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Abstract: The GRAPES (Global/Regional Assimilation and Prediction System) global medium-range
forecast system (GRAPES_GFS) is a new generation numerical weather forecast model developed by
the China Meteorological Administration (CMA). However, the forecasts of surface latent heat fluxes
and surface air temperature have systematic biases, which affect the forecasts of atmospheric dynam-
ics by modifying the lower boundary conditions and degrading the application of GRAPES_GFS
since the 2 m air temperature is one of the key components of weather forecast products. Here,
we add a soil resistance term to reduce soil evaporation, which ultimately reduces the positive
forecast bias of the land surface latent heat flux. We also reduce the positive forecast bias of the ocean
surface latent heat flux by considering the effect of salinity in the calculation of the ocean surface
vapor pressure and by adjusting the parameterizations of roughness length for the exchanges in
momentum, heat, and moisture between the ocean surface and atmosphere. Moreover, we modify
the parameterization of the roughness length for the exchanges in heat and moisture between the
land surface and atmosphere to reduce the cold bias of the nighttime 2 m air temperature forecast
over areas with lower vegetation height. We also consider the supercooled soil water to reduce the
warm forecast bias of the 2 m air temperature over northern China during winter. These modified
parameterizations are incorporated into the GRAPES_GFS and show good performance based on
a set of evaluation experiments. This paper highlights the importance of the representations of the
land/ocean surface and boundary layer processes in the forecasting of surface heat fluxes and 2 m
air temperature.

Keywords: GRAPES_GFS; latent heat flux; 2 m air temperature; surface processes; boundary layer

1. Introduction

A global model with fully coupled atmosphere, ocean, and land processes is a key
component of a numerical weather forecasting system [1]. Currently, there are three main
types of weather forecasting systems: global medium-range forecast system, regional
mesoscale short-term forecast system, and local convective-scale nowcast system. The
global medium-range forecast system is the core of the operational weather forecast system,
providing boundary conditions and background information for regional and local weather
forecasts. The development of global medium-range weather forecast models has largely
contributed to the improvement of worldwide numerical forecasting.

The Global/Regional Assimilation and Prediction Enhanced System (GRAPES) [2] is a
new-generation numerical weather prediction model developed by China Meteorological
Administration. After nearly 10 years of research and development, the GRAPES global
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medium-range ensemble forecast system (GRAPES_GFS) became operational in 2018 [3].
While the atmospheric processes have been reasonably represented by the GRAPES_GFS
with advanced physical parameterizations, increased model resolution, and state-of-the-art
data assimilation techniques, the representations of surface processes for the land and
ocean have received less attention. It is known that the degree of atmospheric response to
surface state anomalies is closely related to local boundary layer characteristics, surface
heat, and moisture conditions with strong spatial and temporal heterogeneity [4,5]. Due to
different surface states, the exchanges in heat, water vapor, and momentum between the
surface and the atmosphere are also different, resulting in a variety of different weather
conditions [6], especially for extreme weather such as heatwaves [7] and droughts [8,9].

Koster et al. [10] conducted a set of global land–atmospheric coupling experiments
using 12 atmospheric models and found that the key factor affecting land–atmospheric cou-
pling is the latent heat flux. Surface flux anomalies caused by soil moisture anomalies affect
the development of the boundary layer and the water vapor content in the atmosphere,
thus leading to changes in precipitation [11,12]. The observed greening in China caused
significant summer cooling and enhanced the summer monsoon precipitation in North
China [13]. Qi et al. [14] illustrated that the maximum positive anomaly of precipitation
over the eastern Tibetan Plateau lags the warmest surface soil temperature by one phase at
the quasi-biweekly timescale, indicating that the warming surface soil temperature could
also enhance the subseasonal precipitation. Besides the mean conditions, soil moisture also
affects daily maximum and minimum temperature by influencing daytime surface energy
distribution and nighttime surface emissivity, with the decrease in soil moisture leading to
an increase in daily maximum and minimum temperature [15–17].

The physical parameterizations of GRAPES_GFS have been improved in recent years [18–21].
For instance, Yang et al. [22] showed that the simulation of a stable boundary layer can
be improved by incorporating GABLS2 parameterization. The Common Land Model
(CoLM) [23] was also coupled into the GRAPES_GFS model, with comprehensive repre-
sentations of surface and energy exchanges between surface and atmosphere. However, a
few systematic biases related to surface processes still exist in GRAPES_GFS. For instance,
there are obvious positive biases of latent heat fluxes over land and ocean surfaces as
compared with ERA-Interim reanalysis (will be shown in the results section), which is
related to the parameterization of evaporation. Over land areas, evaporation consists of soil
evaporation, canopy evaporation, and vegetation transpiration. Detailed diagnosis should
be performed to investigate the bias in modeling these ET components, which are closely
related to soil moisture dynamics and vegetation processes. Over oceans, evaporation is
mainly related to radiation, vapor pressure deficit, and the parameterizations of roughness
lengths for momentum, temperature, and humidity. These parameterizations may also
affect the calculation of 2 m air temperature over the land surface. The soil water processes
may also affect temperature calculation over land. For instance, there are liquid soil water
even under freezing point, neglecting such process may lead to warm bias over specific
regimes, such as northern China during winter.

In this paper, we aim to tackle these shortcomings and improve the corresponding
parameterizations of GRAPES_GFS and evaluate the effects of the improved parameter-
izations on the forecasts of latent heat fluxes over land and ocean, as well as the 2 m air
temperature at global and regional scales. Section 2 describes the model parameterizations
and experimental design, and Section 3 presents the evaluation results. Conclusions and
discussion are presented in Section 4.

2. Model Parameterizations and Experimental Design
2.1. GRAPES_GFS

GRAPES_GFS is a global medium-range weather forecast model that includes an
atmospheric model, a land surface model, a simple ocean flux model with fixed sea surface
temperature (SST) at the beginning of the forecast, and a variational data assimilation
system [24]. The atmospheric model is a nonhydrostatic model, with a spatial discretization
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of the staggered Arakawa C grid and a temporal discretization of two-time-level semi-
implicit semi-Lagrangian scheme [25]. The atmospheric model has 87 levels, with a model
top of 0.1 hPa. The physical schemes of GRAPES_GFS consist of the RRTMG short-wave
and long-wave radiation parameterizations, a double-moment cloud microphysical scheme,
the NSAS shallow and deep cumulus convection parameterizations, the MRF planetary
boundary layer scheme, and the CoLM land surface scheme [3]. The CoLM [26] calculates
the soil water and temperature dynamics in different soil layers, the accumulation and
melting of snow, surface and subsurface runoff, as well as the latent and sensible heat
fluxes over both land and ocean. It was developed from NCAR CLM [23] but introduced
the two-big-leaf model for calculating the exchanges in energy, water, and carbon between
land surface and atmosphere and incorporated high-resolution soil data [26].

2.2. Improved Parameterizations for the Estimation of Latent Heat Flux

The surface latent heat flux is the energy of evaporation. GRAPES_GFS calculates
evaporation over land by using the parameterizations of surface soil evaporation, vege-
tation transpiration, and canopy evaporation. GRAPES_GFS also calculates evaporation
over ocean by using a simple ocean flux scheme. To address the issue of overestimated soil
evaporation from the CoLM model, a soil resistance term that limits excessive evaporation
was added during the development of NCAR CLM 3.5 [27]. It also proved to be useful in
improving the Conjunctive Surface and Subsurface Process model (CSSP) [28]. Therefore,
we also added such soil resistance term (Rs) [27,28] into GRAPES_GFS as follows:

Rs = exp(8.206 − 4.255S1) (1)

where S1 is the relative soil moisture of the surface soil layer. Note that this is an additional
resistance for the calculation of soil evaporation, and the resistance is larger if the surface
soil is drier.

The transfer coefficient for moisture and heat that controls the total heat flux being
transported into atmosphere is more sensitive to roughness length for moisture/heat than
the stability function [29]. In original GRAPES_GFS, the roughness lengths for momentum
(Z0M), heat (Z0T) and moisture (Z0Q) over ocean are expressed as follows:

z0M = 0.11
ν

u∗
+ α

u2
∗

g
(2)

z0T = z0Q = 2.67(Re
∗)1/4 − 2.57 (3)

Re
∗ =

u∗z0M
ν

(4)

where α is the Charnock coefficient with the constant value of 0.013, ν is the kinematic
viscosity dependent on SST, u∗ is the friction velocity, g is acceleration of gravity. To reduce
the positive biases of latent heat fluxes, we modified the calculation of roughness lengths
for temperature and humidity over sea by following the ECMWF model [30] as follows:

z0T = 0.40
ν

u∗
(5)

z0Q = 0.62
ν

u∗
(6)

and we modified the Charnock coefficient for the calculation of the roughness length for
momentum by considering the wind speed effect [31] as follows:

α =


0.011, U ≤ 10 m/s
0.011 + 0.007(U − 10)/8, 10 < U < 18 m/s
0.018, U ≥ 18 m/s

(7)
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In addition, the original GRAPES_GFS/CoLM used the saturated specific humidity at
SST as the boundary condition for vapor pressure calculation, which ignored the salinity
effect and overestimated the latent heat flux over ocean due to the overestimation of the
pressure gradient between ocean and atmosphere. Therefore, we modified the calculation
of specific humidity at ocean surface as follows:

qs = 0.98qsat(SST) (8)

2.3. Improved Parameterization for the Estimation of 2 m Air Temperature

The original GRAPES_GFS/CoLM did not distinguish the roughness lengths for the
exchanges in momentum, heat, and moisture over land surface, which resulted in the cold
bias for the forecast of nighttime 2 m air temperature. Here, we adopted the calculation
of roughness length for the heat and moisture exchanges as in ECMWF IFS, where 1%
of the roughness length for momentum exchange is used for estimating the roughness
lengths for the heat and moisture exchanges for vegetation with low height, while the
original momentum roughness length is used for heat and moisture roughness lengths for
tall vegetation.

In order to reduce the warm bias for the forecast of 2 m air temperature over cold
regions during winter, we considered the supercooled water in the calculation of soil water
dynamics, which allows for the coexistence of liquid soil water with solid soil water for
the temperatures below the freezing point [32,33]. The supercooled water is estimated
as follows:

wliq,max,i = ∆ziθsat,i

103L f

(
Tf − Ti

)
gTiψsat,i

−1/Bi

Ti < Tf (9)

where wliq,max,i is the maximum liquid water content when the soil temperature Ti is
below the freezing point Tf in the ith soil layer, L f is the latent heat of fusion, and g is
the gravitational acceleration. When Ti < Tf and wliq,i > wliq,max,i, icing occurs. The ice
content at the next time step is calculated as follows [34]:

wn+1
ice,i =

{
min

(
wn

liq,i + wn
ice,i − wn

liq,max,i , wn
ice,i −

Hi∆t
L f

)
wn

liq,i + wn
ice,i ≥ wn

liq,max,i

0 wn
liq,i + wn

ice,i < wn
liq,max,i

}
(10)

where Hi is the energy required for the temperature change from Ti to Tf (Hi < 0), and
part of the energy ( Hi∗ ) is not released during the icing process but is used to cool the soil,
which is expressed as

Hi∗ = Hi −
L f

(
wn

ice,i − wn+1
ice,i

)
∆t

(11)

The introduction of supercooled soil water allows the soil temperature with liquid
water lower than freezing point, which reduces the warm bias of winter 2 m air tempera-
ture forecasts.

2.4. Experimental Design

To evaluate the performance of the modified GRAPES_GFS, we carried out numerical
experiments which incorporated the modified parameterizations gradually:

(1) EXP1 experiment by using GRAPES_GFS with modified parameterizations of soil
evaporation and ocean surface roughness length, where the 24 h forecasts started from
each day during 1–31 July 2016;

(2) EXP2 experiment by using GRAPES_GFS with modified parameterizations from EXP1,
and land surface roughness lengths for the exchanges in heat and moisture, salinity-
related ocean surface vapor pressure, where the 24 h forecasts started from each day
during 1 March–15 April 2019;
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(3) EXP3 experiment by using GRAPES_GFS with modified parameterizations from EXP1
and EXP2, as well as the supercooled soil water, where the 24 h forecasts started from
each day during 1–31 January 2016;

(4) CTL experiments are the same as EXP1–EXP3 but use the original GRAPES_GFS
without any modifications in the surface parameterizations mentioned above.

(5) To evaluate the performance of precipitation forecasts, we use the model version same
as EXP3 to perform 24 h forecasts during 16 June–30 September 2019. This experiment
is denoted as EXP4.

All the experiments were initialized by using the ERA-Interim reanalysis for atmo-
spheric and land surface variables and the SST from NOAA/OISST. The spatial resolution
for the forecasts is 0.25 degrees. These experiments were used to evaluate the model
performances during different seasons where model had obvious biases.

3. Results
3.1. Evaluation of the GRAPES_GFS Forecasts of Latent Heat Fluxes

Given that in situ observations of surface latent heat fluxes are very limited in a few
FLUXNET stations, we use latent heat estimation from the ERA-Interim reanalysis data
as a proxy for global model evaluation. Although reanalysis is also a model product, we
believe the observation assimilation of other variables could help constrain the simulation
of surface latent heat fluxes. Figure 1a shows that the surface latent heat fluxes predicted in
the GRAPES_GFS CTL experiment are larger than the ERA-Interim reanalysis over most
tropical and mid-latitude areas, especially for topical oceans, western and central Africa,
Amazon, eastern China, India, southeastern and northern Asia, Europe, the eastern part
of North America, and Central America. The overestimation of surface latent heat fluxes
could be related to systematic biases of cloud and radiation modeling. The GRAPES_GFS
was found to underestimate the cloud cover and thus overestimate surface radiation [25],
which could lead to the overestimation of surface fluxes. Besides cloud-radiation issues, the
surface processes could also contribute to the overestimation of surface latent heat fluxes
and, in turn, affect cloud and radiative processes through land–atmospheric coupling. Here
we show that after considering the soil resistance, the surface latent heat flux is reduced
over most land areas with positive biases, including western Africa, eastern China, and
North America (Figure 1b). This indicates that the improved GRAPES_GFS effectively
reduces the positive forecast bias of the land surface latent heat flux.
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In terms of the systematic bias of the ocean surface latent heat flux, sensitivity tests
were conducted for changing wind speed and specific humidity. Reducing ocean surface
wind speed significantly reduced the ocean surface latent heat flux, but there was no
systematic bias of the GRAPES_GFS ocean surface wind speed compared with reanalysis
(not shown). Therefore, the bias of the ocean’s latent heat flux was not caused by the wind
speed bias. The GRAPES_GFS model is very sensitive to the specific humidity of the ocean
surface, and increasing the specific humidity can reduce the latent heat flux. Moreover, the
specific humidity of the near-surface atmosphere predicted by GRAPES_GFS is significantly
drier over tropical oceans as compared with ERA-Interim reanalysis. Therefore, it is
assumed that the excessive latent heat flux at the ocean surface is mainly due to the dryness
of the near-surface atmosphere. Driven by the ocean surface humidity field of ERA-Interim
reanalysis, we can obtain more reasonable latent heat fluxes in an offline mode, but there
are still some positive biases. Therefore, we believe there are systematic biases in the ocean
flux calculation in GRAPES_GFS.

One of the reasons for the positive bias in latent heat flux over oceans is that the
ocean surface vapor pressure of GRAPES_GFS is equivalent to the saturated vapor pressure
without considering the effect of salinity. Thus, it increases the pressure gradient between
the bottom atmosphere and the ocean surface, which inevitably leads to a large latent heat
bias. Therefore, we refer to the ECMWF IFS model and consider the effect of salinity in the
calculation of the ocean surface vapor pressure, which is about 98% of the saturated vapor
pressure. However, this treatment also slightly reduces the positive bias of the latent heat
flux at the ocean surface (not shown). After improving the parameterizations of roughness
lengths for the exchanges in momentum, heat, and moisture, a set of 24 h hindcasts during
1–31 July 2016 show that the positive biases of latent heat fluxes can be significantly reduced
over the ocean (Figure 1b). The reductions can reach 10–20 W/m2 over specific tropical
ocean areas.

The correction of surface latent heat fluxes also improves the forecasts of atmospheric
water vapor content at different pressure levels (Figure 2). As compared with ERA-Interim
reanalysis, there are positive biases in the GRAPES_GFS CTL experiment for the atmo-
spheric water vapor forecasts from surface to 400–600 hPa between 60 S–60 N (Figure 2a).
The positive biases are more significant in the subtropical Northern Hemisphere than in the
subtropical Southern Hemisphere (Figure 2a), which is consistent with the results for the
positive biases of latent heat fluxes. With modified parameterizations of soil evaporation
and ocean surface roughness length, the GRAPES_GFS EXP1 experiment reduced the
positive biases of low-level atmospheric water vapor content significantly, especially from
surface to 850 hPa between 30 S–60 N (Figure 2b). Again, the improvement in the forecasts
of atmospheric water vapor content is more significant in Northern Hemisphere.

3.2. Evaluation of the GRAPES_GFS Forecasts of 2 m Air Temperature

Considering that the 2 m air temperature is the most critical information provided
by routine weather forecasts, we also assessed the GRAPES_GFS performance in this
regard. Figure 3 shows a snapshot of the 2 m air temperature forecast over China on
11 March 2019. As compared with the 2 m air temperature observations at national weather
stations, the GRAPES_GFS forecasts have warm biases at 00 UTC over most stations
except for Huang-Huai-Hai plain and Sichuan province (Figure 3a) and large cold biases
at 12 UTC across China (Figure 3c). Since the 2 m air temperature is determined by the
gradient of land skin temperature and bottom atmospheric temperature, we carefully
analyzed each component affecting the 2 m air temperature calculation and found that the
nighttime 2 m air temperature is much lower than the bottom atmospheric temperature
and land skin temperature, which suggests that GRAPES_GFS underestimated the canopy
temperature at night. In addition, we noted that GRAPES_GFS did not take into account
the difference between the heat/moisture roughness length and the momentum roughness
length, which are actually very different [35]. Therefore, in this paper, we adopted the
thermal roughness length calculation method of ECMWF IFS to correct the unreasonably
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low value of nighttime canopy temperature and finally reduced the cold biases of nighttime
2 m air temperature in eastern China (Figure 3d), although the biases for daytime 2 m
air temperature did not change (Figure 3b). We extend the analysis from China to the
globe and from the forecasts within the first 24 h to 120 h. Figure 4 shows that the new
parameterizations effectively increased the local nighttime temperature around the globe,
and the increases are consistent over forecast lead times.
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Figure 3. Biases for the 2 m air temperature forecasts (◦C) at 2000+ weather stations in China. The
forecasts started from 12 UTC on 11 March 2019, with the lead times of 12 h (top panels, a,b) and
24 h (bottom panels, c,d). The left panels (a,c) are for the biases of CTL experiment, and the right
panels (b,d) are for the biases of improved GRAPES_GFS experiment (EXP2; with modifications in
the parameterizations of soil evaporation and roughness length).
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Figure 4. Differences in 2 m air temperature (◦C) forecasts between improved GRAPES_GFS ex-
periment (EXP2; with modifications in the parameterizations of soil evaporation and roughness
length) and CTL experiment at with different forecast lead times. The forecasts started at 12 UTC on
11 March 2019. (a–d) are the differences for lead times of 12 hours, 24 hours, 108 hours and 120 hours,
respectively.

Besides the snapshot on 11 March 2019, we also calculated the root mean squared
errors (RMSEs) for nighttime 2 m air temperature forecasts averaged across 2000+ weather
stations from March 1 to April 15 in 2019 (Figure 5). The fluctuations of RMSEs are similar
between CTL and EXP2 experiments, but the latter has 1 ◦C less RMSEs (Figure 5). When
analyzing the diurnal cycle of 2 m temperature, we noticed that GRAPES_GFS forecast
temperature over northern China in the winter was too warm. Our further analysis showed
that this was due to the fact that the model only considered two types of soil water phases
when determining the solid or liquid state, i.e., whether the soil temperature was below
freezing point or not. Here, we introduced the parameterization of supercooled soil water
to consider liquid water existed in the soil for the soil temperature below the freezing point,
which allowed the soil temperature to be lower than the freezing point. As a result, the root
mean squared error for the 2 m air temperature forecast was reduced (Figure 6).

To explore whether the improvements in the representations of surface processes affect
precipitation forecasts, Figure 7 shows the biases for the 24 h precipitation forecasts in CTL
and EXP4 experiments. The CTL experiment shows that GRAPES_GFS has overestimations
for rainfall frequency if counting all rainfall events (daily rainfall > 0.1 mm) while under-
estimations for heavy rainfall frequency (daily rainfall > 25 mm). This is similar to most
global forecast models, where light rainfalls are usually overestimated and heavy rainfalls
are underestimated due to a number of issues, including coarse resolution and deficiencies
in the parameterizations of shallow convection and/or deep convection. The reduction in
positive biases of latent heat flux forecasts in the GRAPES_GFS model is responsible for
the reductions in positive biases of light rainfall forecasts, i.e., those with daily rainfall less
than 5 mm (Figure 7). For heavy rainfall, the changes are not obvious, suggesting that other
processes instead of surface fluxes are dominant controls of the underestimation.
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 Figure 6. Root mean squared error (RMSE; ◦C) of 2 m air temperature forecasts over northeastern
China with lead times from 6 h to 186 h for CTL experiment and improved GRAPES_GFS experiment
(EXP3; with parameterizations of soil evaporation, roughness length and the supercooled soil water).
The forecasts started at 12 UTC on each day from 1 January 2016 to 31 January 2016, and RMSE
for each forecast lead was calculated. The top panel shows the RMSE for CTL and EXP3, while
the bottom panel shows the differences in RMSE between EXP3 and CTL. Negative values in the
bottom panel show the reduction of RMSE after improving GRAPES_GFS, and the error reduction is
significant if it exceeds the uncertainty with 95% confidence level indicated by the vertical bars.
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Figure 7. Biases of 24 h precipitation forecasts (mm) started each day from 16 June 2019 to 30 Septem-
ber 2019 for CTL experiment and improved GRAPES_GFS experiment (EXP4; the model version
is the same as EXP3, but for forecasts during summer period). The bias was calculated as the ratio
of forecast rainfall events over the observed rainfall events, and the values close to 1 suggested
un-biased forecasts. The horizontal axis showed the rainfall thresholds, where the events with daily
rainfall larger than the threshold were counted. The forecasts were compared with the observations
from 2000+ weather stations in China, and the mean biases were shown.

4. Conclusions and Discussion

This paper improves the GRAPES_GFS forecasts of surface latent heat fluxes and
2 m air temperature by adding a soil resistance term in the calculation of soil evaporation,
considering the salinity effect in the calculation of ocean surface vapor pressure, distin-
guishing the roughness length parameterizations for the exchanges in momentum, heat,
and moisture, and incorporating the parameterization of supercooled soil water. As a result,
the excessive latent heat flux has been reduced over both land surface and ocean surface,
and RMSE for 2 m air temperature has also been reduced by 1 ◦C averaged over national
weather observation stations.

This study suggests that a correction for the surface heat flux has a fundamental
influence on the dynamics of the near-surface atmosphere even for a numerical weather
prediction model, where the forecast error of a critical weather service variable, 2 m air
temperature, can be significantly reduced through reasonable modeling of roughness length
and soil water and energy dynamics. The importance of ocean and land surface conditions
has long been overlooked in weather forecasts because the slow evolvements of oceanic and
land surface processes were regarded as having no significant influence on the atmosphere
at a synoptic scale. Although the surface processes are emphasized in global models that
are targeted for a seamless prediction of weather and climate in recent years, many weather
forecast models still treat the ocean surface conditions as constant and the land surface
conditions as climatology. In fact, the forecasts of extreme events are closely related to the
initial oceanic and land surface conditions [8], and these slowly evolving processes provide
critical sources of predictability that can help to extend the current weather forecast limit.

The atmospheric data assimilation of GRAPES_GFS is being mature after decades
of development, but the land surface data assimilation of GRAPES_GFS is rather simple.
The exchanges between land/ocean and atmosphere are being intensified in a warming
climate, where the recent urban heatwaves and marine heatwaves provide strong evidence.
The intensity of these extremes might be under-forecast if the local and remote surface–
atmosphere interactions are not well represented in global forecast models. Therefore, more
attention should be paid to oceanic and land surface processes in developing GRAPES_GFS,
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no matter for a seamless prediction or for the early warning of major extreme events under
climate change.
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