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Abstract: Naples is the most densely populated Italian city (7744 inhabitants per km2). It is located
in a particular geological context: the presence of Mt Vesuvius characterizes the eastern part, and
the western part is characterized by the presence of the Phlegrean Fields, making Naples a high-
geothermal-gradient region. This endogenous heat, combined with the anthropogenic heat due to
intense urbanization, has defined Naples as an ideal location for Surface Urban Heat Island (SUHI)
analysis. SUHI analysis was effectuated by acquiring the Land Surface Temperature (LST) over
Naples municipality by processing Landsat 8 (L8) Thermal Infrared Sensor (TIRS) images in the
2013–2023 time series by employing Google Earth Engine (GEE). In GEE, two different approaches
have been followed to analyze thermal images, starting from the Statistical Mono Window (SMW)
algorithm, which computes the LST based on the brightness temperature (Tb), the emissivity value,
and the atmospheric correction coefficients. The first one is used for the LST retrieval from daytime
images; here, the emissivity component is derived using, firstly, the Normalized Difference Vegetation
Index (NDVI) and then the Vegetation Cover Method (VCM), defining the Land Surface Emissivity
(LSε), which considers solar radiation as the main source of energy. The second approach is used for
the LST retrieval from nighttime images, where the emissivity is directly estimated from the Advance
Spaceborne Thermal Emission Radiometer database (ASTER-GED), as, during nighttime without
solar radiation, the main source of energy is the energy emitted by the Earth’s surface. From these
two different algorithms, 123 usable daytime and nighttime LST images were downloaded from GEE
and analyzed in Quantum GIS (QGIS). The results show that the SUHI is more concentrated in the
eastern part, characterized by intense urbanization, as shown by the Corine Land Cover (CLC). At
the same time, lower SUHI intensity is detected in the western part, defined by the Land Cover (LC)
vegetated class. Also, in the analysis, we highlighted 40 spots (10 hotspots and 10 coldspots, both
for daytime and nighttime collection) that present positive or negative temperature peaks for all
the time series. Due to the huge amount of data, this work considered only the five representative
spots that were most representative for SUHI analysis and determination of thermal anomalies in the
urban environment.

Keywords: Urban Heat Island; Land Surface Temperature; Landsat 8 (TIRS); Google Earth Engine

1. Introduction

Global warming has been an ever-increasing phenomenon since the first industrial rev-
olution, mainly due to human activity [1–3]. The IPCC Sixth Assessment Report (AR6) [1,4]
confirms that the global surface temperature reached 1.1 ◦C above 1850–1900 values in
2011–2020. This temperature increase is due, principally, to human activities through
emissions of greenhouse gasses. Global greenhouse gas emissions effects have continued
to increase in the last decade, with an unequal historical and ongoing contribution arising
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from unsustainable energy use, land use, and land-use changes in lifestyles and patterns of
consumption and production across regions [4]. Human-caused climate change is already
affecting many weather and climate extremes across the entire globe. Evidence of observed
changes in extremes such as heatwaves, heavy precipitation, droughts, and tropical cy-
clones has also been strengthened in the IPCC Assessment reports [5,6], which highlight
that hot extremes (including heatwaves) have become more frequent and more intense
since the 1950s, as the global population has increased. A heatwave may be defined as a
period where local excess heat accumulates over a sequence of unusually hot days and
nights [3]. Heatwaves in urban environments are often exacerbated by the “Surface Urban
Heat Island” (SUHI) effect [7], meaning that the increase in temperature within the urban
environment is greater than in surrounding rural areas due to human activities, altered
land surfaces, and increased energy consumption [7]. Over the past 20 years, SUHI has
been an increasing phenomenon in several Italian cities; more precisely, in summer 2023,
different Italian regions recorded temperature records due to the strong heatwave in July
2023 and the relative SUHI that was generated in several cities. Examples of these elevated
temperatures are 46.3 ◦C in Cagliari, 39 ◦C in Naples, and 42.9 ◦C in Rome, reached on
18 July [8]. Northern Italy also recorded maximum temperature values in July 2023, like in
Turin and Milan, with temperatures above 40 ◦C. During these heatwaves, temperatures
remained extreme even at night, with values above 30 ◦C; these are temperature values
far above seasonal averages, posing serious health risks to the elderly, children, and those
most at risk [9–11]. The SUHI phenomenon has been known since the 19th century, with
the exponential growth of urbanization, but has only recently attracted scientific interest.
In Italy, Naples is a representative city that is characterized by the higher urbanization
rate, and the SUHI issue is compounded by dense construction, limited green spaces, and
a growing population. As a result, the city faces elevated temperatures, which can have
adverse effects on public health, energy consumption, and overall quality of life. Therefore,
we focus this paper on Naples, which offers a suitable geographical context and long-term
data availability to approach this issue. Despite the high volcanic risk due to the presence
of active volcanoes such as Vesuvius and Phlegrean Fields, Naples is one of the most
densely urbanized areas and has about 1.5 million inhabitants, making it the most densely
populated Italian city. Due to urban development, the city is affected by a pronounced
heat island, accentuated by the density of building areas, narrow streets, small parks, and
a particularly tight architecture that limits air circulation, adding to a high geothermal
gradient due to volcanic activity [12]. Within an urban area, the temperature is not recorded
uniformly but rather is a function of the percentage of vegetation present and land use. It
is a common experience that an urban area has higher temperature values than the sur-
rounding rural or non-urbanized areas [7,9,13]. This temperature difference depicts one or
more smaller urban sectors that can be affected by SUHI, which is attributed to the change
in energy exchange between urban heat surfaces and the atmosphere, primarily caused
by increased surface cover replacing cooler vegetation surfaces and anthropogenic heat
releases [14]. Different strategies have been analyzed to reduce the SUHI effects; according
to one set of authors, heat island mitigations can be performed by increasing the presence
of parks and plants [15], i.e., vegetation that can absorb light radiation because of the high
albedo, generating a cooling effect and taking advantage of evapotranspiration [16]. On
the other hand, sustainable materials for construction and asphalt (cool and green roofs,
reflecting asphalt) are being studied to reduce the materials’ ability to absorb heat [17–21].

1.1. Aim of the Work

The purpose of this work is to define/detect the SUHI on the Naples urban area by
analyzing the variation in both the time and spatial domains of the surface temperature
over land. This analysis has been performed by using multispectral remote-sensed data
that are suitable to retrieve the Land Surface Temperature (LST) and are available for
the last 10 years; the United States Geological Survey (USGS) Landsat catalog has been
used. To process this huge amount of data, GEE procedures [22] have been used to define
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the maximum intensity of SUHI found close to Garibaldi Square near the Central Station
(Naples); high temperatures in this area may be attributed to the high urbanization and also
to the presence of a high concentration of low-albedo materials, such as asphalt pavements
or dark roofs, with absence of vegetation favoring the absorption of solar radiation [23].
From the Google Earth Engine (GEE), 59 daytime and 64 nighttime images, from 2013 to
2023, for a total of 123 images, were downloaded and analyzed by using QGIS (release 3.28),
computing both spatial and temporal analyses. In the GIS environment, the isotherms were
clusterized, with a temperature range of 3◦ to identify pixels that were characterized by
excessive (hot and/or cold) temperature values for both daytime and nighttime collections.
Pixels with lower temperature values were defined as coldspots (CS), while the ones that
represented higher temperature values were the hotspots (HS). From the spatial analysis,
40 spots (10 hotspots and 10 coldspots for each daytime and nighttime collections) were
identified within Naples’ territory. To better comprehend the correspondence between the
spot location and land use, an overlap of the Corine Land Cover (CLC) [24] was effectuated.
The temporal analysis results showed that, for the entire time series, the urban class is the
best guess for the hotspots, while the vegetated class hosts the coldspots. Two anomalies
are highlighted: one refers to the pixel located on the Solfatara vent located in the western
part of the study area, and the second one refers to the locomotive depots located in the
eastern part of the study area in Rione Bisignano (Figure 1).
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1.2. Study Area

This study is focused on the Naples urban area, located on the west coast of southern
Italy. Naples is the most densely populated city in Italy, with about 1.5 million inhabitants
in an area of 117 km2, making it the most densely populated city nationally, with 7744 in-
habitants per square kilometer [25]. Naples is situated close to two main volcanic areas: the
Phlegrean Fields (located in the western part in proximity to Pozzuoli municipality) and
Mt. Vesuvius (located in the eastern part) (Figure 1). The geomorphology of this region
is strictly dependent on structural highs generated by these two nested calderas, creating
several steep scarps and cliffs that may affect the incoming solar radiation and generate
important temperature variations. Nowadays, Phlegrean Fields are defined by bradyseism
and degassing activity, especially in the Solfatara region, where the temperature, at the
vent may reach maximum values of 147 ◦C [26–28]. The urban center is in the southern
part of the city (in proximity to the coast), while the industrial area is concentrated in the
east-northeastern part and the northern part of the city. In contrast, the western part, where
Phlegrean Fields craters are present, is less urbanized and, therefore, is more vegetated due
to the impossibility of building in a geologically active area. Naples presents a Mediter-
ranean and humid subtropical climate, characterized by hot, dry summers and cool, wet
winters [29]. Precipitation is concentrated principally in the spring and fall seasons and
is about 1006.6 mm/y. The mean annual temperature is 15.5 ◦C. Summer is character-
ized by average daily temperature ranges from 17.2 ◦C to 28.3 ◦C, while, during winter,
temperature ranges from 4.4 ◦C to 13.1 ◦C [30]. Because of the climatic conditions and
urban development, during summers, when temperatures are elevated and precipitation is
minimal, the city is affected by a pronounced heat island, accentuated by the distribution
of building areas, narrow streets, small parks, and a particularly tight architecture that
limits air circulation [19]. The Neapolitan area is affected by three main heat contribution
effects: anthropogenic heat sources due to intense urbanization, endogenous source heat
due to dominant volcanic activity (at a very local scale, i.e., near Phlegrean Fields), and
the surrounding sea which operates as a mitigator, close to the sea (coastal area near the
shoreside) [31]. Considering the conditions mentioned above (population density, urban
texture, and heat sources), Naples represents a suitable area to test the solution proposed in
the definition of SUHI.

2. Materials and Methods

To perform the SUHI estimation, an approach based on the assimilation of remote-
sensed data, used for both the definition of brightness temperature and emissivity values
and the parametrization of the atmosphere (to define its effects on the LST estimation),
has been used. The satellite data were obtained from the Landsat Thermal Infrared Sensor
(TIRS) and the Advanced Spaceborne Thermal Emission Radiometer (ASTER) sensors.
The atmospheric parameters were provided by the National Center for Atmospheric Re-
search (NCAR) and the National Center for Environmental Prediction (NCEP). In the next
paragraphs, input and procedure are better described.

2.1. Data
2.1.1. Satellite Data LST

Since 1972, Landsat satellites have consistently gathered imagery of the Earth’s surface,
building an unparalleled historical archive. The extensive collection, housed in the USGS
archives, serves as a valuable scientific resource for users across the globe. Landsat 8 (L8),
launched on 11 February 2013, which, at the start of the time series, stands as the most
recent satellite in the series [32,33], incorporates two primary sensors: the Operational Land
Imager (OLI) and the TIRS. OLI captures images through nine spectral bands in various
wavelengths of visible, near-infrared, and shortwave electromagnetic energy. This allows
for the observation of a 185 km wide swath of the Earth, with a spatial resolution ranging
from 15 to 30 m. This spatial resolution is sufficient to discern features such as urban centers,
farms, forests, and other land uses, covering extensive areas of the Earth’s landscape. On
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the other hand, TIRS images include two bands (10 and 11) that contribute to more precise
surface temperature measurements and are collected with 100 m spatial resolution. For
easier use by users, the USGS made a resampling with cubic convolution; hence, bands 10
and 11 have 30 m resolution in the delivery product data, coinciding with the OLI and TIRS
spatial resolutions. The approximate scene size is 170 km north–south by 183 km east–west.
To compute the surface temperature using L8 data, despite its two thermal bands, it is
noteworthy that, in considering the caution issued by the USGS regarding the utilization of
Band 11 due to calibration uncertainties [34], the application of the single-channel algorithm
has been directed towards Band 10.

2.1.2. Emissivity

Emissivity is an intrinsic property of a material, is often regarded as an indicator
of material composition, and can be derived from the emitted radiance measured from
space [35]. Emissivity is a dimensional quantity that can range between 0 and 1; the two
extreme values refer to a body that reflects the full incident radiation (ε = 0) and to a body
that absorbs the full incident radiation (ε = 1), respectively. Between these two values, each
different material assumes a different emissivity value (e.g., Sand = 0.9, Snow = 0.8, Soil
(Dry) = 0.92, Soil (Saturated) = 0.95, Water = 0.95, Solar panels = 0.94) [35,36]. Considering
the role of surface emissivity in surface temperature retrieval, the ASTER Global Emissivity
Dataset (GED) emissivity data, available for free download on the USGS website [37],
were used. The ASTER-GED land surface temperature and emissivity data products are
generated using all clear-sky pixels of ASTER scenes acquired from 2000 through 2008,
with a spatial resolution of 100 m [38]. In this study, considering that L8 data are delivered
at 30 m but acquired at 100 m, the ASTER-GED emissivity is appropriately resized to match
the L8 pixel spatial resolution. To tighten the historical series, we decided to also add the
L8 daytime passages, doubling the amount of data.

Whilst the ASTER-GED data set is used to process nighttime images, to process the
daytime L8 acquired images, we decided to use the emissivity value estimated by the rela-
tion between Normalized Difference Vegetation Index (NDVI), Fractional Vegetation Cover
(FVC), and emissivity. The association between the emissivity value and the percentage
of vegetation cover is explained by the NDVI, which uses spectral reflectance (ρ) in the
near-infrared (NIR) band and the red (R) band (L8, OLI, band 4 and band 5); it is defined as

NDVI =
ρNIR − ρRED
ρNIR + ρRED

(1)

NDVI values range between −1 and 1; higher NDVI values indicate high vegetation
vigor, while lower NDVI values indicate low vegetation cover (typically from 0 to 0.2), like
water bodies or bare soil [37,39].

In this paper, NDVI threshold values are useful to define the FVC, an index that
estimates the proportion of an area covered by vegetation and, consequently, the fraction of
green vegetation viewed by the sensor [29,31]:

FVC = (
NDVI − NDVIb

NDVIv − NDVIb
) 2 (2)

where NDVIb and NDVIv are NDVI threshold values for bare soil pixels and vegetation soil
pixels, respectively [17]. Under global conditions, values of NDVIv = 0.86 and NDVIb = 0.2
have been proposed by [22,40,41]. According to the Vegetation-Cover Method (VCM),
based on the assumption that the effective emissivity of a given area can be modeled as a
linear combination of the emissivity of the vegetated and bare ground portions of an area,
it is possible to define the land surface emissivity (LSε) as

LSε = FVCεveg + (1 − FVC)εbare (3)
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where εveg and εbare are the values computed for vegetated soil and bare soil, respectively.
The emissivity of vegetated surfaces shows low variation in the TIR region; hence, this
value is prescribed as constant and equal to εveg = 0.99 [22]. LSε is an intrinsic property of
all materials that measure their efficiency in converting heat into radiation; it represents a
critical variable in the quantification of the surface energy budget and for the estimation
of surface parameters from earth observation data [41,42]. LSε values extracted by the
VCM method are strictly dependent on the surface classification and may not represent
variability associated with changes in surface conditions. Indeed, the assigned emissivity
value for a particular pixel may be inaccurate if it does not fully represent the complexity of
the surface [43]. LSε retrieval through the VCM here is used for the LST computation in the
daytime image collection, where it is possible to exploit the Reflectance of Solar Radiation
by vegetation to calculate NDVI and FVC because of the correlation between the emissivity
value and the vegetation cover of the surface. However, for the nighttime image collection,
when solar radiation is absent and the main source of energy is emission by the Earth, it is
preferable to use a global database of emissivity values such as ASTER-GED to cope with
the difficulty in estimating emissivity in the absence of solar radiation.

2.1.3. Atmospheric Correction Coefficients (A, B, and C)

Information on the atmospheric water vapor content is required to better account for
atmospheric contributions in the TIR observations [22]. Correcting for the atmospheric
effects requires accurate knowledge of the vertical profiles of atmospheric water vapor and
temperature, both of which are highly variable. The information about the Total Column
Water Vapor (TCWV) values is provided by the NCAR and NCEP and are all available on
GEE with the NCEP/NCAR reanalysis collection [15]. From the NCEP/NCAR collection,
atmospheric water vapor data are extracted to define the Total Precipitable Water (TPW),
which is a product that represents the total integrated moisture in the atmospheric column
from the surface to the Top of Atmosphere (TOA). Therefore, for every daily and temporal
interval, a precise value of TPW has been assigned on a scale of 10 classes (from 0 to 9),
with an interval of 6 cm in the water vapor column.

2.2. Processing

The SUHI estimation is based on the Statistical Mono Window (SMW) algorithm,
proposed by [22]. This algorithm is dedicated to processing single-diurnal images and
estimating the LST. We have modified this procedure to process time series for both daytime
and nighttime images due to differences in the emissivity estimation. The original SMW
performed to estimate the LST is defined as follows:

LST = A
Tb
ε

+
B
ε
+ C (4)

where the variables are as follows:
Tb = Brightness temperature, which is derived from L8 TIRS data by using the thermal

channel centered at 11 µm, which corresponds to band 10;
ε = emissivity. Emissivity values are necessary for LST computation from Tb images;
A, B, C = atmospheric correction coefficients. These are required to constrain the

atmospheric contributions in the TIR observations [22].
The paradigm adopted in this study relies on the GEE platform to process the L8

archived dataset, which is composed of an unpredictable number of images. The GEE
platform employs web access based on JavaScript language and Python, which makes it
extremely versatile to elaborate data without downloading data onto local premises. It
also takes advantage of re-use scripts already developed by other users such as the code
proposed in [22] (Table 1). Following this approach, the procedure in [22] has been modified
to process the L8 2013–2023 daytime and nighttime time series, obtaining an estimation of
the LST over Naples.
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Table 1. Satellite, bands, GEE dataset, and ETC for the daytime collection.

Satellite Bands Wavelength (µm) GEE Dataset Equatorial Crossing Time

Landsat 8 (OLI, TIRS)
RED B4 0.64–0.67 LANDSAT/LC08/C02/T1-L2

10:00 a.m. 16 daysNIR B5 0.85–0.88 LANDSAT/LC08/C02/T1-L2
TIR B10 10.06–11.19 LANDSAT/LC08/C02/T1_TOA

Since, in previous work [15], the SMW algorithm in GEE is applied only for a single
daytime image, to increase the density of the analyzed collection, it was necessary to readapt
the code in [22] for the LST retrieval in the nighttime by adopting ASTER-GED emissivity.
When the main energy source is the Sun’s radiation (during daytime), the surface emissivity
is computed by starting from the FVC retrieval and the VCM method due to the correlation
between the emissivity value and the vegetation cover on the surface [44]. To obtain the
FVC, in [22], the NDVI was computed from the Surface Reflectance L8 collection band
4 and band 5. Finally, following Equation (3), LSε is obtained for the daytime collection.
Without the Sun component (during nighttime), the main source of energy is not the solar
radiation reflected by the Earth to the sensor, but is the energy emitted by the Earth itself;
thus, it is not possible to use methods that are reflectance-based. In ASTER-GED, the TIR
emissivity is defined by ASTER band 13 because of its similarity to the Landsat 8 band 10
wavelength (Table 2).

Table 2. Satellite, bands, GEE dataset, and ETC for the nighttime collection.

Satellite Bands Wavelength (µm) GEE Dataset Equatorial Crossing Time

Landsat 8 (OLI, TIRS) TIR B10 10.06–11.19 LANDSAT/LC08/C02/T1_TOA 10:00 a.m. 16 days
Terra (ASTER) TIR B13 10.95–10.95 NASA/ASTER_GED/AG100_003

The use of nighttime data allows us to avoid both direct solar heating and the topo-
graphic effect, minimizing their influence, as well as rendering the reflectance component
negligible. Another advantage of nighttime images is that surface temperature is more
constant than in daytime due to the absence of solar radiation, and temperature values
are dependent only on the thermal energy remitted by buildings [45]. The TOA bright-
ness temperature is provided by L8 band 10, queried through the GEE capabilities, and is
common for daytime and nighttime procedures. The emissivity is obtained using different
methods that depend on the acquisition timing. The LST retrieval tailored code requires
the same input data for the atmospheric correction, obtaining a flexible version of the SMW
algorithm (Figure 2).

As seen in Figure 2, both daytime and nighttime codes present several different
subroutines. These codes are started by the main subroutine, which is the Landsat_LST,
which includes the L8 TOA collection and the L8 SR collection (this collection is applied
only for the daytime LST retrieval). L8 SR is used for extracting the VIS (red) and NIR
bands (SR_B4 and SR_B5) that are applicable for the NDVI computation; meanwhile, the
TOA_B10 is directly imported into the final LST retrieval. In the daytime code, the following
subroutines refer to the emissivity definition, starting with NDVI (compute_NDVI), FVC
(compute_FVC), and the final subroutine (compute_emissivity) in which the NDVI and FVC
subroutines are required, and the surface emissivity is calculated starting from Equation (3).
These steps, which are useful for the emissivity computation in the nighttime code, are
not required because the emissivity is directly extrapolated by band 13 of the ASTER-
GED dataset. In both codes, in addition to the operations described above, there is the
atmospheric correction retrieval, which comprehends the NCEP_TPW subroutine, where
the atmospheric water vapor data are matched to each Landsat image. Then, in the
SMW_coefficients subroutine, all the atmospheric coefficients are computed. Finally, all the
components for the LST retrieval are defined and required in the final subroutine, which
is the SMW_algorithm. Within that, based on Equation (4), the A, B, and C coefficients,
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defined in the SMW_coefficient subroutine, are applied and the emissivity is computed by
the FVC method or by ASTER-GED and the Tb extracted by the TOA B10. In the Output
subroutine, the LST retrieval for the daytime and nighttime images is shown and, in the task
window, it is possible to download the LST images. The Output subroutine also presents
the string for the batch download, which permits one to download the entire LST image
collection. In QIS, from the images, isotherms were extracted with a range of 3 degrees to
identify those pixels characterized by extreme temperature for both nighttime and daytime
collections. Based on the average temperature values in the images, the authors decided
on the scale of 3 degrees to represent the temperature scale that was used to individuate
the spots.
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Figure 2. GEE processing chain of both daytime and nighttime collections for the LST retrieval.

2.3. Results Characterization by Using the Land Cover

To better comprehend the characterization of urban thermal environments, including
the SUHI effect, the authors investigated the relationship between LST and Naples’ land
cover and soil use using the Corine Land Cover (CLC). CLC is the database of Copernicus
Land-Monitoring Service (CLMS) and represents the European reference for land-cover
and land-use inventory [46]. The CLC includes land-use/land-cover (LULC) status for
European countries [47] and represents the spatial distribution of different types of physical
coverage of the Earth’s surface. For the sake of this work, the 44 standard thematic classes
(CLC-2018) have been newly clusterized to match the L8 Ground Sample Distance (GSD) of
the remote-sensed data used (90 × 90 m). Indeed, for this paper, considering the complexity
of the study area and the granularity of the information in the CLC classification, CLC may
be overly detailed, and no significant differences in temperature between similar classes
are noticed. For this reason, and considering the L8 GSD, it was decided to simplify the
land-cover classification by reducing it into three main macro-classes: the first class refers
to the urban area, the second refers to the vegetated area, and the third one refers to mixed
area, i.e., sparse vegetation and discontinuous urbanization (Figure 3).
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3. Results and Discussion

In this section, the results are shown. A total of 434 daytime images and 230 nighttime
images were downloaded from the task window in GEE, according to the methodology
previously illustrated. For the sake of the quality of results, cloudy images were removed
and not processed. For the daytime collection, the code provided by [22] presents a cloud-
mask sub-routine, but, for nighttime images, due to the complexity of the atmospheric
parameters’ definition, it is not reasonable to use a cloud mask; hence, to apply the same
analysis method to both daytime and nighttime collections, cloudy images have been
removed manually. After this removal phase, 123 images constitute the bulk of the images
to be processed for the SUHI analysis—64 nighttime and 59 daytime. Images in both
collections present a half-pixel shift, for this reason, to build a unique stack, with the images
coming from different platforms. QGIS software version 3.28 has been used to pile up the
123 used images by utilizing the “co-registration” plug-in, where it considered a reference
nighttime and daytime image to construct the co-registered stack.

Spatial Analysis

Spatially analyzing the studied area, in a general view, two main clusters can be
identified (Figure 3): a warmer eastern zone, which can be attributed to the urban center
and industrial area of Naples, and a cooler western zone, near the Phlegrean Fields craters
and the vegetated area to the north. This spatial pattern is coherent with [29], which shows
that the spatial disposition of hotter areas and cooler areas is also strictly dependent on
NDVI values. In the entire time series, there are individual pixels that constantly show the
highest or the lowest temperature values. Pixels that show the highest temperature values
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are named hotspots and pixels characterized by the lowest temperature values are named
coldspots, with a total number of 40 spots (10 daytime hotspots, 10 daytime coldspots,
10 nighttime hotspots, and 10 nighttime coldspots). These spots represent the positive or
negative extreme temperature compared to the images’ mean temperature. Temperature
trends around each spot are inspected by building a 5 × 5 pixel grid, where the cell i3,3
(Figure 4A) corresponds to the spot and the other 24 cells are the background. It is important
to highlight that cells are ordered following a column per row disposition. Within each
grid, the mean temperature of each cell (which corresponds to the pixel mean temperature)
is extracted by univariate statistics, computed in GRASS GIS with the v.rast.stat plugin. In
the grids, we have defined four different directions along the temperature values that were
studied to comprehend the behavior around the spot. Two directions represent the 1,1–5,5
and 1,5–5,1 diagonals, while the third one is E–W (i.e., from 1,3 to 5,3 in the matrix cells)
and the fourth one is N–S (from 3,1 to 3,5) (Figure 4B).
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Figure 4. (A): Grid example, all single cells represent a term of a 5 × 5 matrix, and they are directly
associated with the pixels. (B): The dot represents the spot looked at with the isotherms, while the
lines represent the profiles along which the temperature profiles were executed. Precisely, the two
orange lines represent the main diagonals, the first diagonal (from cell 1,1 to 5,5) and the second
diagonal (from cell 1,5 to 5,1), the blue line represents the N–S profile (from cell 3,1 to 3,5), and the
green line represents the W–E profile (from cell 1,3 to 5,3).

From the univariate statistic, it was revealed that temperature behavior is coherent,
with CLC showing that the urban class is characterized by higher temperature values and
that vegetated class is characterized by the lower. This affirmation is also confirmed by
the NDVI: pixels with lower NDVI values, related to sparse vegetation, as is typical of
urban areas, present higher temperature values, while vegetated pixels characterized by
higher NDVI values show lower temperature. More precisely, hotspots, both diurnal and
nocturnal, are concentrated more in the eastern part of the city of Naples, characterized by
the urban center and industrial area. In contrast, coldspots are concentrated more in the
western and northern portions of the study area, which are characterized by the vegetated
class of CLC. In addition, five spots were identified that could be grouped into four different
zones (Figure 3) that show singular temperature behaviors and are explained individually.

The results of the statistics for each of the four directions within the grid are represented
as four different graphs, where the Y axis represents the temperature and the X axis is the
cell ixy. Within each graph, we report the temperature profiles for each date of the time
series for all the directions (Figures 5–9).
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direction of the diagonals.
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Figure 7. Nighttime CS4. Ente Autonomo Volturno (EAV) locomotive depot and legend (a). Diagonal
1,1 to 5,5 (b). Diagonal 1,5 to 5,1 (c). Direction W–E cells 1,3 to 5,3 (d). Direction N–S cells 3,1 to 3,5
(e). The arrows indicate the direction of the diagonals.
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5,1 (c). Direction W–E cells 1,3 to 5,3 (d). Direction N–S cells 3,1 to 3,5 (e). The arrows indicate the
direction of the diagonals.
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The first zone (Zone 1, Figure 3) is Garibaldi Square, in the city center (Figure 5a), 
and it is characterized by the presence of the Naples Central Station. At the “grid” scale in 
the area, there is no vegetation—the square is surrounded by tall buildings and narrow 
streets. Within this area, we observe both Nighttime HS2, slightly west of Garibaldi 

Figure 9. Nighttime HS6. Solfatara vent and legend (a). Diagonal 1,1 to 5,5 (b). Diagonal 1,5 to 5,1 (c).
Direction W–E cells 1,3 to 5,3 (d). Direction N–S cells 3,1 to 3,5 (e). The arrows indicate the direction
of the diagonals.

The first zone (Zone 1, Figure 3) is Garibaldi Square, in the city center (Figure 5a), and
it is characterized by the presence of the Naples Central Station. At the “grid” scale in the
area, there is no vegetation—the square is surrounded by tall buildings and narrow streets.
Within this area, we observe both Nighttime HS2, slightly west of Garibaldi Square, and
Daytime HS9, located close to (and to the north of) the Central Station. Nighttime HS2
shows no notable changes in temperature over the historical series, but the particularity of
Nighttime HS2 is that, despite being nocturnal, it shows some of the highest temperature
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values achieved within the urban CLC class and over the entire time series. On summer
nights, the temperature at pixel i3,3 exceeds 40 ◦C (Figure 5b–e).

Daytime HS9 includes the rooftop of Naples Central Station (Figure 6a). Throughout
the area, no vegetation is present and long iron structures cover the tracks. The temperature,
as seen in the graphs (Figure 6b–e), is higher in all the pixels that fall above the tracks that
run in the W–E direction, while the lower temperature values fall instead in the pixels that
cover the building outside the station in the northern part of the analyzed grid (indices from
i1,1 to i5,1). During daytime, the higher temperatures are above the iron structures due to the
high thermal conductivity of the iron materials and because of the elevated emissivity value
(i.e., 0.7–0.95 in the 8–14 µm wavelength range), increasing the indoor ambient temperature,
resulting in the use of air conditioners to cool indoor air but contributing to a greater
increase in outdoor temperature. Considering the vicinity of the hottest pixels for both the
Nighttime HS2 and Daytime HS9, we can assume that this can be defined as the hottest
zone within the study area.

The second zone where we focus our attention is Zone 2 (Figure 3). It hosts the unique
nighttime coldspot that falls within the CLC urban class, named Nighttime CS4, and it is
coincident with the roof of the Ente Autonomo Volturno (EAV) locomotive depot (Figure 7a).
By analyzing the obtained results (Figure 7b–e), despite the complexity of the figure, we
emphasize that the temperature has a constant value until 2018; after this year, the i3,3 is
characterized by a temperature decrease of about 7 ◦C, also confirmed by a negative value
of the linear regression of cell i3,3. By a qualitative visual inspection through a comparison
with the historical images on Google Earth, after 2018, a solar panel was installed above the
roof of the analyzed depot. After this installation, a significant reduction in the temperature
of the area during nighttime was recorded. Indeed, from the graphs in Figure 7b–e, the
trend of the curves is evident, with a point of inflection after 2018. Our interpretation of this
temperature decrease is to relate to the solar panel installation. During the day, the Sun’s
rays strike the outer surfaces of the solar panel, which is glazed, and are absorbed by a
black capturing plate that heats up. During the night, these materials do not absorb energy
but rather cool very quickly, recording a temperature decrease that is directly connected to
the signal inversion due to the failure to absorb energy.

A similar case is described by the Nighttime CS2, located at the northern boundary of
the investigated area (Zone 3, Figure 3). This coldspot includes the roof of the SEDA SpA
packaging factory (Figure 8a), which belongs to the mixed urban/vegetation class of CLC
(Figure 3). In this area, the temperature was quite constant until 2021; from the images, in
January 2022, there is an important decrease in temperature, with the absolute minimum of
the time series touching −9.99 ◦C (i3,3) just above the structure (Figure 8b–e). As for the
previous coldspot, Nighttime CS2 shows a negative value of linear regression, and, from a
qualitative visual inspection through a comparison with the historical images on Google
Earth, it is evident that, in September 2021, the roof of the structure was probably coated
with reflective paint. Reflective paints are high-emissivity paints that can reflect the Sun’s
rays while keeping the surfaces they cover cool. The use of reflective paints accompanied
by several different techniques, such as cool roofs, green roofs or, indirectly, the installation
of solar panels, represents the main SUHI mitigation effort [48,49].

The last area (Zone 4, Figure 3) that the authors decided to highlight is the Nighttime
HS6, which includes the Solfatara crater, one of the active craters of the Phlegrean Fields
(Figure 9a). The Phlegrean Fields is a multi-center volcanic complex with two nested
calderas, Campanian Ignimbrite (39 ky) and Neapolitan Yellow Tuff (14 ky), situated north-
west of Vesuvius. It is a volcanic belt composed of dozens of eruptive, explosive, and
effusive centers over an area of more than 200 km2. After the last eruption of Monte Nuovo
occurred in 1538, the volcanic complex was characterized by quiescence [28]. Minimal
volcanic activity is recorded only by the bradyseism phenomena and through fumarole
emission, i.e., Pisciarelli and the Solfatara, both characterized by an intense SO2 degassing,
also monitored by the ground station placed near the vent [26]. More precisely, the Night-
time HS6 is located above the Solfatara and consists of the unique hotspot located in the
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vegetated CLC class. As shown in the graphs (Figure 9b–e), the temperature trend is
constant through the time series, with the temperature peaks reached right near the vent.
Lower temperature values occur where vegetation is present and volcanic activity is not
present. It is important to note that this spot is recognized as a hotspot only by nighttime
images whilst, during the day, there is no evidence of such behavior. The Solfatara is in an
area where the temperatures are normally lower than the surrounding urban area; hence,
during the day, this spot cannot be detected as a hotspot because of the higher urban center
temperature. The Solfatara is characterized by a higher geothermal gradient: it can only be
detected during the night, when temperatures in the urban area decrease because of the
absence of sunlight, while, in volcanic areas, due to the elevated geothermal gradient, the
surface temperature also remains constantly high during the nighttime.

4. Conclusions

In this paper, the LST retrieval over the Neapolitan area has been effected by processing
data from the high-resolution L8 TIRS sensor. The algorithm proposed for the LST retrieval
is the SMW, which requires, as input, the brightness temperature, the surface emissivity, and
the atmospheric coefficient (NCEP collection). The surface emissivity has been derived with
two different procedures, according to the timing of the Earth Observation (EO) data used:
estimated by the NDVI for daytime and from the ASTER-GED collection for the nighttime
images. By applying the SMW algorithm, 123 images, both diurnal and nocturnal, were
obtained, and they were statistically examined using QGIS release 3.28. In total, 10 hotspots
and 10 coldspots for both nighttime and daytime have been highlighted, and 4 zones show
particular temperature trends. The statistical temperature analysis computed by QGIS has
shown a hot region surrounding Naples’ urban center; in particular, the hottest area is
in Garibaldi Square, and the coolest area is close to the Phlegrean Fields in the western
sector. It is important to underline that the Nighttime HS6 (Solfatara crater) is the only
hotspot located in the vegetated area. This hotspot is detected only in nighttime images.
This means that, during daytime, the LST retrieved for this area is not significant for the
surrounding zone. On the contrary, nighttime data are suitable to detect the natural thermal
source represented by the Solfatara di Pozzuoli; therefore, this method can also be suitable
for monitoring purposes.

The use of mitigation measures (e.g., cool roofs) produces a positive effect on the SUHI
intensity; furthermore, vegetation can be considered to reduce the variation of the surface
temperature and for mitigating high temperature, which is becoming a health issue. Solar
panel installation (e.g., at Nighttime CS4) is not considered a proper mitigation measure.
Still, nocturnal remote-sensed data show a signal inversion—recorded as a decrease in
temperature—because of the absence of irradiation of the solar panels by solar radiation.

This work, merging innovative solutions (GEE) and using consolidated algorithms
and procedures for remote-sensed data analysis, shows a versatile procedure for the SUHI
definition and monitoring. The paradigm used can be exported to any geographical area
to also allow a historical analysis, considering that the Landsat mission, with the updated
version, has been orbiting since 1972. At the same time, remotely sensed data used in the
UHI monitoring may present some limitations, like the necessity to use cloud-free images,
which greatly decreases the number of usable images within a time series. Also, L8 has
16 days of revisit time, so it cannot be used for continuous monitoring. More precisely, the
algorithm proposed requires the attribution of emissivity value, which is difficult to define
for the different materials that compose an image. It is often defined not precisely but by
using global databases, as in the case of ASTER-GED.

We are experiencing the impact of global climate change with extreme heat wave events
in our region. Analyses like the one proposed can positively support the scientific research
needed to understand such phenomena and to provide more reliable information to those
in charge of managing such events. The incoming missions and the development of future
sensors can only improve our capabilities in analyzing and mitigating the SUHI effect.
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Abbreviations

ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer
ASTER-GED ASTER Global Emissivity Database
CLC Corine LC
CS Coldspot
EAV Ente Autonomo Volturno
EO Earth Observation
FVC Fractional Vegetation Cover
GEE Google Earth Engine
GSD Ground Sample Distance
HS Hotspot
IR Infrared
LC Land Cover
LST Land Surface Temperature
NCAR National Center for Atmospheric Research
NCEP National Center for Environmental Prediction
NDBI Normalized Difference Buildings Index
NDVI Normalized Difference Vegetation Index
NIR Near Infrared
OLI Operation Land Imager
SMW Statistical Mono Window
Tb Brightness Temperature
TCWV Total Column Water Vapour
TIR Thermal Infrared
TIRS TIR Sensor
TM Thematic Mapper
TOA Top of Atmosphere
TPW Total Predictable Water
USGS United States Geological Survey
VCM Vegetation Cover Method
VIS Visible
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