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Abstract: Theoretical modelling of the local ionospheric medium (LIM) is made difficult by the occur-
rence of irregular ionospheric behaviours at many space and time scales, making prior hypotheses
uncertain. Investigating the LIM from scratch with the tools of dynamical system theory may be an
option, using the vertical total electron content (vTEC) as an appropriate tracer of the system variability.
An embedding procedure is applied to vTEC time series to obtain the finite dimension (m ∈ N) of the
phase space of an LIM-equivalent dynamical system, as well as its correlation dimension (D2) and
Kolmogorov entropy rate (K2). In this paper, the dynamical features (m, D2, K2) are studied for the
vTEC on the top of three GNSS stations depending on the time scale (τ) at which the vTEC is observed.
First, the vTEC undergoes empirical mode decomposition; then (m, D2, K2) are calculated as functions
of τ. This captures the multi-scale structure of the Earth’s ionospheric dynamics, demonstrating a net
distinction between the behaviour at τ ≤ 24 h and τ ≥ 24 h. In particular, sub-diurnal-scale modes
are assimilated to much more chaotic systems than over-diurnal-scale modes.

Keywords: predictability; ionosphere; multi-time-scale analysis; vTEC

1. Introduction

The occurrence of space and time irregularities in terms of ionospheric variability makes
it extremely difficult to build up models of the Earth’s ionosphere from first principles.

The theoretical frameworks available to describe the ionospheric medium, e.g., multi-
fluid representation [1,2], give rise to physical models that are very complicated and highly
demanding in terms of integration time, as well as initial and boundary data. Moreover,
ionospheric space and time irregularities cannot be transparently predicted by such physical
models, which may be able to explain the appearance of irregularities only if suitable initial
conditions are assumed (e.g., local fluctuations from initially “seeded” plasma instabilities
(Chapter 11 in [2])), despite the inability to analytically follow their full development and
to consistently represent their intermittent occurrence.

The Earth’s ionosphere is highly structured throughout space and time scales such
that when observed at different space or time resolutions, its behaviour is completely dif-
ferent [1,3–8]. At some scales and under quiet solar and geomagnetic conditions, the iono-
sphere resembles a fluid system that can be described by smooth local variables undergoing
classical partial derivative equations. However, when smaller scales are considered or dis-
turbed geomagnetic conditions are studied, smoothness disappears, with emerging fractal
features due to high gradients of the ionisation density (Ne) that induce irregular phe-
nomena such as radio scintillation (Chapters 13 and 18 in [2]). Due to this wide range of
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behaviours of the ionospheric medium, it is advisable to imagine the system at different
resolutions and under different physical conditions as represented by quite different math-
ematical pictures, possibly ranging from kinetic theory to fluid systems, i.e., from large sets
of particles to low-dimensional dynamical systems.

A paradigm-changing approach is to generate data-driven theoretical pictures of the
local ionospheric medium (LIM), that is, treating the LIM in a certain region as a basically
unknown physical system to be modelled from scratch and investigating its dynamical features
using real data; the set of “dynamical features” (D) includes whatever one needs to identify
the theoretical model (this does not mean renouncing comprehensive fundamental theory;
it just means working it out from experimental observations as much as possible).

For a finite-dimensional dynamical system (FDDS), the set D includes the dimension (m ∈
N) of its phase space (Γ) and the geometrical–topological entities (g) describing the structures
in the phase space, such as the equilibrium positions, their Lyapunov exponents, etc. In the
presence of chaotic regions in Γ, g must include their Hausdorff dimensions. The use
of FDDSs potentially paves the way for low-dimensional chaos to describe ionospheric
irregularities, without the need to assume special initial “seeding”conditions [8]. If the
theoretical picture is a kinetic theory (KT) or a field theory (FT), instead, its D set is much
richer, as Γ may be a functional space of measures.

The FDDS approach has been used to study the LIM around a mid-latitude location,
i.e., the GNSS station in Matera (Italy) [9]: this was achieved by applying the widely
known embedding procedure to the time series of the vertical total electron content (vTEC),
which was assumed to represent the state of the LIM on the top of the station location.
By employing two yearly vTEC time series at 30 s resolution, corresponding to solar cycle
(SC) minimum and maximum conditions (2008 and 2001, respectively), the dimension
m = dim Γ was found to be the same, i.e., m2008 = m2001 = 3. The same embedding
dimension suggests that there is a common space of states of the system where the dynamics
can be confined and described using (at least) three variables. This is the lowest (minimum)
dimensional dynamical system that can capture dynamical features. Then, through the
Grassberger–Procaccia method [10], the correlation dimension (D2) was calculated; this D2 is
the Hausforff dimension of the trajectory of the FDDS through its m-dimensional phase
space (Γ). The surprisingly identical result was (D2)2008 = (D2)2011 = 2.78. The fact that
(D2)2008 and (D2)2011 have identical values suggests that at large scales, the LIM can be
described in a similar way, independent of the phase of the solar cycle (Although disturbed
geomagnetic conditions are expected to be more frequent during solar maxima than solar
minima, when considering a yearly time series, their contribution is cancelled as far as the
dynamical features D = (m, D2, K2) are concerned). Finding D2 close to the embedding
dimension (m) means that the system is highly chaotic (unpredictable) and suggests that
the trajectories are space-filling, i.e., they resemble those of a noise (for which D2 = m
would hold), but they are not exactly stochastic. Finally, the Kolmogorov entropy rate (K2)
was calculated; its inverse represents the predictability horizon, i.e., the time up to which
a reliable prediction can be made. If at time t0, the state of the FDDS in Γ is known with
infinite precision, at time t0 + K−1

2 , the state of the system is unknown, and affected by a
Shannon entropy of 1 bit; the extent of this ignorance grows over time. The two yearly
vTEC series have basically the same value of (K−1

2 ∼ 8 min).
To further inspect how the elements of D = (m, D2K2) depend on the geomagnetic

conditions, one should construct them by extracting shorter time series of geomagnetically
stormy and quiet periods.

The results reported in [9] were preliminary results, paving the way for a long-term
program involving the dynamical characterization (D) of the LIM so that important ele-
ments of ionospheric physics can be better understood. In this specific work, the question
is considered as to how D = (m, D2, K2) depends on the time scale (τ) at which the vTEC is
observed. As the Earth’s ionosphere is a system structured at many time scales, one may
expect that D may depend on τ. This aspect is investigated starting from a 30 s resolution
vTEC time series, followed by the construction of its single time-scale version via empirical



Atmosphere 2024, 15, 84 3 of 13

mode decomposition (EMD), as illustrated in detail in Section 2. Once the τ reduction of the
vTEC series is selected, the values of the elements of D are calculated using an embedding
procedure applied to this τ version of the vTEC; this produces τ-dependent parameters
m(τ), D2(τ) and K2(τ) (see also [11,12]). When different time scales are considered with
respect to the LIM, completely different dynamics appear, in terms of phase-space topology.
This means that the different scale-dependent forcing processes act on the system in a very
different way, changing the active number of degrees of freedom. Indeed, our analysis
(Section 3) highlights that the values of m(τ), D2(τ) and K2(τ) show a reduction in pre-
dictability from large to small time scales at different geographical locations; this is the central
result of the present work, as discussed with physical reasoning in Section 4. Conclusions
are also drawn in this section from the point of view of what can be learned about space
weather physics through analysis tools and the results obtained herein, as well as possible
applications in terms of ionospheric modelling. A proposal for a future line of research
is also presented.

2. Data and Methods
2.1. Data

We use three vTEC yearly time series from three GNSS stations, i.e., Matera (mid-
latitude, northern hemisphere; coordinates: (40.649 N, 16.704 E), Italy), Ohrid (mid-latitude,
northern hemisphere; coordinates: (41.127 N, 20.794 E), North Macedonia) and Harbour
(low geographic latitude, southern hemisphere; coordinates: (−25.88 N, 27.70 E), South
Africa) collected during the solar maximum year of 2001. The sampling time of all the time
series is 30 s, as in [9].

The choice of these three GNSS stations depends on data availability, on the one hand,
and on the possibility of assorting the position of the analysed LIM, expecting similar
behaviour in the Matera and Ohrid vTEC time series, with some difference in the dynamics
of the vTEC on the top of Harbour. The choice of the Harbour GNSS station is due to the
fact that it has practically the same modified dip angle (MODIP, see [13]) and longitude as the
other two stations in the northern hemisphere; any differences between Harbour and the
other two stations are due to being located in the magnetically opposite hemisphere rather
than the geographic latitude. Moreover, we focus only on the solar maximum year time
series, since it shows similarity with those of the solar minimum [9], as long as quiet and
stormy periods are not separated, despite allowing us to consider a greater fraction of time
during disturbed geomagnetic conditions, which partially affects the time-scale behaviour
of near-Earth space plasma (e.g., [14]).

The differences in the behaviour of the LIM on the top of the three locations is evident
at a glance in Figure 1, where the raw time series are directly reported. The dynamics of
Matera (red) and Ohrid (blue) are very similar, while the vTEC time series on the top of
Harbour (green) exhibits considerably different behavior, even if periods of maxima and
minima within the year coincide.

2.2. Empirical Mode Decomposition (EMD)

The behavior of the vTEC series y(t) at different time scales is inspected via empirical
mode decomposition (EMD, see for instance, [15]), through which y(t) is decomposed into
a sum of a certain number of τ components (υτ(t)):

y(t) = ∑
{τ}[y]

υτ [y, t). (1)

Note that in (1), the set of time scales ({τ}) depends on the collection of values ({y(t)})
of the decomposed time series, i.e., it depends on y in a functional way, as mimicked by
[y]; this is because EMD is a data-driven method in the sense that both the form of the
functions (υτ) and the characteristic scale (τ) of each depend functionally on y(t) (this is
also what [y, t) means in Equation (1)). This is not, for instance, a feature of Fourier or
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wavelet decomposition, in which the period or the scale of the components is determined
based on the size of the time-series domain.

Figure 1. The three yearly time series of vTEC during solar maximum year 2001: from the tops of the
Matera, Harbour and Ohrid GNSS stations.

Larger scales (υτs) correspond to slower modes:

τ2 > τ1 =⇒
〈

d
dt

υτ1

〉
>

〈
d
dt

υτ2

〉
, (2)

as the larger the considered scale, the slower the mode, on average (as denoted by ⟨. . .⟩ in (2)).
In order to get a pictorial idea of the components (υτ(t)) into which the EMD splits

the time series at hand, Figure 2 reports the different τ components for the time series on
the top of the Matera GNSS station.

After τdecomposition (1), a “τ-cumulative partial time series” (Υτ(t)) is defined as
the sum of the components (υτ [y, t)) with a characteristic time scale smaller than or equal
to τ, i.e., neglecting the modes pertaining to scales larger than τ:

Υτ(t) = ∑
τ′≤τ

υτ′ [y, t) (3)

Of course, this definition makes Υτ depend functionally on y(t) precisely as each υτ ,
but this “square bracket dependence” is not highlighted in (3) in order to keep notations
reasonably simple.

In the Υτ(t) the time series, the original y(t) is considered, and all time modes “slower
than” υτ in the sense of Equation (2) are discarded. Therefore, the Υτ(t) time series is the
vTEC without the slow modes, and the τ scale pertains to the slowest admitted mode. If τmax is
the largest time scale admitted in the modes {(υτ}) in (1), clearly, one may write

lim
τ→τmax

Υτ(t) = y(t). (4)

As the functions (Υτ(t)) are calculated, each of them may undergo an embedding
procedure applied to the whole vTEC time series reported in [9], as well as the subsequent
calculation of D2 and K2. The main difference here is that this analysis of “chaos degree”
and predictability of the LIM is performed at each different time scale (τ) for each Υτ(t)
(see also [11,12]). The embedding procedure à la Grassberger–Procaccia [10], applied to the
partial series (Υτ(t)) determines a trajectory (Υτ(t)) moving through an m(τ) dimensional
real space:

Υτ(t) ∈ Rm(τ),



Atmosphere 2024, 15, 84 5 of 13

which represents the evolution of a suitable τ FDDS and produces the τ-resolved vTEC
(Υτ(t)). This trajectory (Υτ(t)) lives in a phase space (Γτ of dimension) m(τ) ∈ N. As
underlined by the bracket in m(τ), the dimension of the τ FDDS also depends on the time
scale (τ) because observing the LIM at different time resolutions, the system may look like
different dynamical systems, with many or few dynamical variables, so that each Γτ has a
different dimension.

Figure 2. The different components (υτ1,...,14 (t)) into which the EMD splits the time series (yMatera(t))
plotted in Figure 1. The convention here is to count the τs from the shortest value to the longest one
so that τi < τi+1.

The coarse graining of Γτ defines the Hausdorff dimension of the curve, which is well
approximated by the correlation dimension of Υτ(t) (see [9,10]), namely D2[Υτ ] (D2(τ)
for simplicity). This dimension (D2(τ) ∈ R+) is, in practice, the fractal dimension of the
attractor containing Υτ(t), where the τ FDDS dynamics live. As discussed in [9], D2(τ) is
bounded from above by m(τ)

D2(τ) ∈ [1, m(τ)] :
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the closer it is to 1, the more regular the dynamics of the τ FDDS; for 1 < D2(τ) < m(τ),
the τ FDDS becomes more chaotic as D2(τ) approaches m(τ); for D2(τ) → m(τ), the τ
FDDS is simply stochastic.

Following the prescriptions proposed in [10], the calculation of the Kolmogorov
entropy rate (K2) is applied to the single-τ time series (Υτ(t)), i.e., to its m(τ)-embedded
version (Υτ(t)), yielding a value of K2(τ), representing the rate at which the coarse-grained
version of Υτ(t) ∈ Rm(τ) is located less precisely than on bit, i.e., the time (K−1

2 (τ)) after

which the position (Υτ

(
t + K−1

2 (τ)
)

) is known less precisely than Υτ(t) of one bit. This time

(K−1
2 (τ)) is understood as the predictability time horizon of the τ FDDS. For K−1

2 (τ) → 0,
the τ FDDS is fully unpredictable, while for K−1

2 (τ) → +∞, it is completely deterministic.
Our τ FDDS will shows a finite value of K−1

2 (τ), indicating the typical finite predictability
behaviour of a chaotic system.

Once the τ-FDDS characteristics (D(τ)) are calculated as functions of the time scale (τ),
it is possible to draw physical conclusions considering those functions ((m(τ), D2(τ), K2(τ))).
In particular, the number of dynamical degrees of freedom of the LIM as a function of the
time scale, as well as degree of chaos of their dynamics, may highlight critical scales in
these complex dynamics as changes in the behaviour of (m(τ), D2(τ), K2(τ)) take place in
the correspondence with changes in the value of τ. We report on this further in our analysis
presented in Section 3. In the case reported in Figure 3, the pseudospectrum

Π[υτ ] = τ · σ[υτ ] (5)

is plotted, where σ[υτ ] is the standard deviation for the set of values of the time series
of the single-τ components in (1)( {υτ [y, t)}). This pseudospectrum is useful because
its dependence on τ corresponds approximately to the value of the Fourier spectrum of
the y(t) from which the υτ [y, t) are calculated at a frequency of fτ = 1

τ . Directly using
the pseudospectrum instead of the Fourier spectrum is motivated by its availability once
EMD is performed and by the ease of comparison with the other results obtained via
the same υτ(t) functions. In Figure 3 and in all the subsequent analysis, components
with approximately τ ≥ 30 min are considered, even if TEC variations with time scales
of 5–20 min are linked to atmospheric waves; these components are of particular interest
with respect to ionospheric dynamics. The reason to disregard those important short time
scales here is related to the calculation of the correlation integrals. The latter can be affected
by high-frequency contents of the time series. For this reason, modes (υτ) whose time
scales are below one order of magnitude the time resolution, i.e., τ ≤ 300 s, are excluded.
Components (υτ≤30 min) can definitely be interesting in terms of ionospheric dynamics,
and surely, their behaviour deserves further study, as well as additional investigation of
parameters related to irregularities and radio scintillation. Moreover, the vTEC time series
processed here are the result of a “calibration procedure” [16] that employs dual-frequency
carrier-phase and code-delay GNSS observations related to the total electron content (TEC)
along the satellite–receiver line of sight. As a consequence, the obtained vTEC is a linear
combination of many TEC measurements, each including some random instrumental
and processing errors. The exclusion of those high-frequency contributions (τ ≤ 300 s)
eliminates this additive, purely stochastic process resulting from calibration.
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Figure 3. Plot of the pseudospectrum as defined in (5) for the three time series reported in Figure 1.
The remarkable feature of these plots is the break at τ = 1440 min ≡ 1 day, corresponding to the
rotation period of the planet, resulting in the insolation tempo (see text for details).

Before moving to results, it is of use to recall the formulae due proposed by Grassberger
and Procacci and used in [9] for the whole yearly time series and adapted here to treat the
motions (Υτ(t)) in Γτ . The central quantity of all the calculations is the correlation integral
(Cm(τ)[Υτ , r)) pertaining to the relationship between two points (Υτ(t) and Υτ(t′) in Γτ)
along the trajectory of the τ FDDS, separated by an m(τ)-dimensional distance equal to r:

Cm(τ)[Υτ , r) def
= lim

N→+∞

1
N2

N

∑
i,j=1

Θ
(
r −

∥∥Υτ(ti)− Υτ

(
tj
)∥∥) (6)

In (6), the number of times considered is N; hence, the points of the trajectory (Υτ(t))
are Υτ(ti=1,...,N), corresponding to “an enormous number” (N → +∞) of points. In practice,
(6) represents the number of trajectory points closer than r to each other, which is normalized
with respect to the number of point couples (O

(
N2)).

Once Cm(τ)[Υτ , r) is calculated as in (6) for the m(τ)-dimensional τ FDDS, D2(τ) and
K2(τ) are calculated as proposed by Grassberger and Procaccia [10]:

D2(τ) = lim
r→0

log Cm(τ)[Υτ , r)
log r

, K2(τ) = lim
r→0

1
τ[y]

log

(
Cm(τ)−1[Υτ , r)

Cm(τ)[Υτ , r)

)
. (7)

The expression of D2(τ) in (7) qualifies it as the Hausdorff dimension of the r-coarse-
grained trajectory (Υτ) within Γτ , while the expression of K2(τ) indicates that for each
τ FDDS, one has to calculate Cn[Υτ , r) for various tentative embedding dimensions (n),
selecting m(τ) as the value of n for which the growth of Cn[Υτ , r) reaches a plateau (see [9,10]
for more details).

As a concluding remark, it is worth stressing again that all the quantities calculated by
embedding the τ-limited time series (Υτ(t)) are constrained by the limit relationship (4).
As the τmax-limited time series includes all υτ ,

D2(τmax) ≡ D2[y], K2(τmax) ≡ K2[y], (8)

where D2[y] and K2[y] are the correlation dimension and Kolmogorov entropy rate obtained
by embedding the whole original time series (y(t)) into a suitable m-dimensional FDDS,
respectively. Therefore, the topological characteristics of the τ FDDS, i.e., of the τ-limited
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Υτ that includes all the τ-fixed components (1), are simply those of the undecomposed y(t)
(m, D2 and K2 of Matera are the same as those found in [9]).

3. Results

Figure 4 reports the results of the embedding procedure described in [9], applied to the
time series analysed here and shown in Figure 1, where the trajectory (y(t)) associated with
the whole time series (y(t)) is reported in the Γ space for Matera, Harbour and Ohri. These
trajectories are simply the time vector series (y(t), y(t + ∆), y(t + 2∆), . . . y(t + (m − 1)∆)),
i.e., their components are suitably delayed copies of the original observed time series
{y(t)}. As explained in [9] and references therein, if the FDDS equivalent to that yielding
{y(t)} is diffeomorphic to the vector of the delayed copies of the time series, it is possible
to visualise the FDDS trajectories throughout the phase space. The lag ∆ reduces the
∆-delayed self-mutual information of the y(t) to less than e−1 bit.

The three Γs in Figure 4 all have an embedding dimension of 3. The result represented
in Figure 4 is consistent with the appearance of the y(t) time series in Figure 1, with an
apparently more elongated and flatter region of attraction for the low-geographic-latitude
LIM on Harbour with respect to those on Matera and Ohrid.

Figure 4. The three-dimensional trajectories resulting from the embedding procedure as described
in [9] applied to the whole yearly time series plotted in Figure 1. Note the strong similarity between the
trajectories (y(t)) for Matera and Ohrid, while the LIM on the top of Harbour appears to correspond
to a differently shaped attractor. See the text for details.

The first notable result of the decomposition (1) is the behaviour with τ of the pseu-
dospectrum (Π[υτ ]) calculated as in (5) and reported in Figure 3, where the pseudospectrum
is shown for the three time series (yMatera(t), yHarbour(t) and yOhrid(t)). With respect to the
general behaviour, the three pseudospectra are rather similar, while in the details, they
differ quite a bit, with a stricter resemblance between Matera and Ohrid than relative to
Harbour. Besides the differences among the three curves, one observes a considerable
change in regime at τ = 1000 min, which is close to the τday = 1441 min corresponding
to the length of one terrestrial day. The slopes of Π[υτ ] for τ < τday and for τ > τday are
different; in particular, the short time components (τ < τday) exhibit steeper growth with τ
than the slower ones. Moreover, a local maximum of Π[υτ ] appears at τ ≃ τday. The pseu-
dospectrum of the Harbour vTEC is lower than that of Matera and Ohrid vTECs, and for
τ > τday, the growth associated with τ seems “less monotonic”, with a local maximum at
about τ ≃ 9000 min. Whether this maximum at a scale of about 6.25 days has a physical
meaning or not and what that meaning might be deserve a much deeper study consulting
more statistics of the GNSS stations. Figure 3 shows the two slope regimes separated by the
time scale of the Earth’s rotation.

Once the τ-limited series (Υτ(t)) are composed, (6) is applied to define the correla-
tion integrals (Cm(τ)[Υτ , r)), as reported in Figure 5, where the curves (C(r)) correspond
to Cm(τ)[Υτ , r), and different colours correspond to different values of the time-scale τ.
The value of C(r) varies as a function of τ for a fixed r, as do the characteristics of the τ
FDDS, as they depend on Cm(τ)[Υτ , r) ≡ C(r) according to Formula (7). Again, the similar-
ity between the LIM on the top of the two mid-latitude stations (Matera and Ohrid) and
the difference with respect to the low-latitude station (Harbour) are evidenced in Figure 5.
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Figure 5. The correlation integrals (Cm(τ)[Υτ , r) ≡ C(r)) depending on the time scale (τ) for the three
considered GNSS stations.

Once the quantities Cm(τ)[Υτ , r) are calculated, it is possible to explore the degree
of chaoticity of the different τ FDDSs by calculating the dimension (D2(τ)) and their
predictability by calculating the entropy rate (K2(τ)), applying the Grassberger–Procaccia
formulae (7).

The dependence (D2(τ)) is plotted in Figure 6 for the three GNSS stations. The 1-day
scale break appears again, with (slightly) different behaviour for the three different stations.
The similarities between the two mid-latitude stations and the difference between those
two and the low-latitude station appear to be less important here than in the pseudospectra
shown in Figure 3. It can be concluded that the representation of the LIM by τ FDDSs
is limited to scales smaller than τday, reaching values higher than 3; therefore, excluding
scales larger than τday, the effective dynamical system representing the local ionosphere
needs more than three independent dynamical variables to be described. In addition to τday,
when including much slower υτs in Υτ , D2(τ) rapidly decreases, reaching almost 2.8 for
Matera, nearly 2.6 for Ohrid and as low as 2.3 for Harbour. This result is in agreement with
what is illustrated in Figure 4, where the three whole time series (yMatera(t), yOhrid(t) and
yHarbour(t)) appear to be embedded in a three-dimensional FDDS. Moreover, as apparent
in the same Figure 4, the degree of chaos at Harbour is (slightly) lower than at the mid-
latitude LIMs.

Figure 6. The dependence (D2(τ)) for the τ FDDS representing the LIM on the top of the three GNSS
stations (Matera, Ohrid and Harbour). The horizontal dashed line represents the value of D2(τ) for a
large τ value for the Matera LIM, taken as a reference; and the vertical dashed line marks the τday

scale. See the text for details.
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The dynamical behaviour of the vTEC on the top of the three considered GNSS stations,
appearing to be richer and more chaotic at shorter than at longer time scales, with a drastic
separation into τ < τday and τ > τday, is also reflected by the τ-dependent predictability
time horizon (K−1

2 (τ)), as represented in Figure 7. For τ-limited dynamics with τ < τday,
the highest value of K−1

2 (τ) is about 3.8 min, corresponding to Υ∼250 min(t) on the top of
Harbour, and generally remaining below 3 min. This predictability time horizon grows
abruptly by as much as ∼5.3 min for τ > τday, increasing to almost 6 min for Υ∼6000 min(t)
on the top of Matera.

The dependence of D2 and K2 on τ reported in Figures 6 and 7 not only shows a
qualitative transition between τ ≤ τday and τ ≥ τday but also some kind of “saturation” for
τ → +∞. This may sound surprising, mainly for K2(τ), as increasing τ values correspond
to components υτ with longer “periods”, namely increased predictability. However, here,
we are calculating D2 and K2 for the FDDS equivalent to Υτ(t) in Equation (3), which
represents the cumulative contributions of υτ′≤τ . The series Υτ(t) still encodes the chaotic
properties of all the time scales (τ′ ≤ τ), and increasing τ does not exclude those highly
irregular components, preventing the indefinite growth of the predictability time horizon
beyond saturation.

Figure 7. The dependence (K2(τ)) for the a τ FDDS representing the LIM on the top of the three
GNSS stations (Matera, Ohrid and Harbour). The horizontal dashed line represents the value of
K2(τ) for a large τ value for the Matera LIM, taken as a reference; and the vertical dashed line marks
the τday scale. See the text for details.

4. Discussion and Conclusions

Herein, we present here a step forward in describing the local ionospheric medium
(LIM) in a brand-new and deeply dynamic theoretical manner.

Data-conditioned representations of the LIM are traditionally empirical models constructed
through the collection of huge datasets referring to suitably assorted ionospheric locations and
conditions [17,18]. Despite their success in describing the average climatological behaviour of
systems, they are neither able to take into account suddenly developing irregularities nor focus
on theoretical explanations of LIM dynamics. In this study, we interrogated ionospheric data
in order to evaluate quantities pointing to describe the LIM as a dynamical system from scratch.
This attitude, on the one hand, allows results to be obtained based on reality rather than (even
physically reasonable) assumptions and, on the other hand, the LIM to invoke representations
with the goal of tracing detailed physical mechanisms.

The physical data representing LIM evolution are time series of the vertical total
electron content (vTEC) on the tops of three considered stations. Our aim was to describe
the LIM dynamics as those of a finite dimensional dynamical system (FDDS). These time
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series are embedded into a suitable phase space according to the Grassberger–Procaccia
procedures [10], and the Hausdorff dimensions of their strange attractors, as well as the
Kolmogorov entropy rate, are calculated.

In [9], raw yearly time series of a vTEC (y(t)) were analysed so to ensure an equiv-
alent FDDS of trajectory y(t) ∈ Rm, m ∈ N; here, we decompose time series y(t) into
empirical modes (υτ(t)), each with a characteristic time scale (τ), then use them to define
τ-limited time series (Yτ(t)) as in (3) so that Yτ(t) includes all the modes (υτ′(t)) from
y(t) faster than υτ(t). Each of the τ-limited vTEC series (Yτ(t)) is ultimately embedded
as Yτ(t) ∈ Rm(τ), and the dynamical proxies ((m(τ), D2(τ), K2(τ))) of the scale-dependent
embedding dimension, correlation dimension and Kolmogorov entropy rate are calculated.
Excluding from Yτ all the slower components (υτ”>τ) reveals the faster motion details of
the LIM dynamics. In fact, slower modes tend to have larger amplitudes, masking the
faster, weak-amplitudevariability.

The interest in assigning a distinct equivalent FDDS to each Yτ is twofold. On the one
hand, the LIM may look very different at different time scales; identifying the dependence
of the dynamical quantities (m(τ), D2(τ) and K2(τ)) on time scales rephrases this statement
in a precise and quantitative way. On the other hand, values of τ discriminating different
behaviours of m(τ), D2(τ) or K2(τ) should represent characteristic time scales of the local
ionospheric physics that are useful in singling out important processes influencing the LIM.

Our results suggest that (1) there is an expected similarity between the vTEC dynamics
above Matera and Ohrid, while the vTEC above Harbour behaves a slightly differently,
indicating hemispheric variation and (2) a time scale of about 1 day represents a threshold
at which the characteristics of the τ FDDS change.

The take-home message of these results is that multi-scale analysis calculating the
quantities of m(τ), D2(τ) and K2(τ) unveils very important new details about LIM dynam-
ics as represented by vTEC time series. According to the findings presented here, the LIM is
a complex dynamical system that has finite dimensional representations depending on the
time scale. The smaller the time scale (τ), the higher the number of dynamical variables nec-
essary to describe the LIM at that scale. Moreover, all τ FDDSs representing the LIM evolve
along chaotic trajectories (Yτ(t)), filling D2(τ)-dimensional attractors with D2(τ) /∈ N
and increasing with smaller scales; therefore, the smaller the τ, the more chaotic the LIM-
equivalent τ FDDS. Lastly, the predictability time horizon (K−1

2 (τ)) decreases with smaller
scales; therefore, the smaller the τ, the more unpredictable the LIM-equivalent τ FDDS.
The picture presented herein is that of a chaotic and unpredictable system at all time scales,
although it is more chaotic and less predictable in its fast modes than in its slow modes.
When examining the LIM at a more detailed time scale, one is able to distinguish the action
of independent dynamical variables that are undetectable at large time scales, i.e.,

dm(τ)

dτ
< 0, (9)

and one finds that such “fast modes” are invisible at large τs, resulting in a higher level of
chaos, i.e.,

dD2(τ)

dτ
< 0, (10)

and unpredictability, i.e.,
dK−1

2 (τ)

dτ
> 0. (11)

Equations (9)–(11) refer to the “trends” of m(τ), D2(τ) and K−1
2 (τ), while oscillations

and local peaks and valleys with τ may appear. These tendencies abruptly increase at about
1440 min. In accordance with Earth’s rotation period, m(τ) and D2(τ) decrease abruptly
with increasing τ, while K−1

2 (τ) exhibits a sudden increase. This has a precise physical
meaning: sunlight is the natural time scale that separates fast modes from slow modes in the
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vTEC dynamics, which sounds very reasonable due to the role played by insolation in
ionospheric physics.

All the conclusions just reported apply slightly differently to the two northern hemi-
sphere, mid-latitude locations than to the southern hemisphere location examined herein,
with the caveat that such a difference is an interhemispheric difference. However, geomag-
netic latitude should be expected to influence the detailed behaviour of m(τ), D2(τ) and
K−1

2 (τ), probably more than other local conditions. This calls for a systematic extension of
the present study in order to confirm our findings.

Based on the results reported in [9] and those presented here, our attempt to construct
an FDDS equivalent to the local ionospheric medium portrays the system as chaotic and
unpredictable to a certain extent, appearing richer and less predictable in its fast modes
than in its slow modes, corresponding to the period of the Earth’s daily rotation, i.e.,
the separation time scale. The details of these findings depend on the location under
consideration. The emergence of this complex behaviour is witnessed here for yearly
time series (y(t)) of vTEC above the three investigated stations. Therefore, we suggest
(1) an extension of this analysis to many more locations in order to more consistently
how the m(τ), D2(τ) and K2(τ) vary with geomagnetic coordinates; (2) time-limited
studies concentrating on geomagnetically homogeneous periods in order to determine
how the multi-scale complexity of vTEC series depends on present geomagnetic activity,
as well as techniques compatible with shorter time series and the expression of τ FDDS
quantities as functions of the present (e.g., m = m(τ, t); see [19]), which can help to monitor
LIM complexity above a given location throughout the various phases of a geomagnetic
storm [20].

The very difficult challenge of this line of research is to pass from knowledge of
(m, D2, K2) for an FDDS to a possible set of m-coupled ordinary differential equations:

dY
dt

= f(Y), (12)

where Y = (Y1, . . . , Ym) represent independent dynamical variables moving along a D2-
dimensional attractor within Rm, with a K2 Kolmogorov entropy rate [21]. Mapping
(m, D2, K2) into the suitable system (12) is all but a trivial challenge in general, and in
the case of the LIM, one has a different FDDSs, i.e., a different (12) at each scale (τ) and
probably also differing under the various geomagnetic conditions. The theoretical sense of
arriving at a system like (12) for the LIM is to produce, for the ionosphere, what the Lorenz
system equations [22] represent for the physics of the neutral atmosphere.

In principle, within a geomagnetically homogeneous period, after collecting all the
dynamics (Yτ(t)s) and finding what (12) looks like for Yτ ,

dYτ

dt
= fτ(Yτ) (13)

(that is, the Lorenz equivalent of the LIM system at scale (τ)), keeping track of the function
Yτ(Yτ), (13) is an analytical/numerical predictor of the τ-limited vTEC within the time
interval under consideration. Despite the loftiness of the goal, this program, when fully
pursued, may represent a striking breakthrough in ionospheric modelling.
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