
Citation: Vasilopoulos, S.N.; Güner,

H.; Uça Apaydın, M.; Pavlopoulou, A.;

Georgakilas, A.G. Dual Targeting of

DNA Damage Response Proteins

Implicated in Cancer Radioresistance.

Genes 2023, 14, 2227. https://doi.org/

10.3390/genes14122227

Academic Editors: Ioly Kotta-Loizou,

Nan Zhang and Xin Wang

Received: 26 November 2023

Revised: 13 December 2023

Accepted: 13 December 2023

Published: 17 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

genes
G C A T

T A C G

G C A T

Brief Report

Dual Targeting of DNA Damage Response Proteins Implicated in
Cancer Radioresistance
Spyridon N. Vasilopoulos 1,2 , Hüseyin Güner 3,4,5,† , Merve Uça Apaydın 3,4,†, Athanasia Pavlopoulou 3,4,*
and Alexandros G. Georgakilas 1,*

1 DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences,
National Technical University of Athens (NTUA), Zografou Campus, 15780 Athens, Greece;
svasilopoulos@acg.edu

2 Department of Science and Mathematics, Deree-The American College of Greece, 6 Gravias Street,
15342 Athens, Greece

3 Izmir Biomedicine and Genome Center (IBG), 35340 Izmir, Turkey; huseyin.guner@ibg.edu.tr (H.G.);
merve.uca@ibg.edu.tr (M.U.A.)

4 Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Izmir, Turkey
5 Department of Molecular Biology and Genetics, Faculty of Life and Natural Science, Abdullah Gül University,

38080 Kayseri, Turkey
* Correspondence: athanasia.pavlopoulou@ibg.edu.tr (A.P.); alexg@mail.ntua.gr (A.G.G.)
† These authors have contributed equally to this work.

Abstract: Ionizing radiation can induce different types of DNA lesions, leading to genomic instability
and ultimately cell death. Radiation therapy or radiotherapy, a major modality in cancer treatment,
harnesses the genotoxic potential of radiation to target and destroy cancer cells. Nevertheless, cancer
cells have the capacity to develop resistance to radiation treatment (radioresistance), which poses
a major obstacle in the effective management of cancer. It has been shown that administration of
platinum-based drugs to cancer patients can increase tumor radiosensitivity, but despite this, it is
associated with severe adverse effects. Several lines of evidence support that activation of the DNA
damage response and repair machinery in the irradiated cancer cells enhances radioresistance and
cellular survival through the efficient repair of DNA lesions. Therefore, targeting of key DNA damage
repair factors would render cancer cells vulnerable to the irradiation effects, increase cancer cell
killing, and reduce the risk of side effects on healthy tissue. Herein, we have employed a computer-
aided drug design approach for generating ab initio a chemical compound with drug-like properties
potentially targeting two proteins implicated in multiple DNA repair pathways. The findings of this
study could be taken into consideration in clinical decision-making in terms of co-administering
radiation with DNA damage repair factor-based drugs.

Keywords: radiation therapy; radiation resistance; DNA damage repair; computer-aided drug design;
dual targeting; molecular dynamics

1. Introduction

Cancer represents one of the most formidable challenges in modern medicine and
is the leading cause of death worldwide. According to the World Health Organization
(WHO)/International Agency for Research on Cancer, there were approximately 10 million
cancer-related deaths in 2020 globally, and a significant increase in cancer cases worldwide
is expected over the next twenty years. The current cancer treatment modalities include
surgery, chemotherapy, radiation therapy, hormonal therapy, immunotherapy, and targeted
therapy [1].

Radiotherapy, which utilizes ionizing radiation (IR) to induce DNA damage and ulti-
mately destroy cancer cells, is a common treatment for many types of solid cancers, includ-
ing glioblastoma, lung, breast, rectal, prostate, colorectal, cervical, esophageal, and head
and neck cancers [1,2]. Approximately 50% of cancer patients undergo radiotherapy at
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some stage of their treatment, usually combined with surgery and/or other therapeu-
tic approaches [2,3]. Recent advancements in radiotherapy have markedly improved its
therapeutic effect [4].

IR-induced DNA damage can be either direct or indirect. In the former type of damage,
radiation causes intracellular DNA lesions such as abasic sites, single-strand breaks (SSBs),
and double-strand breaks (DSBs) [5], which have a deleterious effect and may also lead to
chromosomal rearrangements [6]. In the latter type, absorption of IR by water molecules in
the cells results in the generation of reactive oxygen species (ROS) that cause cellular stress
and eventually DNA damage [7,8].

Different types of DNA lesions are processed via specific pathways, where the cells
sense DNA damage and respond accordingly [9]. DSBs are repaired mainly by homologous
recombination (HR) and non-homologous end joining (NHEJ) [10]. SSB repair is considered
to be a sub-pathway of base excision repair (BER), which is responsible for repairing
normal and abnormal strand breaks [10]. It has been shown that IR is capable of inducing
clusters of DNA lesions, including SSBs, DSBs, oxidized base lesions, as well as regular
and oxidized abasic sites [11]. This complex DNA damage is crucial for the irradiated cells’
genomic instability and cell death. Furthermore, it poses a challenge to the cell’s DSB-
and non-DSB-related repair mechanisms [12]. For example, BER has been shown to repair
clustered lesions with a reduced efficiency as compared to the isolated lesions [13].

Cancer cells, like normal cells, respond to DNA damage caused by IR through DNA
damage response and repair (DDR/R) signaling pathways. DDR/R is considered a critical
determinant in radioresistance, in terms of tumor cell survival upon exposure to IR. It
has been demonstrated that genes/proteins involved in the DDR/R pathways, apoptosis,
hypoxia, and metabolism play an important role in tumor radioresistance [14–16].

Tumor cells’ radioresistance poses a major hurdle to the radiotherapy treatment out-
come. Many patients undergoing radiotherapy develop resistance, which is associated with
poor prognosis [17]. The administration of drugs to increase the sensitivity of cancer cells to
IR (i.e., radiosensitization) constitutes a very promising approach to improving the efficacy
of radiotherapy in cancer treatment. The combination of conventional chemotherapeutic
agents (e.g., platinum-based drugs) with radiotherapy is a standard curative treatment for
many cancer patients, but results in severe side effects in many cases [18]. Contemporary
strategies focusing on targeting pathways that regulate response to radiation at the cellular
level are currently under intensive investigation. Such strategies include inhibition of
DNA repair, induction of cell death pathways, suppression of survival pathways, and p53
reactivation [19]. Targeting DDR-associated molecules renders cancer cells more sensitive
to the genotoxic effects of IR, as they accumulate DSBs and other forms of non-DSB DNA
damage. DDR inhibitors and their clinical applications have been reviewed extensively,
and their combination with radiotherapy and immunotherapy shows promising results
for cancer prognosis. Of note, in a clinical setting, a tumor is very rarely irradiated a
second time. Thus, the development of radioresistance induced by radiotherapy is not
a problem since no combination of radiotherapy and drugs increasing the sensitivity of
cancer cells to radiation is considered. This contraindication is based on the intolerance of
healthy peritumoral tissues to a second exposure to radiation. On the other hand, almost
all glioblastoma patients do not respond significantly to radiation. For these reasons, drugs
inhibiting DDR pathways are clinically relevant [17,20].

In our study, an in silico methodology was employed towards designing a novel
drug-like molecule targeting two undruggable DDR/R-related proteins, that is, replication
protein A2 (RPA2) and MutL homolog 1 (MLH1), which have been demonstrated to
participate in DNA repair pathways and contribute to cancer development and progression.
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2. Materials and Methods
2.1. Structure-Based De Novo Dual Target Drug Design
2.1.1. Target Proteins

The resolved tertiary structure of the target protein RPA2 was obtained from the Pro-
tein Data Bank (PDB), San Francisco, CA, USA [21]; PDB ID: 8A43, Chain B. MLH1 (NCBI
RefSeq ID: NP_000240) has no resolved structure, and therefore, AlphaFold/ColabFold
(https://github.com/sokrypton/ColabFold; accessed on 27 July 2023) [22] was used to
predict its corresponding three-dimensional (3D) structure.

2.1.2. Ligand Building

LigBuilder V3 [23] was employed for the design of drug-like ligands potentially
binding to the RPA2 and MLH1 proteins. The ‘Cavity’ module of this program was used
to detect ligandable binding pockets on the surface of the two proteins, and the ‘de novo’
mode was applied for the generation of novel chemical compounds potentially binding to
the cavities of both proteins by using the default parameters.

2.1.3. Ligand Compound Naming

ChemDraw (https://revvitysignals.com/products/research/chemdraw; accessed
on 23 August 2023) and the SMILES format converter, Smi2Depict (https://cdb.ics.uci.
edu/cgibin/Smi2DepictWeb.py; accessed on 23 August 2023), were used to generate the
chemical structure of the ligand along with its chemical properties.

2.1.4. Drug-Likeness, Bioavailability, and Toxicity Evaluation

The essential pharmacokinetic properties and drug-likeness of the generated ligand
compound, that is, absorption, distribution, metabolism, excretion (ADME), as well as
bioavailability, were further evaluated using SwissADME [24], which is an online tool that
provides free access to a collection of robust predictive models for pharmacokinetics and
drug-likeness.

The freely available tools eToxPred [25] (based on a machine learning algorithm) and
pkCSM [26] (based on key toxicity parameters) were employed to reliably evaluate the
toxicity risk of the novel ligand.

2.2. Molecular Dynamics Simulations

Atomistic molecular dynamics (MD) simulations on protein–ligand complexes were
conducted with specific focus on ligand binding to the RPA2 and MLH1 proteins sepa-
rately. The selection of these protein–ligand complexes was guided by pharmacophore
analysis. To carry out these simulations, GROMACS version 2021.4 (https://doi.org/10.5
281/zenodo.5636567; accessed on 10 January 2022) was employed as our simulation engine.
Standard and well-established MD analysis protocols were followed so as to ensure the
comprehensive exploration of the entire molecular system.

To clean and prepare the initial complexes for MD analysis, a Python (http://www.
python.org; accessed on 10 September 2023) script was utilized that incorporates the
dockprep routine provided by Chimera [27]. This script also facilitated the addition of
missing residues with the assistance of the Dunbrack rotamer library. In order to prepare
the ligand and generate the corresponding topology files compatible with our chosen
forcefield, OPLS-AA/M, the LigParGen tool was employed.

In the initial stage of the MD analysis, the prepared ligand was merged with the
cleaned protein structure and subsequently a water box was introduced by employing the
SPCE water model. The topology files of both the protein and the ligand were incorporated
into the system.

The complex of 1.2 Å was placed away from the center of a dodecahedron-shaped
water box and filled with the water molecules based on the initial model selected. To ensure
the system’s neutrality, counterions of both sodium (Na) and chloride (Cl) were introduced
at a physiological concentration of 0.15 M.

https://github.com/sokrypton/ColabFold
https://revvitysignals.com/products/research/chemdraw
https://cdb.ics.uci.edu/cgibin/Smi2DepictWeb.py
https://cdb.ics.uci.edu/cgibin/Smi2DepictWeb.py
https://doi.org/10.5281/zenodo.5636567
https://doi.org/10.5281/zenodo.5636567
http://www.python.org
http://www.python.org
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The MD simulations were initiated by conducting an energy minimization of the
entire system using the steepest descent algorithm, involving a total of 50,000 steps. Fol-
lowing this, we proceeded with system equilibration in two stages. The first equilibration
stage involved maintaining a constant volume (NVT ensemble) at a temperature of 300 K
for 100 picoseconds (ps). Subsequently, we continued with a second equilibration step,
this time at a constant pressure (NPT ensemble), also for 100 ps.

After the two equilibration phases, an extensive MD simulation was carried out,
extending over a duration of 50 nanoseconds (ns). The simulation was conducted with
a time step of 2 femtoseconds (fs) at a constant temperature of 300 K and atmospheric
pressure of 1 bar. During this MD run, the energy values and coordinates were recorded
every 10 picoseconds (ps). For pressure coupling, the Parrinello–Rahman method [28] was
employed, and for temperature coupling, the V-rescale approach [29] was utilized.

2.3. Calculation of Molecular Interaction Free Energies

In this study, the molecular mechanics Poisson–Boltzmann surface area (MM-PBSA)
method [30] was employed to determine the molecular interaction free energies (∆G) within
the ligand–protein complexes. The MM-PBSA approach was implemented utilizing the
program g_mmbsa, which integrates functionalities from both Gromacs and APBS programs.
This computational method allowed us to quantitatively evaluate the energetic aspects of
ligand–protein interactions within our system, thereby providing valuable insights into the
binding affinity and stability of these complexes.

In our calculations, we specified the solvent and solute dielectric constants as 80 and 4,
respectively, to accurately account for the electrostatic and solvation effects in the system.
Trajectories were sampled at regular intervals of 1000 picoseconds (ps) to perform the
MM-PBSA calculations, enabling the construction of a comprehensive profile of the binding
energy evolution throughout the simulation.

2.4. Molecular Visualization

The molecular images were generated using the PyMOL Molecular Graphics System,
version 2.5.4, Schrodinger LLC (https://newsite.schrodinger.com/pymol/; accessed on 20
March 2023). LigPlot2 was also used for the generation of two-dimensional (2D) diagrams
of the protein–ligand interactions [31].

2.5. Virtual Screening of DDR/R proteins
2.5.1. Chemical Compound Selection and Structure Preparation

We prepared our target chemical space from the Comprehensive Natural Products
Database (COCONUT) [32] and subsequently filtered the dataset to discover potential drug
candidates. The three-dimensional structures of the selected compounds were generated
using the RDKit release 2023.09.1 (http://www.rdkit.org/; accessed on 25 October 2023)
Python library. Additionally, we incorporated partial charges and protonation states for the
newly constructed ligands to enhance their structural accuracy.

2.5.2. Pocket Identification and Analysis

To explore potential binding sites for the identified compounds, we utilized Fpocket [33],
a powerful tool for investigating regions of interest within proteins that may interact with
small chemicals.

2.5.3. Docking Experiments

Selected pocket regions were subjected to a series of docking experiments on both
Replication Protein A1 (RPA1) and MutL homolog 1 (MLH1). The docking simulations
were executed using smina [34], a robust docking engine and a clone of Autodock Vina [35].
To streamline and automate the workflow, we implemented these experiments within a
Nextflow [36] workflow developed in-house. This comprehensive approach allowed us to

https://newsite.schrodinger.com/pymol/
http://www.rdkit.org/
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systematically explore the binding interactions between our selected compounds and the
target proteins, providing valuable insights into potential dual drug candidates.

3. Results
3.1. In Silico Drug Design

In our study, the drug design program LigBuilder V3 [23] was employed in order
to create a ligand compound targeting both RPA2 and MLH1. The ‘Cavity’ module im-
plemented in this program allows users to discover binding sites in the target proteins,
by taking into consideration the pharmacophoric features of the protein and calculating
the druggability of the detected binding regions. In our study, the detected cavity with
the highest druggability score was selected, and subsequently the ‘de novo’ option of
LigBuilder V3 was chosen for creating new compounds that potentially bind to the de-
tected binding sites of both RPA2 and MLH1 target proteins; this mode does not require a
user-defined “seed” structure to be pre-placed into the binding site of the target protein,
but instead an sp3 carbon with four hydrogen atoms is randomly inserted into the binding
pocket, serving as the core for the progressive construction of a new molecule by applying
local energy minimization at each stage. A genetic algorithm implemented into LigBuilder
V3 is used for building ligands. In order to create a bigger compound that would fit into
the active sites of the two proteins, organic fragments (i.e., building blocks) were first
chosen from the default fragment library of LigBuilder V3 and joined to the seed structure
with a synchronous growth operation. The new “seed structure pool” is created by the
recombined fragments of the next generation of compounds, which are descended from
the parent population. These fragments are chosen to function as “seeds” in the following
cycles of ligand design because they are statistically more fit (i.e., privileged) than their
parents. The general process is repeated until convergence, i.e., until all novel, ideal ligand
molecules have been produced.

The generated ligand compounds are assessed automatically based on a number
of factors, including (i) the lock–key model, which was used to evaluate the conforma-
tional complementarity of proteins and ligands; (ii) calculation of the ligand–protein
binding affinity, based on the predicted ligand’s average binding affinity for each target;
(iii) possession of particular physicochemical properties that would facilitate protein–ligand
chemical specificity through the binding pocket; and (iv) synthesis accessibility of the newly-
built ligand compound [37]. LigBuilder V3 incorporates pertinent functional modules,
including filtering of toxic fragments and Lipinski’s rule of five (RO5) [38] (i.e., molecular
weight, polar surface area, number of rotatable bonds, hydrogen bond donors/acceptors,
and octanol–water partition coefficient), in order to further evaluate the drug-likeness of
the ligand compound.

The best-scoring novel compound that targets both RPA2 and MLH1 is 2-(4-amino-3-(7-
hydroxy-1H-benzo[d]imidazole-4-carbonyl)phenyl)acetic acid with the chemical formula
C16H13N3O4 and molecular weight of 311.297 g/mol (Figure S1). This compound exhibits
drug-like properties since it is non-toxic, it has no more than one violation of Lipinski’s
RO5, and it is synthesizable (Figure S2). In particular, a favorable bioavailability score
of 0.55 [39] and high gastrointestinal (GI) absorption (Figure S2A) were predicted for
the ligand compound, highlighting the suitability of the ligand for oral administration.
Also, a synthetic accessibility score of 2.49 (in a 1 (easy synthesis) to 10 (very difficult syn-
thesis) rating scale [40]) (Figure S2A) suggests that the ligand can be synthesized relatively
easy. A toxicity score of 0.55 was computed for the novel compound with eToxPred, indica-
tive of a non-toxic molecule, as the cut-off value for discriminating effectively non-toxic
from toxic molecules is 0.58 [40]. In addition, based on the pkCSM output, the ligand
is not predicted to cause hepatotoxicity, skin sensitization, or potential mutagenicity
(i.e., AMES toxicity [41]). The estimated maximum tolerated dose 0.451 log(mg/kg/day) is
also less than 0.477 log(mg/kg/day) [42], which is considered to be non-toxic to humans
(Figure S2B).
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3.2. DDR Protein–Ligand Interaction Sites

An MD simulation system containing the RPA2 and MLH1 target proteins in complex
with the newly designed ligand was set up; several simulations of both the perturbed
(protein–ligand) and unperturbed (protein without ligand bound to it) system were per-
formed in order to assess the consistency of the simulation results [43].

Heatmaps were generated by using the distance matrix derived from spatial measure-
ments obtained during MD trajectory analysis in order to visualize close contacts between
residues in RPA2 and MLH1 and the designed ligand. The residues chosen to be displayed
on the heatmap are those involved in interactions during the entire 50 ns simulation, identi-
fied by an average minimum distance to any ligand atom less than 3.5 Å. The principal
interacting elements of the protein are depicted throughout the entire simulation, where
blue and red hues indicate more or fewer close contacts (Figure 1).
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distance per residue. Red: distant contact; blue: close contact.

The RMSD analysis of the 50 ns MD simulation revealed that, around 6 ns into the
simulation, the newly designed ligand consistently converged to stable conformations. This
convergence signifies the establishment of stable molecular arrangements, demonstrating
the overall stability of the ligands throughout the simulation (Figure 2A). The radius of gy-
ration for the ligand molecule in two distinct complex formations, as illustrated in Figure S3,
demonstrates a similar convergence pattern derived from RMSD analysis. The fluctuation
in the number of hydrogen bonds formed during the simulations is illustrated in Figure 2B,
revealing a range from 2 to 6 for MLH1 and 1 to 5 for RPA2. Throughout the majority
of timepoints, MLH1 consistently maintained at least three hydrogen bond interactions,
whereas RPA2 sustained two hydrogen bonds. This dynamic observation underscores
the varying hydrogen bond profiles between the ligand and the two proteins, with MLH1
generally exhibiting a higher number of hydrogen bonds compared to RPA2 during the
simulation course.
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(B) examination of hydrogen bond formation.

Figure 3 provides a comprehensive depiction of the dynamic behavior of the ligand
interacting with two distinct proteins, RPA2 and MLH1. Despite the minor fluctuations ob-
served, the overall trajectory of the binding energy unfolds in a consistent linear progression.
This pattern across the entire spectrum of binding energies suggests a stable and sustained
interaction, emphasizing the reliability and persistence of the ligand–protein interactions
throughout the simulation. In light of the presented results in Table 1, the novel ligand,
designed through delicate pharmacophore analysis, demonstrates a versatile binding pro-
file. Despite a relatively weaker binding affinity with RPA2 (−54.04 kJ/mol), the ligand
exhibits a notably stronger binding affinity with MLH1 (−175.48 kJ/mol). This versatil-
ity underscores its potential as a promising candidate for dual targeting, with favorable
interactions observed for both protein targets.

Table 1. MM-PBSA energy values.

Energies (kJ/mol) RPA2 + Ligand MLH + Ligand

Van der Waal −80.69 ± 2.27 −185.46 ± 1.64
Electrostatic −64.74 ± 4.01 −94.66 ± 2.31

Polar solvation 106.51 ± 3.30 122.22 ± 1.57
SASA −15.13 ± 0.25 −17.58 ± 0.12

Binding −54.04 ± 2.77 −175.48 ± 1.98

The protein–ligand complexes, illustrating the binding poses produced at the end of
their individual MD simulations, are shown in Figure 4. The amino acids Asp185, Asn223,
Asn225, and Asn371 in RPA2 were found to interact with the ligand (Figure 4A,B) based on
LigPlot2. According to InterPro version 97.0 [44], an integrative database of functionally
important protein domains and sites, the three asparagine residues are found to reside in
Rpb2, the ‘lobe’ domain of the RNA polymerase (InterPro ID: IPR007642), into the concave
surface of which DNA fits during transcription [45]. Moreover, the carboxy-terminal
domain of Mlh1 (InterPro ID: IPR032189), part of the endonuclease active site [35], harbors
the residues Asp644, Asn645, Tyr646, Ser695, Thr696, Leu697, Asn710, Ser711, and Thr715,
which appear to interact with the ligand compound (Figure 4A,B).
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3.3. Natural Compound Analogs

Following a delicate examination of identified binding regions, taking into considera-
tion their inhibitory role in DNA binding and the proximity of their location to respective
biological domains, we determined Pocket 1 for MLH1 and Pocket 84 for RPA2 as our target
search spaces. To precisely define the 3D grid coordinates of these selected binding pockets,
we employed Pymol scripting. We filtered the COCONUT chemical library based on the
RO5, resulting in a refined set of 43,131 natural products exhibiting diverse origins, sources,
and chemical classifications. Subsequently, employing the Nextflow workflow for docking
campaigns on both proteins, we acquired structure files and docking score log files for each
natural compound, capturing their top nine conformers. Setting a minimum threshold of
−9 kcal/mol, we identified lead candidates by evaluating the docking scores of the best
conformers for each compound with both proteins. Post-application of the −9 kcal/mol
threshold, a manual curation process was conducted. This process led to the identification
of 11 common natural compounds, showcased in Table S1, which exhibit the potential to
function as dual inhibitors. These compounds demonstrate promising inhibitory properties
and are poised as strong candidates for further investigation and development.

4. Discussion

Computational and “omics”-based approaches have accelerated the discovery of
biomarkers and potential therapeutic targets in many diseases, including cancers [46]. In a
study by Toy and colleagues (2021), bioinformatic approaches were used to analyze “omics”
data, resulting in the identification of 36 ‘radiogenes’, which are differentially expressed
between radioresistant and radiosensitive cancer cells, and could be considered as potential
targets for enhancing radiosensitization of cancer cells [3]. In fact, many research efforts
focus on DNA repair inhibitors as an attractive strategy for enhancing the effectiveness of
chemotherapy and radiotherapy. Several of those inhibitors have been introduced in clinical
trials and others show promising results in the pre-clinical stage. It has been proposed
that combining DDR inhibition with radiotherapy can improve cancer patient prognosis in
clinical practice [20,47].
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Targeting and modulating two different receptors with one single ligand (dual target-
ing) represents an attractive strategy for efficient cancer treatment, and is associated with
reduced drug dosage and prevention of off-target drug–drug interactions [48–50]. Herein,
we focused on the in silico investigation of dual targeting of the proteins RPA2 and MLH1,
which are implicated in several cancer-relevant DDR pathways [47].

The RPA2 gene encodes the RPA32 protein, which is a subunit of the Replication
Protein A (RPA) trimeric complex (RPA70, RPA32, and RPA14), which plays an important
role in DNA replication, DNA damage repair, and cell cycle regulation [51]. The RPA
protein complex binds to SSBs with high affinity [52]. Regarding its role in DNA repair,
RPA has been reported to interact with a variety of protein factors and participate in major
DNA repair pathways, including nucleotide excision repair (NER), BER, MMR, and DSB
repair via HR [53,54]. In response to DNA damage, the RPA2 subunit is hyperphospho-
rylated by the family of phosphatidylinositol 3-kinase-related kinases (PIKKs), thereby
facilitating mitotic exit and DNA repair [55,56]. In NER, many studies have reported
that RPA participates both in damage recognition and in the incision and gap-filling reac-
tions [57,58]. In HR, it has been shown to interact with Rad52 and Rad51 [53,59] and it is
suggested to be part of two core resection machineries, namely, BLM–DNA2–RPA–MRN
and EXO1–BLM–RPA–MRN [60].

IR causes a variety of DSB and non-DSB DNA lesions, which are processed by the
appropriate pathways, and tumor radioresistance greatly depends on the ability of cancer
cells to repair the IR-induced DNA damage [16]. Because of its critical role in DNA repair,
RPA is believed to be involved in the effectiveness of radiotherapy [16] and could act as a
potential biomarker for the preliminary assessment of immunotherapy in brain tumors like
glioblastoma [61,62].

Abasic sites, oxidized bases, and DSBs are common types of DNA lesions caused by
IR, and RPA actively participates in the corresponding repair mechanisms, namely NER
and BER for abasic sites and oxidized bases and HR for DSBs [58,63]. Therefore, we can
easily assume that RPA is involved in tumor radioresistance by affecting the capacity of
tumor cells to repair the various types of DNA damage caused by IR, such as DSBs and
oxidative clustered DNA lesions [3,53]. RPA2 overexpression has been observed in many
cancers, suggesting its potential role as a prognostic factor [64–66]. Di and colleagues (2014)
demonstrated that RPA1 or RPA2 silencing increased the radiosensitivity of radioresistant
esophageal cancer cells. In addition, it was shown that RPA1 and RPA2 silencing resulted in
cell cycle arrest in G2/M phase, rendering cells more vulnerable to the effects of radiation,
thereby contributing further to radiosensitivity [67].

Targeting RPA represents a potential therapeutic approach in cancer treatment as it as
has been shown by a few recent studies. HAMNO ((1Z)-1-[(2-hydroxyanilino)methylidene]
naphthalen-2-one), TDRL-505, and fumaropimaric acid (NSC15520) are small molecule
inhibitors that have been demonstrated to target the RPA70 subunit of RPA in vitro [68–71].
HAMNO is the most studied, but it has shown controversial results regarding its effect on
the radiosensitization of cancer cells. Pedersen et al. (2020) reported that RPA inhibition by
HAMNO resulted in increased radiosensitivity of glioblastoma cancer stem-like cells [62].
A recent study by Dueva and colleagues (2023) reported no significant changes in the
survival of HAMNO-treated irradiated lung carcinoma cells [72], whereas Feng et al. (2023)
demonstrated that RPA inhibition by HAMNO increased the radiosensitivity of nasopha-
ryngeal carcinoma cells, and this is a promising result because radiotherapy is the standard
therapeutic approach for nasopharyngeal carcinoma [73]. Collectively, the aforementioned
indicate that the RPA inhibition effects could be cell-type specific.

The MLH1 gene encodes the MLH1 protein, which is part of the DNA mismatch
repair (MMR) pathway. MMR contributes to the maintenance of genome integrity by recog-
nizing and repairing base mismatches that arise during DNA replication, recombination,
and chemical or physical DNA damage [74]. The histidine kinase-like ATPase domain of
MLH1 is also required for DNA end processing of DSBs through canonical NHEJ [75].
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A relationship between MMR pathway defects and human cancers is well documented
in the cancer predisposition Lynch syndrome/hereditary non-polyposis colorectal cancer
(LS/HNPCC) [76]. Mutations in the MLH1 and MSH2 genes constitute the majority of
mutations in HNPCC [77]. Recent studies also verify the relationship of MMR-related
genes with sporadic cancers [78]. Epigenetic silencing of MLH1 has been associated with
increasing rates of mutation accumulation in cancers [79,80]. The epigenetic silencing of
the MLH1 gene via methylation of its promoter is a typical example of MMR deficiency in
many tumors, leading to microsatellite instability (MSI) [81]. Although the role of MLH1-
mediated MMR in DNA damage response to IR and radioresistance has been investigated,
it is not yet very well characterized. In a study by Huang and coworkers (2022), MLH1+

human colorectal cancer cells exhibited increased resistance to IR as compared to MLH1–

cells [82]. The MMR protein MSH2, which is implicated in the processing of clustered
DSBs and non-DSBs, as well as in apoptotic cell death elicited by IR [83], has been found
to be upregulated in radioresistant cancer cells [3]. Currently, there are no MMR-specific
inhibitors for cancer treatment [47].

Therapeutic agents that target DNA repair generally constitute a promising approach
in cancer treatment [47,84]. Molecular targets in DNA repair that are currently being
investigated in pre-clinical and clinical trials include DNA PKcs, ATM, ATR, PARP, CHK1,
and WEE1 [84]. Inhibition of these targets has been shown to confer to the radiosensitivity
of tumor cells [61].

In our study, we designed an easily synthesizable ligand compound, with favorable
pharmacokinetic properties and without potential toxicity risk, which is capable of targeting
both RPA2 and MLH1. This drug-like compound could potentially modulate the functions
of the target proteins, since it appears to interact with amino acids important for their
structure and activity, with high affinity (Figures 3 and 4). This ligand is also predicted to
have several structural analogues of natural compounds that show high binding potential
(Table S1). These agents can be isolated from natural sources at relatively low cost, and are
considered potential bioavailability enhancers [85,86].

A major advantage of dual targeting is that it can lead to synthetic lethality, a phe-
nomenon in which, while the occurrence of a single genetic event is non-lethal, the co-
occurrence of multiple genetic events results in cell death [87]. In the context of DNA
repair, we could describe synthetic lethality as a phenomenon where the inhibition of two
or more DNA repair pathways leads to increased cell death, while inhibition of either
pathway alone does not. The synthetic lethal interaction between PARP inhibition and
BRCA mutations offered a new therapeutic perspective for BRCA-mutant tumors, driving
further research into synthetic lethality approaches in cancer treatment [84,88]. An example
of a synthetic lethality approach, with the usage of two distinct DDR inhibitors, is presented
in a recent study by Patterson-Fortin and coworkers (2022), wherein targeting of NHEJ
and microhomology-mediated end-joining (MMEJ) pathways induced toxic DNA damage
to TP53-deficient tumors [89]. Another example of such an approach is the combined
inhibition of CHK1 and WEE1 that was found to be cytotoxic for head and neck squamous
cell carcinoma cell lines [90]. As previously mentioned, targeting RPA showed contro-
versial, cell type-specific results. Thus, the concurrent targeting of both RPA2 and MLH1
could increase the efficacy of radiotherapy in cancers in which RPA inhibition alone has
shown poor results, assuming intolerable toxicity for organisms; the latter merits further
investigation.

Apart from the increased target efficacy, our proposed dual targeting approach could
reduce the likelihood of cancer cells developing resistance to radiotherapy. It is known
that cells become dependent on alternative pathways to repair DNA if the primary DDR
pathways are perturbed or defective [89]. Given that both RPA2 and MLH1 have been
identified as multi-pathway proteins [47], targeting both key players simultaneously would
affect various signaling pathways, possibly resulting in increased tumor-killing efficacy and
radiosensitization of cancer cells at an IR dose lower than the standard one, minimizing in
this way any toxic side effects. Furthermore, taking into account the complexity and genetic
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variability of cancers, this novel ligand might be effective across different types of cancers
that are likely to exhibit variations in the functional status of their DDR pathways [91,92].
For example, a recent genomic data analysis of colorectal cancer patients revealed variations
in the DDR-related mutations, and it is suggested that the DDR status could serve as a
predictive marker [93].

These findings could be extrapolated in the field of personalized precision medicine,
taking into consideration the genetic profiling of cancer patients, towards co-administering
this drug-like ligand agent with radiotherapy and/or other types of cancer treatment.
Recent studies show that cancer therapies like radiotherapy and other types of therapies
that damage DNA remodel the tumor immune microenvironment, offering the possibility
of applying immunotherapy to tumors that are resistant to this type of therapy [61]. IR
therapy promotes the release of tumor neoantigens during cancer cell death increasing the
immunogenicity of the tumor, and it also promotes the activation of cytotoxic T-cells and
dendritic cells [94,95]. Especially for the MMR system that is targeted by our designed
ligand, it has been found that the MMR and MSI status of the tumor can predict the patient’s
response to immunotherapy in combination with the standard therapy. MSI leads to a
high mutational load and production of neoantigens that trigger the host immune response
and increase the density of tumor-infiltrating lymphocytes [81,96]. Currently, there are
ongoing clinical trials to evaluate the effect of immune checkpoint blockade therapies
(anti-PD-1/PD-L1) in many types of MMR-deficient tumors [96].

Exposure to IR used in radiotherapy causes DNA fragment leakage into the cytoplasm
and the formation of micronuclei. The presence of cytosolic DNA and micronuclei has
been found to activate the immune response via the cGAS-STING pathway that induces
type I interferon production [97]. Combination of radiotherapy and immunotherapy
(radioimmunotherapy) can be potentially considered as a promising multimodal clinical
approach in cancer treatment, and the rationale for this combination is the immunogenic
effect of radiotherapy [97,98]. Combining radiotherapy with DNA repair inhibitors and
immunotherapy is reported to be a promising approach to improving the prognosis of
cancer patients [20]. It is in this context that novel ligands, such as the one proposed by
our group, can be considered as possible candidates for introduction to pre-clinical and
clinical trials.

5. Conclusions

In conclusion, our study extends previous research on DDR/R targeting in relation to
resistance to radiation or other genotoxic agents. We suggest a novel promising approach
towards increasing the efficacy of possible drugs towards tumor targeting. Within the scope
of this study, we designed a drug-like ligand compound aiming at two multi-pathway DDR
proteins. The ligand’s ability to manifest robust binding with distinct proteins highlights
its potential applicability as a radiosensitizing agent for accelerating DNA damage in
irradiated cancer cells, by potentially modulating the activity of the DDR proteins. The
findings of this study could be a first step for further exploration of the novel ligand in
drug development endeavors, as well as exploitation in clinical decision-making regarding
the co-delivery of radiotherapy and DDR-targeting drugs in animals or patients assuming
overall acceptable levels of adverse treatment effects.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/genes14122227/s1, Figure S1: Chemical structure of the generated drug-
like ligand compound; Figure S2: Screenshot of the output of (A) SwissADME and (B) pkCSM;
Figure S3: RMS fluctuation and radius of gyration measurement on the MD trajectory: (A) ligands’
RMS fluctuation profiles per residues for RPA2 and MLH1 and (B) radius of gyration plots of only
two ligand structures; Table S1: Docking scores (kcal/mol) of selected natural compounds.
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