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Abstract: Background: Women with polycystic ovary syndrome (PCOS) have increased odds of
concurrent depression, indicating that the relationship between PCOS and depression is more likely
to be comorbid. However, the underlying mechanism remains unclear. Here, we aimed to use
bioinformatic analysis to screen for the genetic elements shared between PCOS and depression.
Methods: Differentially expressed genes (DEGs) were screened out through GEO2R using the PCOS
and depression datasets in NCBI. Protein–protein interaction (PPI) network analysis and enrichment
analysis were performed to identify the potential hub genes. After verification using other PCOS
and depression datasets, the associations between key gene polymorphism and comorbidity were
further studied using data from the UK biobank (UKB) database. Results: In this study, three key
genes, namely, SNAP23, VTI1A, and PRKAR1A, and their related SNARE interactions in the vesicular
transport pathway were identified in the comorbidity of PCOS and depression. The rs112568544 at
SNAP23, rs11077579 and rs4458066 at PRKAR1A, and rs10885349 at VTI1A might be the genetic basis
of this comorbidity. Conclusions: Our study suggests that the SNAP23, PRKAR1A, and VTI1A genes
can directly or indirectly participate in the imbalanced assembly of SNAREs in the pathogenesis of
the comorbidity of PCOS and depression. These findings may provide new strategies in diagnosis
and therapy for this comorbidity.

Keywords: polycystic ovary syndrome (PCOS); depression; comorbidity; SNAREs; single nucleotide
polymorphisms (SNPs)

1. Introduction

Polycystic ovary syndrome (PCOS) is a frequently occurring endocrine disorder with
a worldwide prevalence of 5–10% in women of reproductive age [1]. Characterized by
hyperandrogenemia, chronic anovulation, and polycystic ovary morphology, PCOS is asso-
ciated with some endocrine and energy metabolic disorders, such as obesity, dyslipidemia,
insulin resistance (IR), type 2 diabetes, and cardiovascular disease [2]. Moreover, increased
depression is also observed in PCOS, significantly deteriorating the quality of life of affected
females [3]. It is reported that depression affects between 28% and 64% of patients with
PCOS [4], and a three to eight times higher prevalence of depressive symptom has been
found in women with PCOS than in control groups [5]. In addition, the literature also
suggests an overlap of clinical symptoms between PCOS and depression [6]. Accordingly,
as recommended in the 2018 evidence-based guidelines on PCOS management, the Inter-
national PCOS Network advised that depression should be routinely screened for in all
adolescents and women with PCOS at the time of diagnosis [7].
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Multiple possible associations or shared links are mentioned between PCOS, PCOS
related metabolic disorders, and depression [1,8,9], which indicate that rather than merely
considering depression as a consequence of PCOS, the relationship between PCOS and
depression is more likely to be comorbid. Studies have demonstrated that PCOS is a
pro-inflammatory state, characterized by increased levels of pro-inflammatory markers [10].
Meanwhile, depression is also evidenced to be an inflammatory disorder with increased
levels of inflammatory markers [11]. Thus, there is a possibility of an inflammatory link
existing between PCOS and depression. Aside from the inflammatory link, several studies
have suggested an association between obesity, IR, and hyperandrogenism observed in both
PCOS and depression [1,8,12–14], indicating the possibility of an interconnection between
PCOS and depression. Hence, depression might share common genetic components, such
as differentially expressed genes (DEGs) with PCOS to cause comorbidity, despite gaps in
the literature to date.

Additionally, scattered in both coding and regulatory regions throughout the genome,
single nucleotide polymorphisms (SNPs) are the most common type of genetic variation.
The SNPs remain stable genetically and are proven to be associated with the pathogenesis
of diseases, making them biological markers to identify diseases [15]. However, the genetic
variation underlying the comorbidity of PCOS and depression has not yet been elucidated.

Considering that the DEGs between PCOS and depression were unclear, in our study
we first tried to determine the DEGs shared between PCOS and depression with bioinfor-
matic analysis using data from the GEO database in NCBI, and then verified the key genes
using genetic variation data from the UK biobank (UKB) database. This study may help
to understand the molecular mechanism of the comorbidity of PCOS and depression and
provide a new strategy for diagnosis and therapy.

2. Materials and Methods
2.1. Data Acquisition

The mRNA expression profile datasets GSE8157 and GSE23848 were downloaded
from the GEO database in NCBI (https://www.ncbi.nlm.nih.gov/geo/ accessed on 10
September 2023) in the format of Series Matrix File(s). The dataset GSE8157 which was
used to screen the DEGs on PCOS was hosted on the GPL570 platform [(HG-U133_Plus_2)
Affymetrix Human Genome U133 Plus 2.0 Array]. The participants in GSE8157 dataset were
from Denmark and the criteria of participant selection included the following: (1) Patients
were diagnosed as PCOS with the criteria to have irregular menstrual periods with cycle
length > 35 days during the last year, free testosterone level above reference interval
(>0.035 nmol/L), and/or hirsutism (total Ferriman-Gallwey score > 7). (2) All patients with
PCOS accepted to withdraw from oral contraceptives > 3 months before evaluation and
consented to use barrier contraception combined with spermatocidal cream during the
study period. Participants were excluded if they were pregnant. (3) Women with diabetes,
hypertension, elevated liver enzyme levels, adrenal enzyme defects, hyperprolactinemia,
and hypothyroidism were excluded from the study. The dataset GSE23848 that contained
data on patients with depression and healthy controls was located on the GPL6106Sentrix
Human-6 v2 Expression BeadChip platform. The participants in the GSE23848 dataset
were from USA and the criteria of participant selection included the following: (1) Age
between 18 and 65 years, diagnosis of BPD, currently depressed as defined by the DSM-
IV-TR (Diagnostic and Statistical Manual of Mental Disorders), and not currently being
treated with lithium. Study eligibility was based on clinical diagnosis rather than any
predetermined severity criteria. (2) DSM-IV-TR diagnoses other than BPD-I or BPD-II and
current or recent abuse of illicit substances (verified by urine toxicology screening) were
excluded. Raw data were log2-transformed and quantile-normalized prior to analysis.

2.2. Screening of DEGs

The annotated probes in the datasets were analyzed using GEO2R (https://www.
ncbi.nlm.nih.gov/geo/geo2r/ accessed on 10 September 2023) with the GeoQuery and

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/geo2r/
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Limma R packages. The normalized expression matrix from the microarray data was rep-
resented by a box line plot. DEGs were screened with the cut-off criteria as p-value < 0.05
and |log2FC| ≥ 0.263 (1.2 folder). Consistent DEGs between the GSE8157 and GSE23848
datasets were identified by R software (version 4.0.3) and visualized through a Venn diagram
(http://bioinformatics.psb.ugent.be/webtools/Venn/ (accessed on 10 September 2023)).

2.3. Protein–Protein Interaction (PPI) Network Analysis and Identification of Hub-Genes

PPI network analysis was performed using the STRING database (https://string-db.
org/ accessed on 15 September 2023) with the minimum interaction score > 0.40. The
result of the STRING analysis was imported into Cytoscape software (version 3.7.2), and
all interaction evidence contributed to nodes was scored with the cutoff as 0.40. Using the
cytohubba plugin in Cytoscape, the top 20 nodes were ranked by five algorithms, including
MCC, MNC, DMNC, Degree, and the Clustering Coefficient, respectively. The same genes
from the five algorithms were tagged as hub genes for subsequent analysis.

2.4. Enrichment Analysis

DAVID Bioinformatics Resources 2021 (https://david.ncifcrf.gov/ accessed on 15
September 2023) was used in enrichment analysis including Gene Ontology (GO) annota-
tion analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation analysis.
GO enrichment analysis was employed in three classes of biological processes (BP), molec-
ular functions (MF), and cellular components (CC). In these analyses, GO terms and KEGG
pathways were clustered into various groups with different enrichment scores.

Enrichr analysis (https://maayanlab.cloud/Enrichr/ accessed on 15 September 2023)
was used to confirm the results of the GO and KEGG from DAVID analysis and identify the
gene-related diseases and drugs, using the DisGeNET module and the Proteomics Drug
Atlas module, respectively. The results with a p-value < 0.05 under the hypergeometric test
were considered statistically significant.

2.5. Verification of the Hub Genes

The hub genes were verified using two other GSE datasets from the GEO database.
The DEGs in GSE6798 (PCOS vs. control) and in GSE76826 (depression vs. control) were
separately screened out with the cut-off criteria as p-value < 0.05. Then, the overlapped
hub genes were identified as the key genes for the comorbidity of PCOS and depression.

2.6. Validating Associations of Key Gene Polymorphism and the Comorbidity

In order to validate the key genes found in the above analysis, the data extracted from the
UKB database were used. The UKB is a large prospective cohort of over 500,000 participants
in the European population and has collected a large amount of phenotypic and genotypic
data, including anthropometric information, biochemical and imaging results, and disease
diagnosis, as well as lifestyle information. According to the Helsinki Declaration, the UKB
obtained written informed consent from all research subjects and ethical approval from the
Ethics Committee.

In this study, the women who were with both depression and PCOS from the UKB
were selected as the comorbidity case group and healthy women as the control group.
The women who had been diagnosed as having depression by doctors or were currently
taking antidepressant medication were judged as patients with depression. Similarly, the
women being diagnosed as PCOS by doctors or receiving relevant treatment were judged
as patients with PCOS.

The inclusion criteria included women: (1) who were aged ≥ 40 years old; (2) who
were able to communicate effectively and cooperate during the investigation; and (3) who
volunteered to participate in the investigation. The exclusion criteria included women:
(1) who were previously diagnosed with neurodegenerative or psychiatric disorders such
as anxiety, Parkinson’s disease, and Alzheimer’s disease, and (2) who were unable to
complete various examinations and survey questionnaires independently.

http://bioinformatics.psb.ugent.be/webtools/Venn/
https://string-db.org/
https://string-db.org/
https://david.ncifcrf.gov/
https://maayanlab.cloud/Enrichr/
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Tag SNPs for those key genes were extracted from the European population in the
UKB, and the processes included the following: (1) the gene locations were determined
through NCBI; (2) info and ped files were generated through the VCF to PED converter
in the 1000 Genomes database; (3) tag SNPs were screened using Haploview 4.2 software
based on the criteria of Minimum Allele Frequency (MAF) > 0.05 and r2 > 0.8; (4) the
function of genetic variations for key genes were reviewed from the relevant literature
in PubMed.

The Hardy–Weinberg Equilibrium (HWE) test was performed, with p-value > 0.05
indicating a genetic balance and good population representativeness. The tolerability
(TOL) > 0.1, variance inflation factor (VIF) < 10, and condition index (CI) ≤ 30 indicated
no collinearity between independent variables. The relationships of genetic variation
between depression and PCOS were analyzed using five genetic models including additive,
co-dominant, dominant, recessive, and over-dominant using binary logistic regression
analysis, adjusting for covariates such as age, education level, BMI, hypertension, diabetes,
and dementia in family history. In addition, the weighted gene score was calculated based
on the SNPs in each gene using the weighted gene score method to explore the relationship
between the gene score and comorbidity.

2.7. Gene-miRNAs Interaction Network Analysis

The key genes were uploaded to the miRWalk database (http://mirwalk.umm.uni-
heidelberg.de/ accessed on 20 September 2023) to identify miRNAs that potentially regulate
the expression of key genes. The target site of miRNA was in the 3-UTR region. The data
of the key gene–miRNA interaction were visualized in Cytoscape. Using the cytohubba
plugin to explore the key miRNA, the top 10 nodes were ranked using MCC algorithms.

3. Results
3.1. Identification of DEGs in PCOS and Depression

The design of this study is shown in Figure 1. The DEGs of PCOS in the GSE8157 dataset
and of depression in the GSE23848 dataset were first screened out, respectively; then, they
were used to identify the overlaps, which indicated the potential gene groups associated
with the comorbidity of depression and PCOS. A total of 6656 DEGs were found between
10 patients with PCOS and 13 healthy controls, including 5481 up-regulated and 1085 down-
regulated DEGs. A list of 2372 DEGs were detected between 20 patients with depression
and 15 healthy controls, involving 1041 up-regulated and 1331 down-regulated DEGs.
The volcano plots and box line plots of PCOS and depression are separately presented
in Figure 2A,B. As shown in the Venn diagram in Figure 2C, 240 overlapped genes were
screened out from the two datasets.

3.2. PPI Network Construction and Hub Gene Identification

Enrichment analysis was conducted before PPI network analysis in order to remove
the statistically insignificant GO terms and KEGG pathway-related genes. As shown in
Figure 3A,B, the number of DEGs shrunk from 240 to 50 after DAVID analysis. These
50 DEGs were further analyzed by PPI network analysis. As shown in Figure 3C, 33 DEGs
with 38 edges remained in the network with all the unconnected nodes removed. The
larger size and darker color of the nodes indicated greater values in the network, indicating
the more important genes. After calculation using five algorithms, 17 genes with 23 edges
were identified as hub genes (Figure 3D,E). The 17 hub genes are marked out in a volcano
plot in Figure 3F (GSE8157) and Figure 3G (GES 23848), including 10 up-regulated genes
(AGPAT2, AGPAT3, BAD, BCL2L1, CASP1, NCF4, PRKCZ, SYK, VAMP5, and VTI1A) and
7 down-regulated genes (ADRB2, AGPAT5, BET1, IRS2, PRKAR1A, PRKCA, and SNAP23).

http://mirwalk.umm.uni-heidelberg.de/
http://mirwalk.umm.uni-heidelberg.de/
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Figure 1. The design of the study.

3.3. Enrichment Analysis of Hub Genes

To explore the biological functions of the 17 hub genes, enrichment analysis was
performed. As shown in Figure 4A, the top 10 GO terms classified as BP, CC, and MF
and the top 10 KEGG pathways in DAVID analysis were drawn, respectively, in the dot
plot. The enrichment results of the GO-BP and KEGG pathway from Enrichr analysis are
shown in Figure 4C. The same top significant KEGG pathways, shown in Figure 4A,C,
were found to be SNARE interactions in vesicular transport, the phospholipase D signaling
pathway, lipid and atherosclerosis, and the insulin signaling pathway. The top GO BP
terms shown in Figure 4A,C were not quite the same; however, most belonged to the
ancestor tree of the biosynthetic and metabolic processes of glycerophospholipid and
phospholipid in QuickGO (www.ebi.ac.uk/QuickGO accessed on 10 September 2023). As
Figure 4B shows, the 17 hub genes were divided into four clusters. Each cluster was formed
by a group of genes related to one of the KEGG pathways, and their GO-BP, CC, and
MF terms combined to indicate that the hub genes exerted their molecular function in
specific cellular components in order to achieve the biological processes involving the four
KEGG pathways.

www.ebi.ac.uk/QuickGO
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In DisGeNET from the Enrichr analysis (Figure 4D), the hub gene-related diseases were
shown to be insulin resistance, infection, obesity, insulin sensitivity, and tumor initiation,
and the potential drugs from the Proteomics Drug Atlas were listed, such as SCH 530348,
PHA 767491, AZD8055, 7,8-dihydroxyflavone, and zotarolimus (Figure 4E).
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Figure 4. Enrichment analysis of the hub genes. (A): the top 10 GO terms classified as BP, CC, and MF
and top 10 KEGG pathways in DAVID analysis. (B): the 17 hub genes were divided into four clusters.
(C): the enrichment results of GO BP and KEGG pathway from Enrichr analysis. (D): DisGeNET from
Enrichr analysis to show the hub gene-related diseases. (E): Proteomics Drug Atlas from Enrichr
analysis to show the potential drugs.

3.4. Verification of the Hub Genes Using Other GSE Datasets

The 17 hub genes screened out were verified using another dataset GSE6798 on PCOS
and a dataset GSE76826 on depression. After GEO2R analysis, 10 hub genes were found
in GSE6798 and 10 hub genes in GSE76826, respectively. There were five overlapping
hub genes in the two datasets including CASP1, IRS2, PRKAR1A, SNAP23, and VTI1A
(Supplementary Table S1), which were identified as the key genes in the comorbidity of
PCOS and depression. The five key genes related to three pathways included the SNARE
interactions in the vesicular transport pathway (SNAP23, VTI1A), the insulin signaling
pathway (IRS2, PRKAR1A), and lipid and atherosclerosis (CASP1).

3.5. Validating the Associations of Key Gene Polymorphism and the Comorbidity

A total of 225 participants (including 45 cases and 180 controls) were included in
this study. A list of eight SNPs at SNAP23, eight SNPs at PRKAR1A, nine SNPs at
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VTI1A, six SNPs at CASP1, and eight SNPs at IRS2 were screened, respectively (listed
in Supplementary Table S2). All genetic variation in genotype conformed to the Hardy–
Weinberg equilibrium (p > 0.05), indicating a good representativeness of the participants.
All independent variables conformed to VIF < 10, TOL > 0.1, and CI ≤ 30, showing no
multicollinearity existing between the variables.

The results of the key gene polymorphism and comorbidity of PCOS and depres-
sion are shown in Table 1. For the SNAP23 gene, negative associations were found be-
tween rs112568544 and the patients with PCOS and depression in the additive genetic
model (OR = 0.39, 95% CI: 0.17–0.92), the dominant genetic model (0.34, 0.14–0.83), the
co-dominant genetic model (0.32, 0.13–0.80), and the over-dominant genetic model (0.32,
0.13–0.79). A significant relationship was also identified between the weighted gene score
of SNAP23 and the comorbidity (0.61, 0.44–0.83).

Table 1. SNP genetic analysis to validate the key genes. Rs112568544 at SNAP23, rs11077579 and
rs4458066 at PRKAR1A, and rs10885349 at VTI1A were found statistically significant (p < 0.05 marked
with *) in the comorbidity. The gene score of SNAP23 and PRKAR1A were significant.

Key Gene SNPs Model Disease No Disease OR p

SNAP23 rs112568544

additive CC vs. CA vs. AA 0.3 ± 0.4 0.1 ± 0.3 0.39 (0.17–0.92) p = 0.031 *

co-dominant
CC 32 (74.4%) 153 (89%)
CA 11 (25.6%) 18 (10.5%) 0.32 (0.13–0.80) p = 0.014 *
AA 0 (0%) 1 (0.6%) 403,884.90 (0.00–Inf) p = 0.988

dominant
CC 32 (74.4%) 153 (89%)

CA + AA 11 (25.6%) 19 (11%) 0.34 (0.14–0.83) p = 0.018 *

recessive
CC + CA 43 (100%) 171 (99.4%)

AA 0 (0%) 1 (0.6%) 507,574.97 (0.00–Inf) p = 0.988

over-dominant
CC + AA 32 (74.4%) 154 (89.5%)

CA 11 (25.6%) 18 (10.5%) 0.32 (0.13–0.79) p = 0.013 *

Gene_score 0.61 (0.44–0.83) p = 0.002 *

PRKAR1A

rs11077579

additive CC vs. CT vs. TT 1.1 ± 0.6 1.0 ± 0.8 0.80 (0.50–1.30) p = 0.376

co-dominant
CC 7 (16.3%) 55 (32%)
CT 25 (58.1%) 69 (40.1%) 0.38 (0.14–0.98) p = 0.045 *
TT 11 (25.6%) 48 (27.9%) 0.58 (0.20–1.70) p = 0.324

dominant
CC 7 (16.3%) 55 (32%)

CT + TT 36 (83.7%) 117 (68%) 0.44 (0.18–1.10) p = 0.078

recessive
CC + CT 32 (74.4%) 124 (72.1%)

TT 11 (25.6%) 48 (27.9%) 1.13 (0.51–2.54) p = 0.759

over-dominant
CC + TT 18 (41.9%) 103 (59.9%)

CT 25 (58.1%) 69 (40.1%) 0.51 (0.25–1.04) p = 0.063

rs4458066

additive CC vs. CG vs. GG 0.7 ± 0.6 0.9 ± 0.8 1.78 (1.07–2.97) p = 0.028 *

co-dominant
CC 17 (39.5%) 57 (32.9%)
CG 23 (53.5%) 70 (40.5%) 1.07 (0.50–2.28) p = 0.858
GG 3 (7%) 46 (26.6%) 5.07 (1.34–19.13) p = 0.017 *

dominant
CC 17 (39.5%) 57 (32.9%)

CG + GG 26 (60.5%) 116 (67.1%) 1.53 (0.74–3.17) p = 0.252

recessive
CC + CG 40 (93%) 127 (73.4%)

GG 3 (7%) 46 (26.6%) 4.87 (1.39–17.10) p = 0.014 *

over-dominant
CC + GG 20 (46.5%) 103 (59.5%)

CG 23 (53.5%) 70 (40.5%) 0.68 (0.34–1.37) p = 0.277

Gene_score 0.96 (0.93–0.99) p = 0.009 *

VTI1A rs10885349

additive AA vs. AC vs. CC 1.0 ± 0.9 1.0 ± 0.7 1.00 (0.63–1.60) p = 0.993

co-dominant
AA 16 (37.2%) 49 (28.3%)
AC 12 (27.9%) 80 (46.2%) 2.59 (1.06–6.37) p = 0.038 *
CC 15 (34.9%) 44 (25.4%) 1.00 (0.42–2.39) p = 0.994

dominant
AA 16 (37.2%) 49 (28.3%)

AC + CC 27 (62.8%) 124 (71.7%) 1.67 (0.78–3.55) p = 0.186

recessive
AA + AC 28 (65.1%) 129 (74.6%)

CC 15 (34.9%) 44 (25.4%) 0.60 (0.28–1.28) p = 0.189

over-dominant
AA + CC 31 (72.1%) 93 (53.8%)

AC 12 (27.9%) 80 (46.2%) 2.59 (1.18–5.67) p = 0.018 *

Gene_score 1.01 (1.00–1.03) p = 0.073
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For the PRKAR1A gene, a negative association was detected between rs11077579 and
the patients with PCOS and depression in the co-dominant genetic model (OR = 0.38, 95%
CI: 0.14–0.98). Contrary to that, positive associations were discovered between rs4458066
and comorbidity in the additive genetic model (1.78, 1.07–2.97), the recessive genetic model
(4.87, 1.39–17.10), and the co-dominant genetic model (5.07, 1.34–19.13). The weighted gene
score of PRKAR1A was also significantly associated with comorbidity (0.96, 0.93–0.99).

For the VTI1A gene, positive associations were shown between rs10885349 and the
comorbidity in the co-dominant genetic model (OR = 2.59, 95% CI: 1.06–6.37) and in the
over-dominant genetic model (2.59, 1.18–5.67). However, no statistical association was
found in the weighted gene scores of VTI1A with comorbidity (OR = 1.01, 95% CI: 1.00–1.03).

As for CASP1 and IRS2, no statistically significant association was found between the
two gene polymorphisms and comorbidity.

3.6. Gene-miRNA Network Construction and Key miRNA Prediction

The miRWalk database and Cytoscape software were used to identify miRNAs that
potentially regulated the three key genes. As Figure 5A shows, the gene–miRNA interaction
network was constructed with three key gene nodes and 1483 miRNAs nodes connected
to the key genes. The top 10 miRNAs, namely miR-3173-3p, miR-3191-3p, miR-4313, miR-
3621, miR-4298, miR-6798-5p, miR-550b-3p, miR-370-3p, miR-2392, and miR-4633-3p, are
calculated and visualized in Figure 5B.
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4. Discussion

Multiple possible associations have been reported from epidemiological and clinical
studies between PCOS and depression [4,5,16], indicating the relationship between PCOS
and depression to be comorbid. Despite the emerging interest in the last 10 years, the
underlying mechanism between this comorbidity remained unclear. In this study aiming
to explore the genetic components between PCOS and depression, we found five key genes
potentially related to the comorbidity of PCOS and depression through bioinformatic analy-
ses. After validating the associations of key gene polymorphism and the comorbidity, three
key genes namely SNAP23, PRKAR1A, and VTI1A, remained significant to the comorbidity.

4.1. SNAP23

SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors),
consisting of more than 30 members, is a large family of proteins that plays a major role
in intracellular vesicular trafficking through mediating the fusion of donor and acceptor
membranes in eukaryotic cells. SNAREs contain one R- and three Q-SNARE (subdivided
into Qa, Qb, and Qc) domains. SNAP-25(Synaptosomal-Associated Protein 25) and its
paralogs SNAP-23, important subfamily members of SNAREs with the Qb and Qc domains,
are specialized for driving regulated exocytosis [17–19]. Different from the neuron-specific
SNAP-25, SNAP-23 is ubiquitously expressed in the blood and immune system, the mus-
culoskeletal system, most internal organs, secretory and reproductive organs as well as
in the brain [17,20]. Matched to its location, SNAP-23 can drive regulated exocytosis of
GLUT4 vesicles to the plasma membrane triggered by insulin stimulation in adipocyte and
in skeletal muscle [21–23], as well as mediate the glutamate release in glia [24,25] and IGF-1
(insulin-like growth factor 1) localization in hippocampal neurons [26,27].

PCOS is a metabolic disorder characterized by profound peripheral insulin resistance,
with up to 70% of the patients with PCOS demonstrating insulin resistance [28]. Insulin
resistance contributes not only to the metabolic abnormalities in PCOS but also to hyperan-
drogenemia, one of the diagnostic criteria of PCOS, by stimulating the ovarian androgen
production [29–31]. There is evidence that insulin stimulates glucose uptake in human
skeletal muscle by increasing GLUT4 translocation. In skeletal muscle from insulin resis-
tant individuals, an impaired insulin action on glucose utilization is found to involve the
impaired stimulation of GLUT4 translocation, as well as the redistribution of SNAP23 from
the plasma membrane to lipid droplets, whether in lean or obese patients [23]. Thus, it is
suggested that GLUT4 translocation with SNAP23 redistribution plays a role in insulin
resistance in skeletal muscle in patients with PCOS. Not surprisingly, SNAP23 can be
screened out as a key gene related to PCOS.

Glutamate is the main excitatory neurotransmitter in the mammalian central nervous
system (CNS) and has a major role in the pathophysiology of depression [32–34]. It is
reported that glutamate release is inhibited through the cleavage of SNAP-23 in satellite glial
cells [24]. Glutamate receptor expression is consistent with the highly enriched localization
of SNAP-23 on postsynaptic but not presynaptic dendritic spines, which indicates that
SNAP-23 can mediate the postsynaptic trafficking of the glutamate receptor [25]. Aside
from glutamate, IGF-1 is also widely distributed in the CNS and is known to underlie the
pathogenesis of depression [35,36]. SNAP23 is reported to be essential for the exocytosis of
plasmalemmal precursor vesicles and the polarized insertion of the IGF-1 receptor [27]. As
an important factor both on glutamate release and on IGF-1 localization in CNS, SNAP23 is
evidenced to be closely related to depression. Based on the above, the previous research
supports our bioinformatic results that SNAP23 can be regarded as a key gene in the
comorbidity of PCOS and depression.

Furthermore, the results of the SNP genetic analysis indicated that negative asso-
ciations were found between rs112568544 at SNAP23 and the patients with PCOS and
depression. A significant weighted gene score of SNAP23 was also presented in this study.
All these findings supported SNAP23 as a key gene for this comorbidity.
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4.2. VTI1A

VTI (Vacuole Protein Sorting 10-interacting) proteins are a subclass of Qb-SNAREs,
including VTI1A and VTI1B, which mediate different steps of endolysosomal trafficking
and are necessary for regulated secretion as well [37,38]. VTI1A like SNAP23 is also a com-
ponent of insulin-sensitive GLUT4-containing vesicles that regulate the GLUT4 trafficking
in 3T3-L1 adipocytes [39]. Furthermore, presynaptically but not postsynaptically, the loss
of VTI1A impairs spontaneous high-frequency glutamate release in hippocampal neurons,
confirming the role of the VTI1A as a key regulator of spontaneous neurotransmission [40].
Thus, for the same reason as SNAP23, VTI1A is evidenced to be a key gene in the comorbid-
ity of PCOS and depression. SNAP23 and VTI1A are concerned with SNARE interactions
in the vesicular transport pathway. Accordingly, SNARE interactions in the vesicular trans-
port pathway that involve SNAP23 and VTI1A is proven to be a vital signaling pathway in
the patients with PCOS and depression.

In the genetic analysis, a positive association was found between rs10885349 at VTI1A
and this comorbidity, which is in line with the above-mentioned results. However, no
statistical association was found in the weighted gene scores of VTI1A, which implies that
VTI1A might be a weak key gene for this comorbidity compared to SNAP23.

4.3. PRKAR1A

PKA (protein kinase A), the main mediator of cAMP signaling pathway, is a second
messenger-dependent enzyme essential for various cellular processes such as metabolism,
proliferation, differentiation, and apoptosis. PRKAR1A (protein kinase cAMP-dependent
type I regulatory subunit α), the main component of type I PKA, regulates the kinase activ-
ity in response to cAMP [41]. Deletion of PRKAR1A has been proven to cause embryonic
lethality [42]. Snapin, a SNARE-associated protein, is phosphorylated in a cAMP/PKA-
dependent manner and interacts with SNAP23 to mediate vesicle fusion and exocytosis
ubiquitously in neuronal and non-neuronal cells [43,44]. It is reported that snapin interacts
with the exocyst and plays a modulatory role in GLUT4 vesicle trafficking and glucose-
stimulated insulin exocytosis [45,46]. In CNS, snapin produces a significant decrease in
the uptake activity of the dopamine transporter to mediate dopamine transmission [47].
Various depressive symptoms have been evidenced to be associated with lower dopamine
level and the downregulated dopamine transporter in depressed patients [48,49]. Conse-
quently, it is speculated that PRKAR1A mediates PKA-dependent snapin to work together
with SNAP23 in the comorbidity of PCOS and depression.

The results of the SNP genetic analysis showed that a negative association in rs11077579,
or/and positive associations in rs4458066 at PRKAR1A were related to this comorbidity. A
significant weighted gene score of PRKAR1A was obtained. These findings indicated that
PRKAR1A, as well as SNAP23, is a strong key gene for patients with PCOS and depression.

4.4. Others

In our study, IRS2 and CASP1 were also identified as key genes in the bioinformatic
analysis but were not verified successfully by genetic analysis. IRS2 (insulin receptor
substrate-2), as well as IRS1, are ubiquitously expressed and are the primary mediators
in the insulin-dependent regulation of glucose metabolism in most cells [50]. In response
to insulin stimulation, PI3K (phosphotidylinositide-3-kinase) associated with IRS1/IRS2
activates the Akt cascade; then, it subsequently increases the translocation of GLUT4
and SNAP23 mediated fusion [51]. IRS2 might act as an upstream mediator for insulin-
dependent GLUT4 translocation and SNARE distribution in muscle and fat cells, and thus
connects with PCOS. Different to IRS1, IRS2 plays important roles both in peripheral tissues
and in CNS. Accumulating studies have demonstrated that a reduction in intracellular
signaling mediated by IGF-1 receptor/IRS2 exerts neuroprotective effects in Alzheimer’s
disease [52]. However, little evidence has shown that IRS2 is a cause or an effect of
depression until now. Thus, without convincing evidence from the literature and without
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SNP support, it is still open to discussion as to whether IRS2 can be considered as a key
gene for the comorbidity of PCOS and depression.

CASP1 (caspase-1) plays a fundamental role in innate immunity and in several impor-
tant inflammatory diseases as the protease activates the pro-inflammatory cytokines proIL-
1β and proIL-18 [53]. Pro-inflammatory or inflammatory processes have been strongly
implicated in the pathogenesis of both PCOS and depression [54,55]. We tended to speculate
that the associations between CASP1, PCOS, and depression were reasonable. However, the
result of the SNP genetic analysis did not support CASP1 as a key gene for the comorbidity
of PCOS and depression. This might be due to the varieties in the races, the samples of the
datasets, or the lack in the literature regarding new SNPs. Further research is needed to
explore the relationship between CASP1 and the comorbidity of PCOS and depression.

In the enrichment analysis, many top GO BP terms focused on the biosynthetic and
metabolic processes of glycerophospholipid and phospholipid, which related to the phos-
pholipase D signaling pathway. However, we found that the hub genes related to the GO
terms and pathways were not verified by other GSE datasets. This might be due to the
varieties in the races, samples, or study designs of the different GSE datasets.

In Proteomics Drug Atlas analysis, SCH 530348, PHA 767491, AZD8055, 7,8-dihydroxyflavone,
and zotarolimus were listed as potential drugs for the comorbidity. The applications of
the potential drugs were checked through the literature but no direct relationships were
found between the drugs and the key genes identified in the comorbidity. Further studies
are needed to explore this area.

5. Conclusions

Despite the emerging interest in the possible causes of PCOS-associated depression
in the last 10 years, the underlying mechanisms remained unclear. In this study, for the
first time, we used bioinformatic analysis to screen the genetic elements between PCOS
and depression.

SNAP23, VTI1A, and PRKAR1A were identified and verified to be key genes related to
this comorbidity. We postulated that these three key genes participated directly or indirectly
in the imbalanced assembly of the SNARE complex. In CNS, the incorrectly assembled
SNAREs mediated the abnormal secretion of neurotransmitters to induce the pathogenesis
of depression. Meanwhile in peripheral tissue, the misassembled SNAREs disturbed
insulin-sensitive GLUT4 vesicle trafficking and resulted in insulin resistance and metabolic
disorders in patients with PCOS. Rs112568544 at SNAP23, rs11077579 and rs4458066 at
PRKAR1A, and rs10885349 at VTI1A might be the genetic basis for this comorbidity.

We hope that these findings and their related hypothesis may be helpful to explain
the underlying molecular mechanism and provide potential biomarkers for diagnosis
and therapy in patients with PCOS suffering from depression. Early intervention may
contribute to preventing the pathologies and these key genes may become useful targets to
fight the disease.

6. Limitations

Three limitations should be noted in our study. First, since few specific biomarkers
for PCOS or depression exist in patients, it is difficult and challenging to predict this
comorbidity. In the literature analysis, links between the key genes, their targets, and
then two diseases are indirect and non-exclusive. Given that the genes in the fields of
comorbidity of PCOS and depression are rarely studied, the evidence to support our results
is insufficient. Even though we have validated the associations of key genes with this
comorbidity using genetic variation data from UKB database, future cohort study is still
needed to validate our findings.

Second, in the bioinformatic analysis, we used the GEO2R, STRING, DAVID, and
miRWalk tools to screen out the key DEGs, but it was difficult to control the potential
confounding factors using these tools. Even though some covariates such as age, education
level, BMI, hypertension, diabetes, and dementia in family history were adjusted for genetic
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models in validating analysis using UKB genetic data, some unknown factors can still affect
the associations that we found.

Finally, in our study, the key genes were screened out based on the data from Danish
and America population and further validated using data from European population,
suggesting that the key genes we identified were more likely to be related to PCOS–
depression comorbidity in the Caucasian population. More studies are still needed to verify
the roles of the key genes in this comorbidity in other ethnicities.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes15040494/s1, Table S1: Verify the hub genes with other
GSE datasets to identify the key genes. 10 hub genes were found positive in GSE6798 and also
10 hub genes in GSE76826 respectively. The overlapped hub genes in the two datasets were 5 genes
including CASP1, IRS2, PRKAR1A, SNAP23, and VTI1A; Table S2: SNPs screened in key genes.
8 SNPs at SNAP23, 8 SNPs at PRKAR1A, 9 SNPs at VTI1A, 6 SNPs at CASP1, and 8 SNPs at IRS2
were screened, respectively.
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