenteus) and island foxes
(U. littoralis) with 20 microsatellite loci conducted in program Structure, assuming K = 2, 3, 4, and
5 clusters. (A). Sample locations represented on maps as dots colored corresponding to the genetic
cluster with the highest q-value. (B). Horizontal bar charts showing q values for all clusters assigned
to each fox, arranged by species (island fox, top; gray fox bottom) and gray fox population (left) and
subpopulation (right). Log probability of the data (SD) for K = 1–10 were as follows: −11,828 (1.59),
−10,943 (2.1), −10,268 (7.71), −10,047 (2.04), −10,010 (14.48), −9982 (24.76), −9896 (69.98), −9976
(96.81), −9944 (204.73), and −10,320 (556.45).
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Figure 4. Relationship between Nei’s genetic distance and geographic distance between gray fox
(Urocyon cinereoargenteus) sampling sites within vs. between genetic clusters (K = 3). Nei’s genetic
distance (DA) was estimated from 20 microsatellite loci for each pair of sampling sites (Figure 1),
which are indicated as comparisons between sampling sites assigned to the same genetic cluster
(open circle) and to different genetic clusters (filled circles). Genetic clusters were defined for each
sampling site as the one for which the greatest ancestry (q value) was assigned in the admixture
analysis (see Figure 3). Trend lines illustrate statistically significant relationships based on partial
Mantel tests.
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Figure 5. Neighbor-joining population tree illustrating reciprocal monophyly between a group of
4 Island fox (Urocyon littoralis) populations versus 7 western gray fox (U. cinereoargenteus) populations,
rooted to an eastern gray fox population outgroup. Branch lengths are based on Nei’s genetic distance
(DA) [36] calculated from 20 microsatellite loci and 999 bootstrap replicates. Only bootstrap values
>65% are shown. Bootstrap values were calculated without Santa Catalina and Santa Cruz island
populations included because of low sample size.
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4. Discussion

Our analysis of mitochondrial DNA and nuclear genotypes of island and gray foxes
yielded several important insights that contribute to our understanding of island fox origins
and the antiquity and population structure of gray foxes within the CFP. First, by sampling
approximately 50 additional gray foxes from coastal Southern California and Mexico nearest
to the Channel Islands, we confirmed the presence of a large phylogenetic gap between
island fox matrilines and those of the geographically most proximate gray foxes [3,8]. This
observation supports the mitochondrial monophyly of island foxes with respect to modern
gray foxes. Second, nuclear DNA also indicated that island fox populations formed a
monophyletic group with respect to western gray foxes consistent with mitochondrial data.
Although previous nuclear DNA studies had assumed monophyly among island foxes
and rooted them to gray foxes from one or two western locations [17–20,38], our larger
sample of gray foxes and inclusion of an outgroup (eastern gray foxes) to root the tree were
necessary to confidently verify this putative monophyly. Third, our findings clarified the
contemporary genetic structure of gray foxes throughout the CFP relative to those in the
Desert ecoregion.

4.1. Origins of the Island Fox

By sampling a large number of gray foxes from Southern California, our results
strengthen previous mitochondrial findings that island fox matrilines diverged from west-
ern gray fox matrilines long before the former were thought to have inhabited the is-
lands [3,7]. Based on the estimated time to most recent common ancestor of island fox
matrilines from whole mitogenomes, a minimum estimate of mitochondrial divergence
between island and gray foxes would be 87,000 years [7], yet island foxes were presumably
not present on any of the islands until 13–10 kya [12]. Additionally, our results suggest
that at least some gray foxes of the mainland (Santa Monica Mountains) reflect continuous
ancestry dating back to the time of the presumptive founding of island fox populations.
Most of the phylogenetically distinct haplotypes we observed in the mainland location
nearest the northern Channel Islands, the Santa Monica Mountains, formed an endemic
D-15 haplogroup that dated to nearly 15,000 years before present. Because mitochondrial
data can only indicate a single genealogy, we do not necessarily consider the observation
of different single surviving matrilines on the mainland versus the northern islands to
strongly argue against their having been derived from the same ancestral pool ~13 kya.
Rather, the observation serves to clarify that both populations can be traced back to their
current locations since that time. To better understand the relationship between these
populations, therefore, it was necessary to examine nuclear DNA patterns. Consistent with
mitochondrial findings, the dichotomous tree and admixture analysis at K > 2 also implied
the predominance of common nuclear-genetic ancestry unique to the genomes of all island
foxes. Thus, both mitochondrial and nuclear DNA highlight that the predominant ancestry
of island foxes was not represented in the contemporary mainland gray foxes we sampled.

The significance of the missing link between island and nearby mainland gray foxes
is magnified by the long span of time over which northern and southern islands were
colonized. The archaeological, cultural, and DNA evidence all agree in suggesting that
foxes arrived on the northern Channel Islands approximately 13–7500 kya, long before
they arrived in the southern islands, closer to 5.5 kya [3,8,10–12,16,17]. The mitochondrial
pattern of the northern islands is similar to that of the island spotted skunk (Spilogale gracilis
amphialus), which also inhabits two of the northern islands and was thought to have arrived
around the same time as foxes [39]. Both species exhibit a single mitochondrial haplogroup
endemic to the northern islands. In both cases, distributions of haplotypes and their
nucleotide diversity were consistent with origins from a single maternal founder during
the time sea level was low enough for the northern islands to form the single super-island,
Santarosae, up to slightly <10 kya [3,39]. Thus, other than the missing mitochondrial link
between the northern island haplogroup and modern gray foxes, there are no major conflicts
in the evidence for the timing of colonization in the north. The bigger mystery pertains
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to the southern islands, which were founded much later in the Holocene. In addition to
the fossil/sub-fossil evidence suggesting no foxes inhabited the southern island prior to
6000 years ago at earliest [8,12,16], a recent study that reconstructed historical population
sizes based on whole genome resequencing of island foxes on two of the southern islands
(Santa Catalina, San Clemente) found a precipitous decline consistent with a founder effect
in these populations during the putative time of their founding [40].

The hypothesis traditionally put forth to explain the current distribution of island foxes
posits that they evolved their small body size once after colonizing or being transported to
the northern islands when they formed a single super-island, Santarosae, during the late
Pleistocene (approximately 13,000 years ago), and were subsequently spread by humans
to successive southern islands in mid-Holocene [8–10,17]. This model is partly based
on parsimony, assuming the island phenotype evolved only once, and conforms well to
archaeological and fossil/subfossil data, which primarily support the hypothesized timing.
Contrary to this model, however, our findings combined with previous genetic data support
an early hypothesis that fell out of favor decades ago, specifically, that island foxes derive
from a now-extinct mainland population ([13–15], cited in [10]).

As initially argued by Goddard et al. [3] on the basis of mitogenomes [8], foxes on the
southern islands were likely derived independently from one another and from those on
the northern islands, most likely by separate introductions from the mainland. Among
island populations, both types of DNA indicate reciprocally monophyletic northern and
southern subclades. First, by inferring the root based on our nuclear DNA tree, previous
whole genome and reduced representation sequencing data (as well as microsatellites)
imply reciprocally monophyletic subclades distinguishing southern from northern island
populations [18–20,38]. Second, a Bayesian phylogenetic tree based on whole mitogenomes
of island and gray foxes rooted to eastern gray foxes (and Vulpes and Canis spp.), showed
reciprocally monophyletic mitochondrial subclades between northern versus southern
islands [7]. If the southern island populations had been derived initially from transportation
of foxes from a northern island, either to all southern islands or from successive movements
between southern islands, the topological expectation (particularly from nuclear DNA)
would be for southern island populations to be nested within that corresponding to the
northern island that sourced them, with other northern island populations basal to these.

The reciprocally monophyletic northern and southern subclades are therefore more
consistent with the occurrence of at least two distinct founding events. The mitochon-
drial data further suggest that each of the three southern islands was sourced from a
different founder (analysis of [8] mitogenomes by [3]). The northern island mitochondrial
haplogroup contained 9 distinct haplotypes, all within the same haplogroup estimated
to be approximately 13,500 years old (SD = 3100 years), whereas the entire island fox
mitochondrial clade was estimated to be 51,000 [3] to 87,000 [7] years old depending on
calibrations. Each of the southern islands contained a haplogroup that was >10,000 years
divergent from any other. Considering the existing evidence that no foxes occurred on
these southern islands before the mid-Holocene [8,10–12,16], separate introductions seems
the most plausible explanation. Given that all 9 haplotypes in the northern islands form
a single endemic matriline, it seems implausible that the three distinct matrilines of the
southern islands could be derived from the northern islands, leaving the mainland as the
most likely source. Thus, an important question is how four divergent matrilines of the
island fox clade supplied the islands over several thousand years, yet were unrepresented
in any modern gray foxes from the nearby mainland.

The most parsimonious explanation seems to be that the direct maternal ancestors of
all island foxes occurred on the Southern California mainland during the time span over
which foxes were established on the islands, i.e., 13,000–5500 years ago, but subsequently
disappeared, possibly through replacement by different populations of Urocyon that ex-
panded from elsewhere during the late Holocene (Figure 6). Our data were consistent
with such a scenario. Most importantly, our nuclear DNA admixture analyses indicated
that some island foxes contained ancestry that clustered most closely with the Southern
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California and Central Coast populations as expected if island foxes were sourced from one
of those nearby mainland locations. Although we found no evidence that the Santa Monica
Mountain population reflected recent turnover of gray foxes as would be necessary to
explain such a source, those south and east of the Santa Monica Mountains (southern sub-
population) differed starkly in their genetic composition. Both nuclear and mitochondrial
data indicated high admixture within the southern subpopulation and high connectivity
to the Desert ecoregion, itself known to be colonized as a result of post-Pleistocene ex-
pansions [3]. Comparison of haplotypes in the southern subpopulation with those from
east of the Pacific Crest, including those previously published from as far east as Texas [7]
(Supplementary Figure S2), suggest that they originated from multiple sources, consistent
with immigration related to post-Pleistocene expansions from the north, east, and south.
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Figure 6. Schematic representation of a hypothesis explaining the origins of island foxes (Urocyon
littoralis) from a mainland ancestor replaced by expanding populations of gray foxes (U. cinereoar-
genteus). Island foxes and their immediate mainland ancestors (green) are distinguished from gray
foxes (blue) 15,000 years ago (YA), prior to their introduction to the northern super-island, San-
tarosae 13,000–9500 YA, followed by their independent introductions to each of the southern islands
6000–200 YA, and finally their extirpation and replacement by expanding gray foxes on the mainland
during the late Holocene. Overlapping time intervals reflect uncertainty in timing of extirpation and
replacement. Putative introductions of foxes to the Channel Islands are indicated by green arrows
and putative expansion routes of gray foxes are indicated by black arrows. Dashed lines indicate
boundary to the California Floristic Province and dotted line bounds the Central Valley.

If, as our data suggest, the population ancestral to island foxes was extirpated from
the mainland within the past several thousand years, it remains possible that they were
more phenotypically similar to modern island foxes than gray foxes, potentially reflecting a
speciation event considerably older than the timing of their introduction to the islands ([13–15],
cited in [10]). If so, such a phenotypic distinction between contemporary populations could
help to explain why none of the haplogroups reflected in today’s larger-bodied mainland gray
foxes were represented on any of the islands.
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4.2. Antiquity and Genetic Structure of California Gray Foxes

Our mitochondrial and nuclear DNA findings were largely concordant in showing
two distinct gray fox populations in the CFP. In particular, northern California, composed
of the North Coast, Pacific Crest (Cascade and western Sierra Nevada), and Central Valley
samples, stood out as harboring the most ancient record of ancestry, including an endemic
haplogroup (Red) estimated to be over 70,000 years old. Correspondingly, the microsatellite
tree and the admixture analysis distinguished northern California from all other western
Urocyon populations, even including the island foxes at K = 2. The relative antiquity of the
northern California populations likely relates to their insularity during the late Pleistocene.
The Pacific Crest served both as a barrier to movement as well as to render the climate
to the east inhospitable to gray foxes during glacial periods, thereby isolating gray foxes
within the northern portion of the CFP from all other refugial populations except those to
the south.

On a more contemporary timescale, both admixture and isolation-by-distance analyses
indicated little nuclear-genetic evidence of discrete population structure within the CFP,
suggesting that gene flow was relatively continuous. Most of the genetic differentiation
among subsamples could be explained by geographic distance, although discrete clusters
identified in the admixture analyses contributed slightly. Aside from geographic distance,
the pattern of habitat on the California landscape likely determined genetic connectivity.
Gray foxes currently occupy a wide range throughout California and tend to be most abun-
dant in scrublands or forests with dense understories, but rarely occur at high elevations
(>2400 m) or in open agricultural or desert terrain [41,42]. Consequently, much of the
Pacific Crest along the Cascades and Sierra Nevada Ranges likely presents a barrier to
movement. Additionally, the Central Valley is largely devoid of gray foxes or suitable
habitat except where remnant riparian water-courses extend forested habitats into the
valley or in various islands of scrub habitat, primarily at the northern end of the state [43].
Both mitochondrial and microsatellite data indicated some genetic connectivity between
northern California and the Desert ecoregion at latitudes consistent with gene flow over the
lower-elevation passes of the northern Sierra Nevada Mountains. We lacked samples from
the southern end of the western Sierra Nevada Range and the Tehachapi Range, but these
regions represent a narrow isthmus of habitat potentially linking northern and southern
California populations.

5. Conclusions

Our findings suggest that the mainland ancestors of the island fox were most likely
extirpated and replaced by gray foxes expanding from multiple locations during the late
Holocene. Although we found only a weak genetic connection between island foxes and
gray foxes, its correspondence to the nearest mainland location supports the existence of at
least some gene flow in the past between ancestors of island and gray foxes. Nevertheless,
the absence of the primary source of ancestry for the island fox on the mainland leaves open
the possibility that this extirpated ancestral population could have attained the smaller
phenotype prior to its transportation to the islands. Additional archaeological data from
the coastline of Southern California would be useful in answering this question. Although
ours was the first nuclear DNA study to include a large sample of western gray foxes and
an outgroup, along with island foxes, microsatellites represent a crude tool. In the future,
use of more powerful genomic approaches would lead to greater insights into the enigmatic
recent evolutionary history of the island fox and its relationship to gray foxes. Addition
of ancient DNA in conjunction with morphological data would be especially valuable in
clarifying the species-level divergence between island and gray foxes.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/genes13101859/s1, Figure S1: Admixture analysis of 69 western gray and
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