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Abstract: Acinetobacter baumannii (Ab) has increasingly been identified as a cause of hospital-acquired
infections and epidemics. The rise of carbapenem-resistant Acinetobacter baumannii (CRAB) poses
significant challenges in treatment. Nosocomial outbreaks linked to CRAB A. baumannii strains
have been reported worldwide, including in Greece. This study aimed to analyze the molecular
epidemiology trends of multidrug-resistant A. baumannii isolates in a tertiary hospital in Athens,
Greece. A total of 43 clinical isolates of extensively drug-resistant (XDRAB), pan-drug-resistant
(PDRAB), and CRAB were collected from patients suffering from blood infection, hospitalized
between 2016 and 2020 at the internal medicine clinics and the ICU. A.baumannii isolates underwent
testing for Ambler class B and D carbapenemases and the detection of ISAba1, and were typed, initially,
using pulsed-field gel electrophoresis, and, subsequently, using sequence-based typing and multiplex
PCR to determine European Clone lineages. The blaOXA-23 gene accompanied by ISAba1 was prevalent
in nearly all A. baumannii isolates, except for one carrying blaOXA-58. The intrinsic blaOXA-51-like gene
was found in all isolates. No Ambler class B carbapenemases (VIM, NDM) were detected. Isolates
were grouped into four PF-clusters and no one-cluster spread was documented, consistent with the
absence of outbreak. The study indicated that XDR/PDR-CRAB isolates predominantly produce
OXA-23 carbapenemase and belong to European Clone II. Further research is needed to understand
the distribution of resistant bacteria and develop effective prevention and control strategies.

Keywords: Acinetobacter baumannii; OXA-type carbapenemases; ISAba1; carbapenem resistance;
molecular epidemiology; Greece

1. Introduction

A. baumannii is an opportunistic nosocomial pathogen and is classified by the World
Health Organization as one of the six highly virulent and antibiotic-resistant bacterial
ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acine-
tobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) [1–4]. Acinetobacter pos-
sesses inherent resistance to desiccants, disinfectants, and essential antimicrobials, greatly
aiding in their prolonged persistence and transmission within healthcare settings. A recent
comprehensive analysis of the global impact of drug-resistant bacteria in 2019 recognized
A. baumannii as one of the top six pathogens responsible for antibiotic-resistance-related
deaths [5].

A key element contributing to the pathogeny of A. baumannii is its genetic adaptability,
enabling it to rapidly respond to challenging conditions and pressures. This capability to
acquire new antibiotic resistance traits and withstand the stresses encountered in hospital
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environments facilitates the transmission of A. baumannii among patients and its persistent
presence within healthcare facilities [6].

The genomic epidemiology of A. baumannii isolates has revealed the worldwide dis-
semination of distinct clonal lineages, which have spread due to their resistance to various
antimicrobials and have been implicated in global epidemics [7].

A burning issue is that high-risk lineages of A. baumannii, known as international
clones (ICs), typically exhibit characteristics of multidrug resistance (MDR), extensive drug
resistance (XDR), and carbapenem resistance (CRAB) [8]. Epidemiological research has
identified nine international clones (IC1-IC9) of A. baumannii, with IC2 being the most
prevalent CRAB, frequently occurring endemically and leading to outbreaks [9]. The
presence of various IC2 strains and their growing prevalence in clinical settings indicate
an ongoing adaptation of this lineage to the hospital environment [10]. Recent findings
indicate the emergence of a highly virulent strain of CRAB (theory of evolution), which
correlates with elevated mortality rates and clonal spread within hospital settings [11,12].

Carbapenem resistance in A. baumannii arises from the interplay of various mecha-
nisms, primarily involving oxacillinases (OXAs) and occasionally metallo-β-lactamases
(MBLs) [13]. The overexpression of plasmid- or chromosomally encoded blaOXA genes
encoding oxacillinases (blaOXA-23, blaOXA-24/40, blaOXA-51, blaOXA-58, and blaOXA-143), along
with the presence of metallo-carbapenemases (blaIMP, blaVIM, blaSIM, and blaNDM), and
the downregulation of porins, which act as channels for carbapenem influx, are common
mechanisms [13]. BlaOXA-23 is preceded by an IS element, ISAba1 or ISAba4, and contigu-
ous to a truncated version of ATPase [14,15]. OXAs typically exhibit weak hydrolysis of
carbapenems, which theoretically should not lead to resistance development. However,
they are sometimes linked with insertion elements that can enhance carbapenemase expres-
sion [16,17]. Additionally, the low permeability of the outer membrane in A. baumannii also
contributes to carbapenem resistance [18].

CRAB infections pose significant challenges in healthcare settings due to their antibi-
otic resistance, elevated mortality rates, and substantial healthcare expenses [19]. CRAB
outbreaks have been documented worldwide in hospitals, particularly in intensive care
units (ICUs), where they are challenging to contain and can become endemic, highlighting
the urgent need to limit their spread from both clinical and public health perspectives.
Many of these reports have stressed the importance of comprehensive infection control
measures for managing CRAB [20,21]. Identifying carriers is a crucial component in control-
ling the spread of resistant organisms in healthcare facilities, such as the NG-Test DetecTool
OXA-23 assay, which appears to be a reliable, rapid, and cost-effective test suitable for
integration into the standard workflow of clinical microbiology labs in regions where
OXA-23-producing CRAB infections are prevalent [22]. Early and precise detection enables
the implementation of targeted infection control measures, such as isolation protocols and
intensified environmental sanitation.

Surveillance data indicate that over 50% of A. baumannii isolates from intensive care
units (ICUs) in the US and Europe are resistant to carbapenems [23,24].

Greece has been recognized as one of the countries experiencing elevated rates of
CRAB infections, especially within hospital environments, and the incidence of CRAB in
Greece has been progressively rising over time. According to the European Antimicro-
bial Resistance Surveillance Network (EARS-Net), carbapenem resistance in Acinetobacter
species in Greece ranged between 94.8% in 2017 and 96.9% in 2021, and a high prevalence of
Acinetobacter infections was recorded in Greek hospitals. This suggests that Greece has one
of the highest rates (over 80%) of Acinetobacter infections in Europe [24,25]. Consistent with
these findings, a nine-year study conducted from Southwestern Greece revealed high resis-
tance rates to carbapenems of A. baumannii isolated from bloodstream infections (BSIs) and
a significant increase in MDR, XDR, or even PDR Acinetobacter baumannii-associated noso-
comial BSIs [26,27]. Similarly, high levels of carbapenem resistance in A. baumannii isolates
obtained from blood samples were observed throughout the WHONET Greece data [28].
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Regarding the molecular epidemiology of clinical CRAB isolates in Greece, carbapene-
mases are the most prevalent mechanism, with blaOXA-23 being the unique and predominant
gene among them [13,29,30]. Since the emergence of the carbapenemase OXA-23 in Acine-
tobacter baumannii in 2010, it has continued to spread throughout Greece, displacing the
previously endemic carbapenemase OXA-58. Additionally, it has been observed to exhibit
slightly higher minimum inhibitory concentrations (MICs) for carbapenems, attributed to
its increased hydrolytic activity [31]. This characteristic has been viewed as a competitive
advantage, enabling it to thrive and become predominant in hospital settings. The reported
incidence of VIM-producing CRAB, in contrast, was lower, with detection of the blaVIM-1
and blaVIM-4 variants [32,33]. A potential explanation for their limited spread could be
attributed to the poor carbapenem-hydrolytic activity exhibited by VIM carbapenemases
when compared to the OXA-23 and OXA-58 enzymes. Regarding the reported frequency
of NDM-producing CRAB, it is increasing rapidly [34], although in Greece it has not been
widely documented except for some isolated cases.

Therefore, understanding the epidemiology and the genetic pattern of the organism is
essential for the ongoing surveillance of Acinetobacter as a crucial component of infection
prevention and control efforts.

The present study aimed to investigate the molecular mechanism conferring resistance
to carbapenems in Acinetobacter baumannii strains isolated as the causative agent of blood
infections in patients in ICU and general pathology wards who were hospitalized from
2016 to 2020 in a university tertiary care Greek hospital and to gain further insights into the
molecular epidemiology and spread of carbapenem-resistant clinical isolates and genes in
order to effectively tackle them.

2. Materials and Methods
2.1. Study Design

This retrospective study comprises 43 single-patient clinical isolates of carbapenem-
resistant A. baumannii (CRAB), obtained from laboratory-confirmed blood infections. These
isolates were collected from patients admitted to the General Hospital of Athens “Laiko”
between January 2016 and December 2020. Laiko Hospital, an academic tertiary care
institution, houses 500 adult beds and accommodates roughly 50,000 admissions annually,
serving a population of 2 million residing in the Athens metropolitan region. The hospital
comprises several units, including those pertinent to the study: three general medicine
wards equipped with both double and triple rooms, along with a 12-bed intensive care
unit (ICU). The majority of isolates (37/43, 86.05%) were obtained from patients in the
three general medicine clinics, with the remaining 6/43 (13.95%) originating from ICU
patients. The sampling process involved selecting the first isolate per month from the
pathology clinics and the first isolate per six months from the ICU, as per the Laboratory
Informational System. Initially, 61 isolates were identified from the hospital laboratory
database, but 17 could not be retrieved from the freezer and 1 isolate was excluded due
to misidentification. During the period from April 2020 to November 2020, no samples
were stored in the hospital laboratory due to the challenging circumstances and increased
workload resulting from the COVID-19 pandemic. This study adhered to the approved
guidelines of the Ethics Committee of Laiko General Hospital. The detection of resistance
mechanisms was conducted at the Infectious Diseases Surveillance Laboratory, Department
of Public Health Policy, West Attica University.

2.2. Bacterial Identification and Antimicrobial Susceptibility Testing

Identification and antibiotic susceptibility testing were conducted using the automated
system Microscan WalkAway 96 plus (Beckman Coulter, Brea, CA, USA) using a routine
laboratory diagnostic process, with minimum inhibitory concentrations (MICs) interpreted
according to CLSI guidelines (Clinical & Laboratory Standards Institute) [35]. Due to the
lack of CLSI clinical breakpoints, MIC to tigecycline was interpreted according to the recom-
mendation of the US Food and Drug Administration, and susceptibility to tigecycline was
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determined as MIC ≤ 2 µg/mL [36]. Testing covered nine antimicrobial categories: amino-
glycosides (amikacin, gentamicin, tobramycin), carbapenems (imipenem, meropenem), flu-
oroquinolones (ciprofloxacin, levofloxacin), extended-spectrum cephalosporins (cefepime,
cefotaxime, ceftazidime), folate pathway inhibitors (trimethoprim/sulfamethoxazole), peni-
cillin (piperacillin), β-lactam/β-lactamase inhibitor combinations (ampicillin–sulbactam),
tetracyclines (tetracycline, tigecycline), and polypeptides (colistin). A. baumannii isolates
were categorized as multidrug-resistant (MDR—resistant to at least three antimicrobial
categories), extensively drug-resistant (XDR—resistant to all antibiotic categories except
polymyxin and tigecycline) and pan-drug-resistant (PDR—insensitive to all antimicrobial
agents across all classes, as defined by Magiorakos et al. [37]).

Microbial strains were preserved in cryovials containing skimmed milk and stored
in a deep freezer (−70 ◦C) until further analysis. For laboratory experiments, all microbes
were thawed at room temperature, directly recultured on MacConkey and blood agar, and
then incubated at 37 ◦C for 24–48 h.

2.3. Detection of Antimicrobial Resistance Mechanisms

Multiplex PCRs were conducted to identify the presence of four primary class D OXA
β-lactamase genes (CHDLs)—blaOXA–23-like, blaOXA–24-like, blaOXA–51-like, and blaOXA–58-like—as
well as two class B metallo-β-lactamase genes (blaVIM and blaNDM). Primers and condi-
tions for detecting oxacillinases were prepared following Woodford et al., while those for
metalloenzymes were prepared based on ECDC Protocol 7 (laboratory manual for the
detection of resistance to carbapenems and colistin) [38,39]. Isolates confirmed positive for
oxacillinase genes were further screened for the presence of the ISAba1 element upstream
of these genes via PCR according to Poirel et al. [13].

2.4. Molecular Typing/Pulsed-Field Gel Electrophoresis (PFGE)

Molecular typing using pulsed-field gel electrophoresis (PFGE) was performed in
accordance with Seifert et al. [40]. Molecular fingerprints were analyzed using BioNu-
merics software (Applied Maths, BioMérieux, Marcy-l’Étoile, France) employing the Dice
correlation coefficient and the Unweighted Pair Group Method with Arithmetic Mean
(UPGMA). Isolates were considered to belong to the same clone if the similarity coefficient
was ≥80% [41]. Additionally, two trilocus multiplex PCRs were utilized to selectively
amplify Group 1 and Group 2 alleles of ompA, csuE, and blaOXA-51-like, facilitating the
assignment of sequence groups and major European clones I, II, or III, as described by
Turton et al. [42]. Classification of a strain as a member of Group 1 or Group 2 required the
amplification of all three fragments in the corresponding multiplex PCR, and the absence
of any amplification by the other multiplex PCR. Group 3 isolates were defined by the
amplification of only the ompA fragment in the Group 2 PCR and the amplification of only
the csuE and blaOXA-51-like fragments in the Group 1 PCR [42].

3. Results
3.1. Susceptibility of Isolates

To comprehend the antibiotic sensitivity characteristics of the A. baumannii strains
employed in this research, fifteen antibiotics from nine different classes of antimicrobial
agents were tested. All of the blood-isolated A. baumannii strains demonstrated resistance
to carbapenems, with the minimum inhibitory concentration (MIC) values for imipenem
and meropenem exceeding 16 mg/L. Additionally, these isolates showed resistance to all
other classes of antimicrobial agents. The only exceptions were colistin and tigecycline, for
which the resistance levels varied. Of the 43 isolates, the resistance rates were 30.2% for
colistin and 34.9% for tigecycline, while 83.7% (n = 36) were extremely drug-resistant (XDR)
and the 16.3% (n = 7) were pan-drug-resistant (PDR) in this study. The annual antibiotic
resistance rates of both total bloodstream infections (BSIs) and the A. baumannii isolates
tested in the study are presented in Figure 1 and Table 1, respectively.
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Figure 1. Annual antibiotic resistance of total BSI A. baumannii isolates. BSIs: bloodstream in-
fections; CRAB = carbapenem-resistant A. baumannii; PDRAB = pan-drug-resistant A. baumannii;
XDRAB = extensively drug-resistant A. baumannii.

Table 1. Antibiotic resistance of tested BSI A. baumanni isolates per year.

2016 2017 2018 2019 2020

Tigecycline resistant 50% 20% 62.5% 37.5% 75%
Colistin resistant 12.5% 6.66% 62.5% 37.5% 25%

XDRAB 100% 100% 93% 97.7% 93%
PDRAB 0 0 7% 2.3% 7%

BSIs: bloodstream infections; PDRAB = pan-drug-resistant A. baumannii; XDRAB = extensively drug-resistant
A. baumannii.

3.2. Identification of Class B and D β-Lactamases Genes

The intrinsic blaOXA-51-like gene was confirmed in all (100%) isolates. With the exception
of one clinical isolate, which tested negative, all others were PCR-positive for the class D
OXA β-lactamase gene blaOXA–23-like. Additionally, 1 out of 43 harbored the β-lactamase
blaOXA–58-like gene, which was isolated from the first internal medicine clinic in February
2019 and was identified as belonging to a PDRAB strain. None of the isolates contained
additional CHDLs, like blaOXA–24-like. Neither of the class B metallo-β-lactamases genes
blaVIM or blaNDM was detected in any of the isolates.

3.3. Mobile Genetic Elements

All isolates except from one with the blaOXA–58-like gene were positive for the presence
of the insertion sequence ISAba1. The insertion sequence ISAba1 was located upstream of
the resistant gene in all blaOXA–23-like and all blaOXA-51-like gene-positive isolates.

3.4. Pulsed-Field Gel Electrophoresis (PFGE)

PFGE was used to determine the genetic and clonal relationships between these
clinical isolates using ApaI-digested DNA. Molecular typing results demonstrated that the
43 isolates clustered into four groups using a cut-off value of ≥80% similarity (Figure 2). The



Genes 2024, 15, 458 6 of 13

four pulsed-field clusters of isolates were as follows: PF-Cluster 1, displaying a similarity
of 83.2%: 234, 240, 215, 214, 246, 245, 247, 239, 255, 253, 226, 217, 216, 250, 257, 251, 249, 248,
and 254, and the 246 strain was further studied; PF-Cluster 2: single isolate 256 and the
256 strain was selected; PF-Cluster 3 displaying a similarity of 83.9%: 219, 229, 252, 231,
236, 227, 233, 222, 223, 242, 221, 225, 220, 241, and 238, and the 227 strain was distinguished;
and PF-Cluster 4 displaying a similarity of 81.7%: 244, 230, 228, and 235, and the 235 strain
was selected. It is underlined that the 235 isolate possessed blaOXA-58, differently from the
rest of the PF-Cluster 4 isolates possessing blaOXA-23. The carbapenemase gene could be
located on a movable plasmid [43], and not on the chromosome, on which the restriction
fragments’ pulsed-field gel electrophoresis was based. This issue was not investigated in
the current study.
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All clusters were derived from strains isolated from all clinics. We did not observe
the presence of a group of indistinguishable subtypes (100% similarity of molecular fin-
gerprints), which would be compatible with an outbreak. The first cluster, which is the
most numerous, included strains isolated mainly in the later years, 2016–2017–2018. The
third cluster contained the isolates from 2019 to 2020. The fourth cluster included isolates
retrieved in 2016–2017–2019.

3.5. Multiplex PCR Amplification for ompA, csuE, and blaOXA-51-like Genes

The Trilocus PCR typing of the four representative strains showed that all four belong
to Group 1, with the resulting products belonging to Group 1 exclusively: Group 1 ompA,
sized 355 bp; Group 1 csuE, sized 702 bp; and Gp1OXA66, sized 559 bp. Group1 accounts for
European clone II. Therefore, all 43 strains of the study belong to the same clade, European
Clone II.

4. Discussion

In recent years, the vast majority of A. baumannii strains have been resistant to car-
bapenems and have become the most frequent pathogen in the ICUs in Greek hospitals
(http://www.mednet.gr/whonet/ (accessed on 1st January 2024) [44]. It is worth mention-
ing that during 2015, almost exclusively (>95%) CRAB strains were isolated from Greek
hospitals participating in a multicenter study [45]. This observed universal resistance
to carbapenems significantly limits active therapeutic options and the interpretation of
susceptibility data. The European Antimicrobial Resistance Surveillance Network (EARS-
Net) data for 2020, published by the European Center for Disease Prevention and Control
(ECDC), reported a very high prevalence of invasive carbapenem-resistant Acinetobacter
spp. (94.6%) in Greece and a prevalence of over 80% in all Balkan countries [24].

Regarding the development of resistance, it is widely agreed upon that a primary
mechanism for carbapenem resistance in A. baumannii isolates globally involves the enzy-
matic alteration or breakdown of β-lactam antibiotics through various β-lactamases, with
the most common being OXA-23, OXA-40, and OXA-58 [15,46,47].

Screening for OXA-type β-lactamases confirmed the presence of an intrinsic chromoso-
mally located OXA-51-like gene in all the A. baumannii isolates in this study. In addition, the
OXA-23-like gene was detected in most of the isolates (42/43). All OXA-23-positive strains
exhibited resistance to carbapenems and were associated with the presence of an ISAba1
element upstream in the gene’s promoter region, potentially enhancing the overexpression
of the OXA-23 gene [48,49]. The results of this study align with previous findings indicating
that ISAba1 promotes the expression of the antimicrobial resistance genes blaOXA-51-like and
blaOXA-23-like.

OXA-23 enzymes have become more widespread in recent years and tend to dominate
among CRABs worldwide, gradually replacing OXA-58 enzymes [26,50–52]. According to
published data, CRAB isolates collected in Greece in 2015 were primarily associated with
International Clone 2 and consistently generated OXA-23, whereas earlier collections before
2004 showed a prevalence of the International Clone 1 lineage and the OXA-58 carbapen-
emase [29,53,54]. These new strains exhibit increased resistance to carbapenems due to
their heightened hydrolytic activity, leading to higher minimum inhibitory concentrations
(MICs) [53]. This characteristic has been considered a comparative advantage for survival
and predominance in the hospital setting.

While the occurrence of class B β-lactamases is relatively low in Europe, detections
of multidrug-resistant strains producing VIM have been reported. A singular strain of
CRAB-producing NDM was identified in Greece for the first time in 2016. Recently, there
has been a report of the emergence of polyclonal blaNDM-1-positive Acinetobacter baumannii in
a tertiary care hospital in central Greece. [29,34,55]. In our research, VIM and NDM were
not found, which is the most likely scenario since they are currently rarely found in Greece.

Molecular characterization reveals that clonal dissemination plays an important role
in nosocomial CRAB outbreaks, with most belonging to the international clones 1 (IC1) and

http://www.mednet.gr/whonet/
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2 (IC2) [56]. The global dissemination of A. baumannii resistant to carbapenem antibiotics
is recognized as a predominantly clonal phenomenon within hospitals, with IC2 being
the most prevalent. A link has been established between strains from the International
Clone 2 and isolates that generate OXA-23 [57]. This association is commonly observed
among carbapenem-resistant A. baumannii strains worldwide. In a previous national study,
it was shown that after 2005 the IC2 clone was the most prevalent in Greece compared
to the IC1 clone [29,55]. After 15 years, it seems that the IC2 clone continues to dominate
in our hospital, as shown by our findings, since according to PFGE and the Trilocus PCR
it belongs to European Clone II, which was recently renamed as IC2 [29] and has the
common characteristic of producing OXA-23 oxacillinase. The same findings are confirmed
by a recent national multicenter study which highlights the dissemination of XDR/PDR
blaOXA-23 harboring A. baumannii isolates, corresponding to IC2, in Greek hospitals [58,59].

Through core genome phylogenetic analysis, we determined that a single lineage pre-
dominantly characterizes our CRAB isolates. PFGE typing did not yield identical molecular
fingerprints, indicating no predominant spread of one type in the ICU, likely due to a high
level of compliance with hygiene measures and the restriction of spread. The observed
clonal relationships in Acinetobacter are more likely a result of selection pressure rather
than a specific outbreak. Selection pressure could induce the development of virulence
attributes and the acquisition of resistance to multiple drugs as part of the adaptation
process, thereby aiding the survival of these isolates within a clinical environment. Factors
such as prolonged hospital stays, invasive medical procedures, and immunocompromised
patients contribute to the transmission and persistence of CRAB.

There are very few antimicrobial agents available on the market that maintain effective-
ness against CRAB, such as polymyxins (colistin), aminoglycosides, and tetracyclines (such
as tigecycline). However, their utility is limited by suboptimal pharmacokinetic characteris-
tics, and the emergence of resistance and toxicity [60]. Regarding colistin, it is the preferred
treatment for severe infections, particularly in the ICU, due to the widespread prevalence
of carbapenem-resistant A. baumannii strains, which significantly limits treatment options.
It is noteworthy that Greece ranked first in hospital colistin consumption among European
countries from 2011 to 2015, attributed to the high prevalence of carbapenem-resistant
pathogens in Greek hospitals [24]. Consequently, this increased usage has led to a ris-
ing trend in colistin resistance, both nationally and globally [24,61]. Colistin resistance
poses a greater risk of excess patient mortality [62,63]. To this day, Greece remains the
highest consumer of carbapenems and polymyxins within the Europe region [64]. This
trend notably corresponds with the observed increase in resistance rates. Specifically, the
first study to highlight the simultaneous emergence of carbapenem-resistant A. baumannii
strains, carrying the blaOXA-23 gene, along with resistance to tigecycline, was conducted in
Greek hospitals from 2011 to 2013. This study revealed that all carbapenem-resistant strains
belonged to the international CC2 clone [65]. The prevalence of colistin-resistant (ColR)
CRAB isolates belonging to IC2 and expressing OXA-23 is increasing, and it represents a
huge threat within clinical settings given the very limited effective agents for the treatment
of infections caused by such strains [59].

The remarkable resistance rates noted for colistin in this study could be linked to the
origin of the isolates (blood) and the prevalence of IC II, as both these factors generally
exhibited more resistant profiles compared to non-blood and IC I isolates in a previous
national collection of carbapenem-resistant A. baumannii strains isolated in 2015 [66]. This
trend was also observed in a more recent study [58]. The elevated colistin resistance rate
could be attributed to increased colistin usage in Greece, driven by limited therapeutic
options against A. baumannii [67].

Most CRAB isolates are susceptible to only one or two agents, rendering them exten-
sively drug-resistant (XDR) pathogens [68]. The emergence and dissemination of XDR/PDR
A. baumannii strains within hospital settings has contributed to elevated mortality rates
and presents significant challenges for eradication, emphasizing the urgent need for new
and innovative antibiotic treatments [69,70]. In a recent study, there was a significantly
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higher occurrence of biofilm production and the concurrent presence of ompA and other
relevant genes among MDR and XDR A. baumannii isolates compared to non-XDR-MDR
isolates [71]. There is an increasing number of reports regarding Gram-negative bacteria
(GNB) exhibiting resistance to carbapenems, aminoglycosides, polymyxins, and tigecy-
cline simultaneously, termed CAPT-resistant strains, including Acinetobacter baumannii.
Consequently, PDRAB is increasingly reported worldwide [72].

A complete investigation into the reasons behind A. baumannii’s continued prevalence
in Greek hospitals has not been conducted. However, it is likely that it is linked to the
organism’s intrinsic resistance to various antibiotics. Moreover, its ability to survive on
surfaces for long periods, combined with the rapid emergence of new resistances and its
spread through clones, may also contribute to its persistence [7].

These data underscore the continued significance of XDR/PDR-CRAB as a healthcare-
associated pathogen with limited treatment options. CRAB isolates causing infections in
Greek hospitals almost exclusively produce OXA-23 and mainly belong to IC2.

The strengths of the present study are (a) the extensive duration of observation (5 years)
and (b) the representative population of patients included in the study, from the University
Hospital Laiko of Athens, one of the largest tertiary hospitals in the capital. All these data
enable us to draw safe conclusions.

The limitations of the current study include its single-center design, which means that
its findings may not be representative of the broader national situation. Additionally, this
study encompasses isolates collected from 2016 to 2020, which may not accurately reflect
the current epidemiological situation, especially after the SARS-CoV-2 pandemic.

Efforts to develop new antimicrobials must include strategies to address the presence
of these enzymes, such as the introduction of new inhibitors to be used in combination
with antibacterial drugs. Despite the daunting prospect of facing strains resistant to all
available treatments, ongoing research efforts to introduce new inhibitors and drugs offer
hope that the options for controlling these infections will persist.

Awareness of the current epidemiological status is crucial in combating the spread of
multidrug-resistant A. baumannii. Enacting a national surveillance strategy and establish-
ing a rapid carrier detection and isolation mechanism to identify epidemic clusters and
notable occurrences within healthcare facilities are indicative of quality care. Maintaining
proper infection control measures such as hand hygiene, sterilization, isolation protocols,
efficient antimicrobial stewardship, spread control measures, and appropriate antibiotic
use mitigates the transmission of infectious diseases within hospitals.
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