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Abstract: Some studies have investigated the potential of genomic selection (GS) on stripe rust,
leaf rust, Fusarium head blight (FHB), and leaf spot in wheat, but none of them have assessed the
effect of the reaction norm model that incorporated GE interactions. In addition, the prediction
accuracy on common bunt has not previously been studied. Here, we investigated within-population
prediction accuracies using the baseline M1 model and two reaction norm models (M2 and M3)
with three random cross-validation (CV1, CV2, and CVO0) schemes. Three Canadian spring wheat
populations were evaluated in up to eight field environments and genotyped with 3158, 5732, and
23,795 polymorphic markers. The M3 model that incorporated GE interactions reduced residual
variance by an average of 10.2% as compared with the main effect M2 model and increased prediction
accuracies on average by 2-6%. In some traits, the M3 model increased prediction accuracies up to
54% as compared with the M2 model. The average prediction accuracies of the M3 model with CV1,
CV2, and CVO0 schemes varied from 0.02 to 0.48, from 0.25 to 0.84, and from 0.14 to 0.87, respectively.
In both CV2 and CV0 schemes, stripe rust in all three populations, common bunt and leaf rust in two
populations, as well as FHB severity, FHB index, and leaf spot in one population had high to very
high (0.54-0.87) prediction accuracies. This is the first comprehensive genomic selection study on five
major diseases in spring wheat.

Keywords: 90K array; DArTseq; disease resistance; genomic selection; prairie provinces; prediction
accuracy; priority wheat disease; SNP
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1. Introduction

Leaf rust, stripe (yellow) rust, stem rust, common bunt, Fusarium head blight (FHB),
and leaf spot complex (the blotch diseases) are the most common and economically impor-
tant wheat diseases in Canada and across the rest of the world [1-4]. Leaf rust caused by
Puccinia triticina f. sp. tritici is common in mild temperature and moist conditions [4], with
varying levels of severity from year to year [5]. Stripe rust (P. striiformis f. sp. tritici) has been
detected in western Canada every year since 2000, with serious epidemics reported in some
parts in 2005, 2006, and 2011 [6]. Multiple stem rust (Puccinia graminis £. sp. tritici) epidemics
were reported in the country in the early 1900s and from 1953 to 1955, which caused losses
worth hundreds of millions of dollars [7]. Although the severity of the three rusts can be
reduced through agronomic management practices and the application of foliar fungicides,
the development and deployment of resistant cultivars is environmentally friendly and
safer [8]. Common bunt (also known as stinking smut and covered smut) is caused by both
Tilletia tritici (syn. Tilletia caries) and T. laevis (syn. T. foetida) [9], which can be seed-borne
(smut spores on the seed) or soilborne. Infected plants are stunted, producing fewer and
smaller spikes than normal plants, which ultimately reduces both grain yield and quality
through the formation of black masses of spores (bunt balls) [10]. The replacement of grains
with bunt balls not only reduces grain yield, but also affects quality due to undesirable
odors in the flour that are not acceptable by wheat millers. The three strategies used to
manage common bunt include seed treatments with appropriate fungicides, crop rotation to
minimize the buildup of the pathogen, and planting resistant cultivars.

FHB, or scab, can be caused by multiple fungal species, with Fusarium graminearum
(Schwabe) being the most destructive disease in parts of western Canada [11,12]. FHB
affects grain yield, grain quality, and marketability in three ways. First, it causes premature
bleaching of florets (spikes), which results in sterility and small white-to-pink shriveled
seeds, which substantially reduce grain yield [13]. Second, FHB-infected kernels are of
poor quality and are either rejected or downgraded due to the presence of discolored
and shriveled seeds that substantially reduce grain price. Third, infected kernels may be
contaminated with mycotoxins, such as deoxynivalenol (DON), nivalenol, and zearalenone,
which are toxic to animals and humans [14]. FHB management methods include the use
of appropriate fungicides, crop rotation, seed treatment, cultural practices (e.g., staggering
planting time, increasing seeding rate, irrigation management), and planting resistant
cultivars [15-17]. None of the management methods are effective on their own, and multiple
methods must be used to reduce losses to FHB. Fungicide application to control FHB is
suppressive rather than preventative or curative, and is not as effective in controlling FHB
as compared with rusts and leaf spots, because timing the application of fungicide for
FHB control is challenging due to the narrow application window [4]. Furthermore, most
modern wheat cultivars have mutant reduced height alleles (Rht-D1b and/or Rht-B1b),
which increase susceptibility to FHB by reducing anther extrusion [18-20]. Leaf spotting
is one of the most prevalent diseases in wheat-growing areas in Canada and several other
countries globally. In Canada, it is the second priority disease (Priority-2) caused by multiple
pathogens: tan spot (Pyrenophora tritici-repentis), septoria leaf blotch complex (caused by
Phaeosphaeria nodorum, Mycosphaerella graminicola and Phaeosphaeria avenaria), and spot blotch
(Cochliobolus sativus) [21]. These pathogens commonly occur as complexes and can reduce
test weight and grain yield by about 50%. High levels of leaf spot resistance require resistance
to each of the causal species.

In Canada, new varieties (cultivars) should possess a combination of 30-40 target
traits depending on the market class (https://grainscanada.gc.ca/en/grain-quality /grain-
grading /wheat-classes.html; accessed 20 March 2022), which must include at least interme-
diate levels of resistance to the three rusts, FHB, and common bunt. Genetically resistant
cultivars can be developed using conventional breeding methods, marker-assisted selection
(MAS), and genomic selection (GS). MAS involves introgressing a few genes or major effect
quantitative trait loci (QTL) from trait donors into elite genetic backgrounds, which is often
challenging due to (i) the need to pyramid different sources of resistance into the same
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genetic background, and (ii) concerns associated with the durability of introgressed genes
that regulate qualitative or vertical resistance against multiple races. Vertical resistance
tends to be expressed from seedling to adult plant stages, but they lose their effectiveness
over time due to changes in pathogen populations. On the other hand, quantitative resis-
tance is a partial level of resistance controlled by multiple minor to moderate effect genes
and/or QTL, which are more durable but require the pyramiding of multiple favorable
alleles, which makes the suitability of MAS more challenging. GS is a promising alternative
to MAS for predicting the most likely performance of lines by incorporating all available
molecular marker information into a model to compute genomic estimated breeding values
for selection [22-25].

Although numerous proofs of concept and pilot GS studies have been conducted in
wheat to investigate its potential for improving multiple agronomic traits, yield components,
and end-use quality traits in wheat, only a few studies have been conducted on diseases.
The latter include some studies conducted to evaluate the predictive ability of FHB [26],
stripe rust [27,28], rusts, and leaf spots [29-31] in spring wheat, FHB in winter wheat [32,33],
rusts in durum wheat [34] and winter wheat [35-38], Septoria tritici blotch (STB) and tan
spot in winter wheat [39-41], as well as FHB and STB in winter wheat [42-44]. Each of
these studies reported highly variable prediction accuracies, but they neither evaluated
all diseases on the same population nor compared the predictive ability of the different
reaction norm models [45], which forms one of the bases in the present study. In addition,
we are not aware of any study that investigated the predictive ability of GS in common
bunt in wheat, which forms another basis in the present study.

The multiplicative reaction norm model [45] is one of the methods proposed to ac-
count for genotype x environment (GE) interactions that could improve prediction ac-
curacies [46-50]. It partitions the phenotypic variance into genotypes (lines), molecular
markers (genomics), environments (E), and GE interactions, and compares the predictive
ability of the baseline model with the main effect and interaction models. In our previous
study [51], we used the reaction norm models with three random cross-validation (CV)
schemes in three Canadian spring wheat populations. Each population was evaluated for
seven agronomic and grain characteristics in three to nine conventional and three to six
organically managed field environments which were genotyped either with the wheat 90K
SNP array or DArTseq technology. Our results from that study revealed highly variable
prediction accuracies depending on the models, CV schemes, trait complexity, and genetic
backgrounds. The objectives of this study were to (1) compare the variance components and
heritability of FHB, common bunt, leaf rust, stripe rust, and leaf spot across three spring
wheat populations, and (2) examine the predictive ability of three models and random
cross-validation (CV) schemes across different genetic backgrounds and traits.

2. Materials and Methods
2.1. Germplasm and Phenotyping

The present study was conducted on 578 lines and cultivars (Table S1) that represented
an association mapping panel of 203 lines and cultivars plus 2 recombinant inbred lines (RIL)
populations derived from Attila x CDC Go (167 lines), and Peace x Carberry (208 lines).
These three Canadian spring wheat populations were used in our previous study to com-
pare the prediction accuracies of different models, and random CV schemes across seven
agronomic and end-use quality traits [51]. The following cultivars were used as resistant and
susceptible checks: (i) AC Barrie and AC Crystal as susceptible, and Lillian and Carberry as
resistant checks in stripe rust nurseries; (ii) AC Barrie and Park as moderately susceptible
to susceptible checks, and Peace and Carberry as moderately resistant to resistant checks
in leaf rust nurseries; (iii) AC Barrie, Unity, and Glenlea as moderately susceptible checks,
and Neepawa as a moderately resistant checks in the leaf spot nurseries; (iv) Laura as
susceptible and McKenzie as a resistant checks in common bunt nurseries; and (v) CDC Teal
as a susceptible check and 5602HR as moderately resistant checks in FHB nurseries.
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The association mapping panel (hereafter referred to as BVC) consisted of 183 Cana-
dian spring wheat cultivars and 20 unregistered spring wheat lines [52]. It was evaluated
at eight environments (site x year combinations) for reaction to stripe rust near Creston,
British Columbia (49.06° N, 116.31° W) in 2018 and 2020, at the Lethbridge Research and De-
velopment Centre (Lethbridge RDC), Alberta (49.7° N, 112.83° W) between 2016 and 2019,
and at the University of Alberta South Campus, Edmonton, Alberta (53°19’ N, 113°35’' W) in
2016 and 2018. The BVC panel was evaluated for reactions to leaf rust at four environments
at the University of Alberta South Campus in 2017 and 2020, and the Morden Research
and Development Centre (Morden RDC), Manitoba, in 2019 and 2020. For both stripe
and leaf rusts, seeds of each cultivar and check were planted either in hills or 1 m long
rows with a spacing of 25 cm between hills or rows in disease screening field nurseries
using a randomized incomplete block design with two replications. The susceptible checks
were used as spreader rows, and were planted every five rows. Inoculum preparation and
application were carried out as described in a previous study [53]. At each site (location),
except Creston for stripe rust that was based on natural infection, we collected uredin-
iospores of the prevalent multi-race mixture from infected plants in the previous year and
froze them in —80 °C in vials until needed in June of the following year. Urediniospores
were removed from the freezer, allowed to rehydrate at room temperature, suspended in
light mineral oil (Soltrol 170, Chevron Phillips Chemical Co., Woodlands, TX, USA) at a
concentration of 1 mL urediniospores and 2 L of Soltrol 170, and sprayed on the leaves
of the spreader rows at an early tillering stage in the early evenings using a low-volume
hand sprayer. The spray application was repeated three times at an interval of three days.
Subsequently, urediniospores that developed on the spreader rows were windblown to the
test cultivars and lines to provide infection. Plants were irrigated three times a week using
either overhead sprinklers or Cadman Irrigations travellers with Briggs boom:s.

The BVC panel was evaluated for its reaction to leaf spot for three years at the Univer-
sity of Alberta South Campus in 2016, 2017, and 2018. P. tritici-repentis, which causes tan
spot, is the most common leaf spotting disease in all wheat classes. Disease epidemics was
initiated by spraying spreader rows of susceptible checks (AC Barrie, Unity, and Glenlea)
with a spore suspension that consisted of an equal mixture of two isolates (AB7-2 and
AB50-2) that belong to race 1 of P. tritici-repentis (Ptr). These two isolates contain the ToxA
gene [54] and belong to Race 1, which is the most common race in Alberta [55]. Although
both AB7-2 and AB50-2 isolates cause tan spot disease, we scored disease severity as leaf
spot because tan spot infection in wheat fields occurs in association with septoria blotch and
spot blotch, which all produce similar leaf lesions that are difficult to visually distinguish
without laboratory analysis [56]. For both rusts and leaf spot, disease severity was recorded
using a modified Cobb scale [57] on a scale of 1 (no visible sign or symptom = resistant) to
9 (leaf area covered with spores = highly susceptible). Such ratings were performed when
the susceptible and resistant checks showed contrasting reactions (susceptible check had
many pustules/lesions, the moderate checks had fewer pustules/lesions, and the resistant
check had few or no pustules/lesions).

The BVC panel was evaluated for its reaction to common bunt at the University of
Alberta South Campus in 2016 and 2017, as described in a previous study [58]. The screening
involved treating seeds of each cultivar with an equal mixture of common bunt race L-16 of
T. laevis and race T-19 of T. tritici spores. We then removed the excess inoculum by shaking
the seed over a fine-mesh sieve and planted them in a randomized incomplete block design
with two replications. At the dough stage, all spikes of each cultivar were examined for
common bunt infection and recorded on a scale of 1 to 9, in the same manner as rusts and leaf
spots. The reaction to FHB was evaluated at six environments at the Elora Research Station,
Pilkington, Ontario in 2017, at the Morden RDC from 2017 to 2019 and 2021, and the Ian N.
Morrison Research Farm, University of Manitoba, Carman, Manitoba in 2020. The inoculum
suspension consisted of four F. graminearum isolates that belong to the 3-ADON chemotype
(HSW-15-39 and HSW-15-87) and the 15-ADON chemotype (HSW-15-27 and HSW-15-57), as
described in a previous study [12]. Briefly, the suspension was prepared by mixing an equal
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amount of each isolate with sterile water and Tween 20 and applied directly to wheat spikes
using a backpack sprayer. The sprays were performed twice at Morden and Carman, and
three times at the Elora Research Station, starting when the earliest lines reached a 4-5 leaf
stage. The inoculated plants were irrigated three times a week using either an overhead mist
irrigation system (Elora and Carman) or Cadman Irrigations travellers with Briggs booms
(Morden). Visual FHB rating was performed 18-21 days after the first spray inoculation by
examining infected spikes (disease incidence) and infected spikelets (disease severity) on a
scale of 1 to 9 in some environments and 0-100% at other environments, as described above.
To get the same FHB rating across all environments, however, we converted the percentages
scores into the 1 to 9 scale and then calculated visual rating index (VRI) in percentages by
multiplying FHB incidence and FHB severity.

The ACG population was evaluated for reactions to leaf rust, leaf spot, and common
bunt at three environments at the University of Alberta South Campus Research Station
from 2012 to 2014, as described in our previous study [59]. The ACG population was
also evaluated for reactions to stripe rust at three environments at the Lethbridge RDC
in 2013, at Creston in 2014, and at the Ellerslie research station, Edmonton, Alberta, in
2015. In both Creston and Lethbridge, plots consisted of a single 1 m long row per line
spaced 25 cm between plants in a randomized complete block design with two to three
replicates depending on seed availability. At Ellerslie, we grew hill-plots of ten seeds per
line spaced 25 cm apart, with a similar experimental design. The PAC population was
evaluated for stripe rust at eight environments at Creston in 2016, at the University of
Alberta South Campus Research Station in 2016, 2018, and 2019, and at Lethbridge RDC
from 2016 to 2019. Leaf rust was evaluated at three environments at the University of
Alberta South Campus Research Station in 2017 (nursery and field) and 2020 (nursery),
whereas common bunt was evaluated at the same location three times in 2017 (nursery and
field) and 2018 (nursery). Leaf spot was evaluated at four environments at the University
of Alberta South Campus Research Station in 2016 (nursery), 2017 (field and nursery),
and 2018 (nursery). The experimental design, isolates, inoculum preparation, inoculum
application, and disease ratings were the same as the BVC population described above.

2.2. DNA Extraction and Genotyping

Genomic DNA was extracted following a modified cetyl trimethyl ammonium bro-
mide (CTAB) method [60], and its quality was checked by running an aliquot onto 0.8%
agarose gel with SYBR Safe DNA Gel Stain. The DNA concentration was assessed with
a NanoDrop ND-1000 Spectrophotometer (Thermo Scientific, Waltham, MA, USA), nor-
malized to approximately 100 ng pL.~!, and shipped to service laboratories for genotyping.
DNA samples from both the BVC and ACG populations were genotyped with the wheat
90K iSelect array [61] at the University of Saskatchewan Wheat Genomics lab, Saska-
toon, Canada, whereas the PAC population was genotyped with DArTseq technology
(https:/ /www.diversityarrays.com/; accessed 20 March 2022). The DArTseq technology
generated a total of 36,626 markers, of which 22,741 were SilicoDArT markers (present
vs. absent variation) and the remaining 13,885 were SNPs. We also genotyped the ACG
and PAC RIL populations with a few functional markers linked to the photoperiod re-
sponse (Ppd-B1 and Ppd-D1) [62], vernalization response (Vrn-Al and Vrn-B1) [63], and/or
Rht-B1 [64] genes at the Agricultural Genomics and Proteomics Lab, University of Alberta,
Edmonton, Canada, as described in our previous studies [63,65,66]. In the BVC population,
we excluded markers that had >20% missing data points, and those with minor allele fre-
quencies below 5%. In the RIL populations, we excluded all markers that had >20% missing
data, were monomorphic between parents, and had high segregation distortion at p < 0.01.
We finally retained a total of 23,795 SNPs in the BVC, 5732 markers (3840 SilicoDArT and
1892 SNPs) in the PAC, and 3158 SNPs in the ACG population for subsequent analyses
(Table S2).
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2.3. Data Analyses

All data analyses were performed as described in our previous study [51]. Briefly, we
computed best linear unbiased estimators (BLUEs) as adjusted means [34,39] using Multi
Environment Trial Analysis in R (META-R) v6.04 (https:/ /hdl.handle.net/11529/10201; ac-
cessed 20 March 2022). Broad-sense heritability (H?) across all environments was computed

as follows:
o2 g

H? =
2 2

2 o‘e+ o-ge ole
0°g+ Env + Env x Rep

where ng, 02e, O‘de, and o2, are the genotypic, environmental, genotype-by-environment
interaction, and residual (error) variance components, respectively, whereas Env and Rep are
the number of environments and the average number of replicates within each environment,
respectively. The disease ratings were analyzed separately for each environment and com-
bined across all environments by considering genotypes (L) as a fixed effect and environ-
ment (E), replication, and GE interaction as random effects. Pearson correlations and coeffi-
cient of determination (R?) and different types of graphs were generated using both Minitab
v.14 (https:/ /www.minitab.com; accessed on 20 March 2022) and JMP v16 (www.jmp.com;
accessed on 20 March 2022) statistical software’s. We computed the first three principal com-
ponents from the genotype data of each population in TASSEL v5.2.72 [67], used them as
covariates in the GS prediction models, and plotted them for visual examination of within-
population structure in CurlyWhirly v1.21.08.16 (https:/ /ics.hutton.ac.uk/curlywhirly/;
accessed 20 March 2022).

We evaluated the predictive ability of pairwise combinations of the baseline model
and two reaction norm models and three CV schemes [45,68], as described in our previous
study [51]. Briefly, the baseline M1 model considers the response of the jth wheat line in
the ith environment (y;;) as a function of a random effect model that accounts for the effects
of the environment (E;), the line (Lj) plus a residual variance (g;;) as follows:

}/1‘]‘:}!+E1‘+L]'+Sl‘j 1

where i is an intercept, E; id N (0, 02) is the random effect of the ith environment, L j N (0, %)

is the random effect of the jth line, €ij iid N (O, (73-) is a residual, and N(-, -) stands for a normally
distributed random variable that is independent and identically distributed (iid). The M1 model
assumes the effects of the lines as independent with no borrowing of information among lines. The
main effect M2 model is an extension of the M1 model, which adds the random effect of molecular
markers or genomic (g;) as follows:

yij:}l+Ei+L]'+gj+€i]' (2)

The M2 model allows the borrowing of information among lines that enable the
prediction of untested genotypes. The third model (M3) extends the M2 model (Equation (2)
above) by including genomic and environment interaction effects (Eg;;) as follows:

yij=y+Ei+Lj+gj+Egij+eij 3)

Notably, in Equation (3), the interaction term Eg;; approximates the true interaction
of the ith line with the ith environment and conceptually includes all the first pairwise
interactions between each genotype at each environment. The wheat lines are related; there-
fore, the M3 model allows the borrowing of information between the lines to predict line
performance in environments where the lines are not observed. Each of these three models
was assessed using three prediction scenarios that mimicked (i) predicting the performance
of 20% of wheat lines that have not been evaluated in any of the environments (CV1),
(ii) predicting the performance of 20% of lines that were evaluated in some environments
(CV2) but not in others, which used phenotypes of the same line at different environments
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as part of the training set, and (iii) predicting the performance of all lines in an unobserved
environment using the remaining environments as a training set (CV0), which was con-
ducted in a leave-one-out fashion. The CV0 scheme computed the correlation between
predicted and observed values within each environment only once with no random process
involved to assign lines into folds. All genome-wide prediction analyses were performed
using imputed marker data in R and the Bayesian Generalized Linear Regression (BGLR)
package, as described elsewhere [69].

3. Results
3.1. Reaction to Diseases

Figure 1 summarizes disease scores based on individual environments, which revealed
highly variable reactions depending on the genetic background, the environment, and the
type of disease. Genotypes (lines) within each of the three populations showed significant
(p < 0.05) differences for all diseases (Table S3). Table 1 summarizes the disease scores,
correlations among environments, and broad-sense heritability computed across all en-
vironments. Stripe rust, leaf rust, leaf spot, common bunt, FHB incidence, and severity
scores in the BVC panel evaluated between two and eight environments varied from 1.0 to
9.0 in the individual environments and from 1.0 to 8.1 combined across all environments.
The FHB index across six field environments in Ontario and Manitoba varied from 0.5% to
82.1% on individual environments (Table 1), and from 3.7% to 49.6% averaged across all six
environments. In the PAC population, stripe rust, leaf rust, leaf spot, and common bunt
scores in 3-8 individual environments varied from 1.0 to 9.0, from 1.0 to 6.9, from 1.4 to 8.3,
and from 1.0 to 7.5, respectively. Averaged across all environments, the RILs in the PAC
population had a disease score of 1.1-5.7 for stripe rust, 1.0-5.8 for leaf rust, 2.3-7.1 for leaf
spot, and 1.0-6.0 for common bunt. Disease scores in the ACG RIL population evaluated
across three environments varied from 1.5 to 7.9 for stripe rust, from 1.9 to 6.1 for leaf rust,
from 3.0 to 8.7 for leaf spot, and from 1.0 to 4.9 for common bunt, respectively. Broad-sense
heritability in each population varied from 0.44 to 0.62 in the ACG, from 0.22 to 0.89 in the
BVC, and from 0.72 to 0.90 in the PAC populations. Leaf spot in the BVC panel showed
the lowest broad-sense heritability, which was due to the high environmental variance
observed in this population (34.8-38.3%) as compared with the PAC (4.5-4.7%) and ACG
(13.8-14.3%) populations (Figure 2). The second lowest heritability was observed for FHB
incidence in the BVC population, which was also due to high environmental variance
(61.5-67.1%) as compared with FHB severity (44.4—47.0%) and index (35.9-38.2%).

Table 1. Descriptive statistics based on best linear unbiased estimators (BLUEs) and broad-sense
heritability of three spring wheat populations evaluated for reactions to diseases in field conditions.

. Individual .
No. of Correlation 2 . All Environments 3
Population 1 Trait Environ- Environments ]i)’;g:lil;gfll:ts;

ments Range Mean Range Mean Std Range Mean Std
BVC Stripe rust 8 0.10-0.81 0.52 1.0-9.0 37 25 1.2-8.1 3.76 1.80 0.89
Leaf rust 4 0.43-0.75 0.55 1.0-9.0 3.6 2.3 1.0-8.1 3.52 1.78 0.78
Leaf spot 3 0.07-0.28 0.09 1.0-9.0 4.1 2.0 2.2-6.8 4.12 0.92 0.22
Common bunt 2 0.50-0.64 0.57 1.0-9.0 2.5 1.8 1.0-7.9 2.48 1.61 0.69
FHB incidence 6 0.12-0.56 0.28 1.0-9.0 5.9 2.8 24-7.5 5.81 0.74 0.29
FHB severity 6 0.11-0.67 0.41 1.0-9.0 3.8 2.1 1.8-6.8 4.15 0.94 0.58
FHB index 6 0.10-0.68 0.42 0.5-82.1 26.3 20.4 3.7-49.6 25.97 9.11 0.50
PAC Stripe rust 8 0.14-0.66 0.42 1.0-9.0 2.1 1.4 1.1-5.7 2.07 0.79 0.72
Leaf rust 3 0.45-0.99 0.64 1.0-6.9 1.7 1.1 1.0-5.8 1.74 0.94 0.82
Leaf spot 4 0.52-1.00 0.66 1.4-83 44 1.3 2.3-7.1 4.45 1.10 0.85
Common bunt 3 0.76-1.00 0.84 1.0-75 1.6 1.1 1.0-6.0 1.59 1.06 0.90
ACG Stripe rust 3 0.38-0.50 0.46 1.0-9.0 3.9 2.0 1.5-7.9 3.85 1.33 0.62
Leaf rust 3 0.18-0.29 0.24 1.0-8.5 4.2 1.6 1.9-6.1 3.44 0.82 0.44
Leaf spot 3 0.10-0.44 0.24 1.0-9.0 6.2 1.7 3.0-8.7 6.00 1.30 0.57
Common bunt 3 0.22-0.37 0.32 1.0-7.0 2.3 1.4 1.0-4.9 1.79 0.82 0.52

1 BVC: association mapping panel; PAC and ACG: recombinant inbred lines derived from a cross between Peace
x Carberry, and Attila x CDC Go, respectively. 2 Within-trait phenotypic correlation coefficients between pairs of
environments (site x year combinations). > Range: minimum and maximum scores; Std: standard deviation of
the mean.
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Figure 1. Box plots of the best linear unbiased estimators (BLUEs) of Fusarium head blight (FHB),
stripe rust (Yr), leaf rust (Lr), leaf spot (Ls), and common bunt (bunt) in three spring wheat populations
evaluated in field conditions. All diseases were rated on a 1 to 9 scale, except the FHB index in
percentage. Both ACG and PAC are recombinant inbred lines derived from Attila x CDC Go and
Peace x Carberry, respectively, whereas BVC is an association mapping panel of diverse spring wheat
cultivars and lines. The environments on the x-axis start with a prefix for each site (Cres: Creston
station in British Columbia; Edm: the University of Alberta South Campus in Edmonton; Elle: the
Ellerslie research station in Edmonton; Leth: Lethbridge Research and Development Centre; Carm:
the University of Manitoba Research Farm in Carman; Mord: Morden Research and Development
Centre), followed by the year of the experiment.

The correlation between pairs of environments within the same disease and the
same population varied from 0.07 to 1.00 (Table 1). Low to moderate correlations were
observed among the six environments used for evaluating FHB incidence (0.12-0.56),
severity (0.11-0.67), and index (0.10-0.68) (Figure S1). The correlation between pairs of traits
recorded in each population varied from —0.01 to 0.38 in the ACG, from —0.24 to 0.30 in
the PAC, and from —0.11 to 0.97 in the BVC population. In the overall mean disease scores
across all environments, the three highest correlations were observed between FHB severity
and FHB index (r =0.97, p < 0.01), FHB incidence and FHB index (r =0.72, p < 0.01), and FHB
incidence and FHB severity (r = 0.63, p < 0.01) in the BVC population (Figures 3 and S2).
The high correlation between FHB severity and FHB index was also evident between pairs
of the six environments with correlations and coefficients of determination varying from
0.71 to 0.97 (Figure S2) and 0.51 to 0.96 (Figure 3), respectively. The correlation between
FHB incidence and severity and between incidence and index across the six environments
varied from 0.22 to 0.65 and from 0.45 to 0.80, respectively. All disease scores averaged
across all environments showed a continuous distribution in all three populations (Figure
S3). A plot of the first two PCs from PCA analyses revealed some level of population
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structure within both the BVC and the ACG RIL populations, but not within the PAC
population (Figure 54).
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Figure 2. Partitioning of total variance into environments (E), genotypes (L), molecular markers (G),
interactions between genotypes and environments (GE), and residual components using the baseline
M1 model, the main effect M2 model, and the M3 model that incorporated GE interactions. See
Table 54 for details.

3.2. Partitioning of Variance Components

The proportion of variances due to environments, genotypes (lines), molecular markers
(genomics), GE interactions, and residual (error or unexplained) components differing
depending on the prediction models, traits, and genetic backgrounds (Figure 2, Table S4).
Environmental variances across all populations and diseases varied from 0.5% for common
bunt in the PAC population to 78.6% for FHB incidence in the BVC panel, with an overall
average of 24.1%. Genotypic variance varied from 2.0% for FHB incidence in the BVC
panel to 80.0% for common bunt in the PAC population, and the overall average was
21.2%. The effects of genomics on variance components were estimated in both M2 and M3
models, which varied from 3.4% for leaf spot to 59.4% for leaf rust in the BVC population,
with an overall average of 22.2%. The variances due to GE interactions computed in the
M3 model varied from 5.9% for FHB incidence to 30.2% for leaf spot in the BVC panel,
with an overall average of 11.6%. Residual variance varied from 9.6% to 66.2% with an
overall average of 35.9%. Residual variance was much greater in the ACG population
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(range: 36.9-66.2%, average = 54.6%) than the BVC (range: 9.6-59.3%, average = 28.4%)
and PAC (range: 14.9-45.0%, average = 30.5%) populations. Averages across all diseases
and models, environment, genotype, genomics, GE, and residual variances within each
population varied from 8.8% to 36.5%, from 13.0% to 38.3%, from 9.7% to 28.9%, from 8.6%
to 14.5%, and from 28.4% to 54.6%, respectively. The highest environmental variance was
observed for FHB incidence, severity, and index in the BVC panel, whereas the highest
residual variances were observed in the ACG population (Figure 2), which generally agreed
with the broad-sense heritability (Table 1). In contrast to the positive correlation between
heritability and genotypic variance (r = 0.57, p < 0.01), both residual and environmental
variances showed a significant negative correlation (—0.70 < r < —0.30, p < 0.01) with
heritability. As compared with the main effect M2 model, the inclusion of GE interactions
in the M3 model reduced the residual variances on average by 10.4% (range 3.9-28.8%).
However, the residual variance per trait still accounted for an overall average of 28.7%
(range 9.6-56.3%) in the M3 model, with the ACG population showing the highest average
residual variance at 49.8% (range 36.9-56.3%).

{b}) Plots based an overall BLUE
{a) Plots based on BLUE from individual environments
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Figure 3. Regression plots of Fusarium head blight (FHB) incidence, severity, and index based
on (a) individual environments, and (b) all six environments. The plots showed low R? between
incidence and severity (0.05-0.42), low to moderate R? between incidence and index (0.21-0.64), and
high to very high R? between severity and index (0.51-0.95). The environments are named using the
site (Elora, Mord for Morden, and Carm for Carman) and the year of the experiment. Note that FHB
incidence showed a lower R? value with FHB severity and index due to its greater environmental

variances summarized in Table S3 and Figure 2.

3.3. Comparison of Prediction Models

We compared the predictive ability of the baseline M1 model that utilizes only pheno-
type data with the main effect M2 model that adds molecular markers to the M1 model, and
the M3 model that incorporated GE interactions to the M2 model (Figure 4, Tables 2 and S5).
In the absence of molecular markers, the M1 model produced negative or close to zero
prediction accuracies for all diseases and populations when it was used with the CV1
scheme (range —0.16 to —0.03, average —0.11), which suggested the failure of the model to
predictive disease reaction of presumably ‘newly developed lines’. The M1 model showed
highly variable accuracies when it was used with the CV2 (range: 0.07 to 0.84, average
0.51) and CVO (range: 0.11 to 0.87, average 0.55) schemes, which was due to the inclusion
of some phenotype records of the same lines at some environments. When molecular
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markers were incorporated in the M2 model, the average prediction accuracies per trait
with the CV1, CV2, and CV0 schemes varied from 0.02 to 0.49, from 0.21 to 0.84, and from
0.11 to 0.87, respectively. The overall average prediction accuracies of all diseases and
populations obtained when the M2 model was used with the CV1, CV2, and CV0 schemes
were 0.28, 0.54, and 0.55, respectively. The prediction accuracies of the M3 model with the
CV1, CV2, and CV0 schemes varied from 0.02 to 0.48, from 0.25 to 0.84, and from 0.14 to
0.87, respectively. The average prediction accuracies with the M3 model were 0.30 for CV1
and 0.55 for both CV2 and CVO0.
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Figure 4. Comparisons of prediction accuracies of three random cross-validation schemes (CV0,
CV1, and CV2) and three models (M1, M2, and M3). CV0, CV1, and CV2 represent predicting the
entire environment, the performance of newly developed lines, and sparse testing, respectively. M1,
M3, and M3 represent the baseline model, the main effect reaction norm model, and the model that
incorporated GE interactions, respectively. Trait initialisms are as follows: stripe rust (Yr), leaf rust (Lr),
leaf spot complex (Ls), common bunt (bunt), and Fusarium head blight (FHB). See Table S5 for details.

Overall, prediction accuracies obtained with the M1 model with the CV1 and CV2
schemes were significantly smaller (p < 0.05) than both the M2 and M3 models (Table S5D).
The most noticeable change in prediction accuracies in all diseases and populations was
observed when the CV1 scheme was used with the M2 and M3 models that increased
accuracies by averages of 208% and 199% over the baseline M1 model, respectively. We
found statistically significant differences in the prediction accuracies between the M2 and
M3 models in the BVC, but not in both the PAC and ACG populations, regardless of the
CV schemes. However, the M3 model increased prediction accuracies over the M2 model
by an average of 6% at CV1 and by 2% both at CV2 and CV0 schemes. In some traits,



Genes 2022, 13, 565

12 of 20

the M3 model increased prediction accuracies by 4-54% as compared with the M2 model,
which included leaf spot in both the BVC and ACG populations at both the CV1 and CV2
schemes and FHB incidence and index in the BVC population (Table 2). The similarities
in the prediction accuracies of the M2 and M3 are evident from the high coefficients of
determination in most traits (Figure S5a). In cases when one model performed better than
the other, however, the coefficient of determination between the M2 and M3 models showed
an erratic pattern, which included FHB incidence (0.82-1.00), FHB index (0.90-0.99), and
leaf spot (0.59-0.95) in the BVC population, leaf spot in ACG (0.36-0.99) and PAC (0.83-1.00),
and leaf rust in the ACG (0.44-0.82) and PAC (0.90-1.00) population (Figure S5b).

Table 2. Mean prediction accuracies obtained using three random cross-validation schemes (CV1,
CV2, and CV0) and three models (M1, M2, and M3). See Table S5 for details of prediction accuracies.

Ccvi Cv2 Ccvo

M1 M2 M3 M1 M2 M3 M1 M2 M3
Population ! Trait 2 Mean Std® Mean Std MeanStd MeanStd MeanStd MeanStd MeanStd MeanStd Mean Std
BVC Bunt -0.11 0.07 043 0.02 044 003 056 0.03 0.62 002 062 003 0.62 002 063 000 0.62 0.04
FHB inc. -013 0.06 022 0.09 027 013 041 012 043 013 045 013 044 014 045 0.14 045 0.14
FHBindex  —0.10 007 039 016 040 0.18 056 013 058 015 0.63 016 059 0.16 059 017 0.60 0.16
FHB sev. -0.11 0.07 042 014 041 017 058 015 059 016 062 018 0.60 017 061 0.18 0.61 0.18
Lr -0.09 0.08 049 011 048 012 058 0.09 064 0.10 064 009 063 013 0.65 0.12 059 0.05
Ls -013 005 018 020 038 016 0.07 010 021 018 041 015 012 010 0.11 0.14 014 011
Yr -0.10 0.07 048 0.08 049 009 075 0.07 076 0.07 076 006 0.77 0.08 076 0.07 0.77 0.08
PAC Bunt -0.10 010 031 0.06 029 007 084 007 084 006 084 006 0.87 0.09 087 0.09 0.87 0.09
Lr -006 0.07 031 0.08 029 011 070 019 071 020 070 020 0.77 027 073 024 077 027
Ls -0.03 0.08 033 004 032 007 073 012 073 011 074 010 075 014 074 013 075 013
Yr -0.09 0.07 026 0.07 026 010 054 0.09 054 009 055 008 056 010 056 0.08 0.56 0.10
ACG Bunt -0.14 0.07 002 0.07 0.2 009 039 005 039 006 034 008 041 004 042 006 042 0.05
Lr -0.14 0.07 013 0.05 011 006 027 004 029 003 025 004 030 0.03 033 001 032 0.02
Ls -0.16 0.06 004 010 0.08 007 028 012 028 013 031 008 032 014 030 016 032 0.15
Yr -0.12 0.09 025 0.06 029 008 053 005 054 005 056 006 054 0.06 053 005 054 0.05

L BVC: association mapping panel; PAC and ACG: recombinant inbred lines derived from a cross between Peace
x Carberry, and Attila x CDC Go, respectively. 2 Yr: yellow (stripe) rust; Lr: leaf rust; Ls: leaf spot; FHB: common
bunt; FHB inc.: Fusarium head blight (FHB) incidence; FHB sev.: FHB severity. 3 Std: standard deviation of the
mean. M1, M3, and M3 represent the baseline model, the main effect reaction norm model, and the model that
incorporated GE interactions, respectively.

We compared the average prediction accuracies of the five diseases to determine
if some environments provided better predictions than others (Figure S6). Although
most environments showed consistent prediction accuracies regardless of the genetic
background and the trait, some environments displayed lower accuracies. For example,
Creston for stripe rust resistance in both BVC and PAC populations, and Morden in 2017 and
2021 for FHB resistance in the BVC population gave lower accuracies as compared with
other environments. Using the results of the M3 model, we also compared the prediction
accuracies of all four to seven traits per population regardless of the environments (Figure 5,
Table 2). The predictive ability of the M3 model with both the CV0 and CV2 schemes for
common bunt and leaf rust was very high in the PAC (0.70-0.87) population, high in the
BVC (0.59-0.64), and low to moderate (0.25-0.42) in the ACG population. For leaf spot,
the M3 model with the CV2 and CV0 schemes provided high accuracies (0.74-0.75) in
the PAC population and low to moderate (0.14-0.42) in the BVC and ACG populations.
The prediction accuracies of FHB severity and index in the BVC populations were similar,
which varied from 0.40 to 0.41 at CV1 and from 0.60 to 0.63 at CV2 and CVO0. The prediction
accuracies for FHB incidence were 0.27 at CV1 and 0.45 both at CV2 and CV0, which were
24-36% smaller than that of FHB severity and index. Overall, the ACG population had
low prediction accuracies for common bunt, leaf rust, and leaf spot, regardless of the CV
schemes (Figure 5).
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Figure 5. Comparisons of average prediction accuracies using the M3 model with the CV0, CV1,
and CV2 random cross-validation schemes that represent predicting the entire environment, the
performance of newly developed lines, and sparse testing, respectively. See Table S5 for details.

4. Discussion
4.1. Comparisons of Prediction Models

At least 83 stripe rust, 80 leaf rust, and 15 common bunt resistance genes have been
reported in wheat and its relatives [70-72], which regulate the qualitative inheritance
of these diseases. However, quantitative resistance has frequently been reported as the
predominant form of resistance in crops [73,74], which is regulated by multiple QTLs of
minor effects, highly polygenic, and characterized by a continuous phenotypic distribution.
The continuous distribution of all five diseases evaluated in the present study was evident
in all three populations (Figure S3) regardless of the genetic backgrounds (biparental RILs
vs. diverse panel of cultivars from multiple wheat classes), which suggest the lack of a major
gene and major effect QTLs. Previous genome-wide association analysis and standard QTL
mapping studies conducted in the BVC, PAC, and ACG populations detected only a few
minor to moderate effect QTLs that individually accounted for <20% of the phenotypic
variance [59,75,76]. In such cases, therefore, genome-wide prediction outperformed MAS,
which produced intermediate to high prediction accuracies (0.4-0.9), as compared with the
lower values (<0.30) observed for MAS-based models [77]. Although prediction accuracies
obtained in the present study differed depending on the trait, genetic background, model,
and CV schemes (Table 2, Figure 4), most results are highly encouraging for implementing
large-scale GS in Canadian spring wheat.

The incorporation of GE interactions in the M3 model has shown inconsistent results
for agronomic and end-use quality traits in the literature, with some studies reporting
higher prediction accuracies over the main effect M2 model [45,46,49,78-80], whereas others
found no advantage at all [81]. Our results for the five diseases recorded in the BVC, PAC,
and ACG populations revealed statistically significant differences between the M2 and
M3 models in the BVC, but not within the ACG and PAC populations (Table S5c), which
partly agrees with Juliana et al. [81]. The M3 model had three advantages: (a) it reduced
residual variance per trait by 3.9-28.8% as compared with the M2 model; (b) it increased
prediction accuracies by an average of 2-6%; and (c) we found a few cases where the M3
model increased prediction accuracies by up to 54% as compared with the M2 model.

GS predicts the most likely performance of lines using three scenarios that are widely
used by plant breeders. In the CV1 scheme, we aimed to predict the performance of
newly developed lines that have been genotyped with genome-wide markers but not
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phenotyped at any environment, which help breeder not only in facilitating the time of
cultivar development, but also in reducing costs associated with seed multiplication, land
preparation, and phenotyping. We used the CV1 scheme by hiding the phenotype data
of 20% of randomly sampled lines as a testing set and the remaining 80% of them used
as a training set, which was evaluated for up to 80 combinations of environments and
iterations (Table S5A). The average prediction accuracies obtained using the CV1 scheme
and the M3 model varied from 0.02 to 0.49, which is indicative of a lower probability in
successfully implementing large-scale GS to predict the performance of newly developed
lines without any field testing. On the other hand, the prediction accuracies of the M3
model with the CV2 scheme varied from 0.25 to 0.84, which suggests the high potential of
implementing large-scale GS in developing disease resistance spring wheat cultivars using
a sparse testing (incomplete field trials) design where some lines are evaluated in some
environments, but not in others. Most of the prediction accuracies obtained when the CV2
scheme was used with the M3 model were >0.55, which included stripe rust (0.55-0.76) in
all three populations, common bunt (0.62-0.84) and leaf rust (0.64-0.70) in the BVC and
PAC populations, FHB severity (0.62) and FHB index (0.63) in the BVC population, and
leaf spot (0.74) in the PAC population, which agree with other studies [78,82]. In the CV0
scheme, the main interest was to predict disease resistance for the future environment by
leaving one environment out [47,78,83], which produced similar prediction accuracies to
the CV2 scheme (Table 2).

4.2. Prediction Accuracies among Traits

Prediction accuracies obtained for common bunt when both CV0 and CV2 schemes
were used along with the M3 model produced high accuracies in the BVC (0.62) and very
high accuracies in the PAC (0.84-0.87) populations (Table 2). For the ACG population,
prediction accuracies for common bunt were moderate (0.39 to 0.48), which agrees with the
0.40 accuracy reported for Karnal bunt (Tilletia indica) in two wheat RIL populations [84].
Differences in trait heritability, population size, and marker density may have contributed
to the observed differences in prediction accuracies [85,86]. For example, broad-sense
heritability was greater in both the BVC (0.69) and PAC (0.90) populations (Table 1) as
compared with the ACG population (0.52). Population size in both BVC (203) and PAC
(208) was greater than the ACG (167) population. Similarly, the marker density in the BVC
population was 23793 SNPs, which was over four-fold and seven-fold greater than the 5731
markers in the PAC population and 3158 markers in the ACG population, respectively.
The parents used in the ACG and PAC populations are included in the BVC populations.
Our prediction accuracies for common bunt in the BVC and PAC population were 36%
and 53% greater than the accuracies reported for Karnal bunt, respectively, which is very
encouraging for wheat breeders to implement large-scale GS for developing common bunt
resistant germplasm in western Canada. As far as we are aware, this is the first study to
report the genome-wide predictive ability of different models and CV schemes for common
bunt in wheat.

The prediction accuracies for both FHB severity and FHB index obtained when we
used the M3 model with CV1 (0.40-0.41), CV2 (0.62-0.63), and CVO0 (0.60-0.61) were 24-36%
greater than those for FHB incidence (Table 2), which disagrees with accuracies reported
in previous studies in spring wheat [26] and winter wheat [32]. Dong and colleagues [26]
assessed the potential for genomic selection to improve FHB resistance using 170 spring
wheat cultivars and elite lines adapted to the Pacific Northwest, evaluated in three field
nurseries and one greenhouse, and genotyped with 10,101 SNPs selected out of the Wheat
90K SNP array. Using training and testing population sizes of 80% and 20%, respectively,
the authors reported a higher average prediction accuracy for FHB incidence (0.63) than
FHB severity (0.41). Using FHB phenotype data of 273 breeding lines from 18 winter wheat
breeding programs in the United States, 3 prediction models, and 4500 SNPs, Arruda and
colleagues [32] reported higher prediction accuracies for FHB incidence (0.60-0.63) than
FHB severity (0.40-0.48). As shown in Figure 2, we observed much greater environmental
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variances for all three FHB-related traits than the four other diseases, with the highest being
for FHB incidence. The percentage of phenotypic variance explained by the molecular
markers was also much smaller for FHB incidence (8.9-10.2%) as compared with FHB
severity (18.6-19.2%) and FHB index (25.0-25.3%), which may have reduced the predictive
ability for incidence. In addition, broad-sense heritability for FHB incidence (0.29) was
nearly half of that of severity (0.58) and index (0.50). A previous genomic selection study in
winter wheat was conducted on 322 lines originated from 15 public and 3 private breeding
programs across the eastern United States and Canada [87]. Using data from the U.S.
cooperative FHB winter nurseries collected between 2008 and 2010, the authors reported
highly variable average prediction accuracies for FHB incidence and severity, which ranged
from 0.03 to 0.64 with the CV1 and from —0.12 to 0.61 with the CV2 schemes. Their two
best models (Random Forest and Reproducing Kernel Hilbert Spaces) produced prediction
accuracies for FHB incidence and severity that varied from 0.12 to 0.62 in the CV2 schemes.
Our prediction accuracies for FHB severity and index in spring wheat agreed with the
0.58 average accuracy reported in European winter wheat [88], and were intermediate as
compared with accuracies reported in other winter wheat populations evaluated at four
environments in Germany (0.21 to 0.77) [43].

The average prediction accuracies for stripe rust using the M3 model with CV1, CV2,
and CVO0 schemes in our three spring wheat populations varied from 0.26 to 0.49, from
0.55 to 0.76, and from 0.54 to 0.77, respectively (Table 2). The predictive abilities for stripe
rust with the CV2 and CV0 schemes were greater than the 0.26-0.33 accuracies reported in
wheat landraces from Afghanistan [28], the 0.16 to 0.21 accuracies reported in hybrid winter
wheat [36], and the 0.33-0.44 accuracies reported in another winter wheat landraces from
the Australian Cereals Collection [37]. Muleta et al. [27] evaluated spring wheat accessions
from the USDA-ARS National Small Grains and Potato Germplasm Research Unit and
reported highly variable accuracies for stripe rust that ranged from 0.45 to 0.79. Using
five wheat populations from the International Maize and Wheat Improvement Center
(CIMMYT) evaluated in two environments, Ornella et al. [29] reported accuracies for stripe
rust that varied from 0.12 to 0.63. Merrick et al. [38] reported accuracies that reached up to
0.72 for stripe rust severity in winter wheat.

For leaf rust, the prediction accuracies obtained when we used the M3 model with
both CV2 and CV0 schemes were smaller (0.25-0.33) in the ACG population than the BVC
(0.59-0.64) and PAC (0.70-0.77) populations (Table 2), which may be due to the differences
in heritability, population size, and marker density discussed above. Broad-sense heritabil-
ity for leaf rust was lower in the ACG (0.44) and higher in both the PAC (0.82) and BVC
(0.78) populations (Table 1). Our results for both BVC and PAC populations were greater
than the 0.43-0.50 accuracies reported in hybrid winter wheat [36], the 0.33-0.35 accuracies
reported in winter wheat landraces from the Australian Cereals Collection [37], and the
0.10-0.38 accuracies reported for wheat landraces from Afghanistan [28]. The prediction
accuracies for leaf spot obtained using the M3 model with the CV2 and CV0 schemes were
inconsistent depending on the genetic background (0.14-0.41 in the BVC, 0.31-0.32 in the
ACG, and 0.74-0.75 in the PAC populations). The prediction accuracies that we found for
leaf spot in the PAC population were greater than the 0.45 to 0.66 reported in two popula-
tions from the International Bread Wheat Screening Nurseries [30] and the 0.40-0.42 mean
accuracies reported in European winter wheat [41].

5. Conclusions

We compared prediction accuracies of the baseline model with two reaction norm
models (M2 and M3) across five diseases recorded in three Canadian spring wheat popula-
tions. We found statistically significant differences in prediction accuracies among the three
models in all three populations, but a significant difference between the M2 and M3 models
was observed only in the association mapping panel. However, the M3 model that incorpo-
rated GE interactions showed some obvious advantages over the main effect M2 model,
including increasing accuracies for traits up to 54% (2-6% on average per trait-population
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combination) as well as accounting for an overall average of 10.2% of residual variances
that were not explained by the M2 model. The prediction accuracies from the CV1 scheme
were smaller than both the CV2 and CV0 schemes, which suggests a less likely scenario
in successfully implementing large-scale GS using newly developed lines that have not
yet been phenotyped at any of the environments. The moderate to very high accuracies
obtained with the CV2 and CV0 schemes, however, demonstrated highly likely scenarios
for successfully implementing GS to develop disease-resistant spring wheat germplasm
either by reducing the number of lines evaluated in each environment or predicting the
performance of lines in future environments using data from some other environments.
As far as we are aware, this is the first comprehensive genomic prediction study that has
assessed the predictive ability of the reaction norm models across all five major wheat
diseases in spring wheat and common bunt in wheat for the first time, which provides
highly valuable information to breeders.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/genes13040565/s1, Figure S1: Scatter plots of best linear unbiased
estimators of Fusarium head blight (FHB) incidence, severity, and index based on six environments;
Figure S2: Scatter plots of the best linear unbiased estimators of Fusarium head blight (FHB) incidence,
severity, and index based on (a) six environments, and (b) individual environments; Figure S3:
Frequency distribution of the best linear unbiased estimators (BLUEs) of disease scores in three spring
wheat populations evaluated under field conditions; Figure S4: A plot of PC1 and PC2 to show the
within-population structure of (a) an association mapping panel (BVC) and two recombinant inbred
line populations derived from Attila X CDC Go (ACG) and Peace x Carberry (PAC); (b) a plot of the
different wheat classes within the BVC association mapping panel; Figure S5: Regression plots of
prediction accuracies based on the best linear unbiased estimators computed from all environments;
Figure S6: Comparison of prediction accuracies of three populations evaluated for disease reaction at
multiple field environments using three models (M1, M2, and M3) and three random cross-validation
schemes (CV0, CV1, and CV2); Table S1: (A) Summary of the two recombinant inbred line populations
and association mapping panel used in the present study; (B) summary of the Canadian spring wheat
association mapping panel; Table S2: Summary of polymorphic markers used in the present study;
Table S3: Summary statistics and broad-sense heritability of seven disease-related traits in three spring
wheat populations evaluated at 2-8 field environments; Table S4: Partitioning of variance components
into environments (E), wheat lines (L), molecular markers or genomics (G), and interactions between
markers and environments (G x E), and residual (unexplained) variance using three reaction norm
models (M1, M2, and M3 models). Values are in percentages; Table S5: (A) Prediction accuracies
of five wheat diseases recorded in three spring wheat populations in 2-8 field environments. The
results were obtained for individual environments using three cross-validation schemes (CV0, CV1,
and CV2), three models (M1, M2, and M3), and ten iterations. Populations are as follows—BVC:
association mapping panel; ACG: Attila x CDC Go; PAC: Peace x Carberry. (B) Average prediction
accuracies per traits and individual environment based on three cross-validation schemes (CV0, CV1,
and CV2), and three models (M1, M2, and M3). (C) Average prediction accuracies per trait regardless
of populations and environments based on three cross-validation schemes (CV0, CV1, and CV2) and
three models (M1, M2, and M3). (D) Analysis of variance based on the general linear model (GLM)
to compare prediction accuracies obtained for all three populations and seven traits summarized in
Table S5A.
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