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Abstract: The Minjiang River is an important first-level tributary of the Yangtze River. Understanding
the driving factors of water quality variations in the Minjiang River is crucial for future policy
planning of watershed ecology protection of the Yangtze River. The water quality of the Minjiang
River is impacted by both meteorological factors and anthropogenic factors. By using wavelet
analysis, machine learning, and Shapley analysis approaches, the impacts of meteorological factors
and anthropogenic factors on the permanganate index (CODMn) and ammonia nitrogen (NH3-N)
concentrations at the outlet of the Minjiang River Basin were quantified. The observed CODMn and
NH3-N concentration data in the Minjiang River from 2016 to 2020 were decomposed into long-term
trend signals and periodic signals. The long-term trends in water qualities showed that anthropogenic
factors were the major driving factors, accounting for 98.38% of the impact on CODMn concentrations
and 98.18% of the impact on NH3-N concentrations. The periodic fluctuations in water qualities in
the Minjiang River Basin were mainly controlled by meteorological factors, with an impact of 68.89%
on CODMn concentrations and 63.94% on NH3-N concentrations. Compared to anthropogenic factors,
meteorological factors have a greater impact on water quality in the Minjiang River Basin during
both the high-temperature and rainy seasons from July to September and during the winter from
December to February. The separate quantification of impacts of driving factors on the varying water
quality signals contributed to the originality in this work, providing more intuitive insights for the
assessment of the influences of policies and the climate change on the water quality.

Keywords: Minjiang River basin; driving mechanisms; machine learning; wavelet analysis;
Shapley analysis

1. Introduction

The Minjiang River is a primary tributary of the upper Yangtze River located in
Southwestern China. As one of the earliest developed regions in Southwestern China,
the Minjiang River Basin (MRB) has supported agricultural and industrial activities for
centuries. In recent years, the MRB environmental authorities have enacted and opera-
tionalized various policies and ecological initiatives aimed at protecting and remediating
the water quality within the basin in response to the increasing pressure on aquatic systems
due to anthropogenic disturbances [1,2]. The water quality of the Minjiang River was
reported to have improved significantly from 2011 to 2020, characterized by a reduction in
the permanganate index (CODMn), ammonia nitrogen (NH3-N), and total phosphorus (TP)
contents by 7.59%, 20.54%, and 19.68%, respectively [3].
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The water quality of rivers is impacted by both meteorological factors and anthro-
pogenic factors [4,5]. Establishing relationships between driving factors and water quality
indices is fundamental for distinguishing and quantifying the impacts from anthropogenic
factors versus meteorological factors within basin-scale river systems [6,7]. Modeling
tools like process-based mechanistic models and data-driven machine learning models are
effective for quantitatively delineating complex driver–response dynamics [8,9].

Watershed scale process-based models including SWAT [10], HSPF [11], and MIKE
SHE [12] can represent interconnected hydrological, hydraulic, and water quality processes
across heterogeneous landscapes. These models have capacities for characterizing explicit
spatiotemporal details, mechanistic interpretability, and scenario analysis under altered
climate or management conditions [13]. For example, Liu et al. [14] constructed an in-
tegrated hydrological and water quality model of the MRB based on SWAT, simulated
variations of flows, pollutant concentrations, and fluxes at the outlet of the MRB from
2015 to 2018. However, rigorous data requirements, huge computational costs, and the
difficulty of calibration are significant challenges in practical applications of process-based
models [15].

Machine learning approaches have shown abilities for emulating watershed hydro-
logical and water quality variations by discovering empirical patterns in monitored data.
Approaches like artificial neural networks [16], regression trees [17], and support vector
machines [18] utilize flexible model architectures and optimization algorithms to fit highly
nonlinear relationships between driving factors and response variables. Although black box
modeling had limited physical interpretability for these processes [19], machine learning
models have the advantage of automatic identification of key interactions and hydrological
signatures in monitored data [20]. The total nitrogen and total phosphorus contents of
the Minjiang River were inverted using remote sensing materials and machine learning
approaches, which were highly performed [21].

In the MRB, the monitored water quality data in previous studies had relatively low
time frequencies (weeks to months), and it was difficult to characterize the short-term
periodic patterns. Likewise, the fluctuation magnitudes of water quality data in the MRB
were generally large, giving rise to significant difficulties in identifying long-term changes
in the water quality. We speculate that the long-term trends and short-term periodic
patterns were controlled by different driving mechanisms.

To further identify the impacts of driving factors on the water quality, statistical
approaches and scenario analyses have been commonly used [22,23]. In the MRB, the
impacts of the spatial land use distribution of riparian zones were qualitatively assessed [21].
The impacts of pollution reduction measures on water quality improvement were evaluated
through a scenario analysis, but the results were highly affected by the selected base year,
and no conclusive quantified result was demonstrated [20]. Yuan et al. [3] developed a
statistically based climate–water quality assessment framework to compare the impacts of
anthropogenic factors and meteorological factors on the water quality of the Minjiang River.
The framework implemented nonparametric analysis approaches to alleviating constraints
due to the quality and quantity of input data. However, this statistically based framework
was unable to quantify the temporal and spatial variations of the relative impacts of
anthropogenic factors and meteorological factors on the water quality. Consequently,
similar studies of the MRB have not successfully quantify the impacts of anthropogenic
factors and meteorological factors on the long-term trend and periodic pattens of the water
quality indices separately. This has significant potential for the assessment of environmental
policies for the watershed management of the MRB.

Based on the high-frequency water quality data monitored from 2016–2020 at the outlet
of the MRB, a wavelet analysis was used in this study to decompose time series raw data
into signals characterizing long-term trends and periodic fluctuations. In addition to the
collected pollutants data and meteorological data within the basin, machine learning and
the Shapley analysis were further utilized to quantify the relative impacts of driving factors
on both the long-term trends and periodic patterns of water quality indices (Figure 1). The
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influences of both climate change and human activities across varying timescales in the
MRB were considered. The findings of this study may provide quantitative insights for
accurately assessing regional policies for watershed ecological restoration, contributing
to aquatic environment management in the MRB and the broader Yangtze River Basin.
Additionally, the methodological framework developed in the present study may provide
suggestions about water quality risk management for other watersheds.
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Figure 1. Overview of the present study.

2. Materials and Methods
2.1. Study Area

The study area included the mainstream of the Minjiang River, the Daduhe River Basin,
and the Qingyijiang River Basin (Figure 2). The MRB has an annual mean temperature of
9.1 ◦C and an annual mean precipitation of 1083 mm. The main stream of the Minjiang River
originates from the southern foothills of the Min Mountains on the Sichuan–Gansu border,
flowing southward with a length of 7.530 × 102 km and a basin area of 4.532 × 103 km2.
The Daduhe River is a first-order tributary joining the mainstream of the Minjiang River at
Leshan City, Sichuan. It flows southward through Qinghai Province and Sichuan Province
with a total length of 1.074 × 103 km and a basin area of 7.715 × 104 km2. The part of
Daduhe River located in Sichuan Province with a length of 8.760 × 102 km (81.60% of the
total length of the river) and a basin area of 6.792 × 104 km2 (88.00% of the whole basin)
was considered in this study. The Qingyijiang River is a first-order tributary converging
with the Daduhe River at Leshan City, with a length of 2.870 × 102 km and a basin area of
1.285 × 104 km2. The mean annual discharge at the outlet of the MRB is 2.850 × 103 m3/s.
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Figure 2. The locations of the meteorological and water quality monitoring stations in the MRB.

2.2. Data Sources
2.2.1. Pollutant Loads

The pollutant load data used in this study were derived from the Sichuan statistical
yearbooks over the years (http://tjj.sc.gov.cn/scstjj, accessed on 6 June 2023). The types of
pollutant loads were divided into three categories: industrial sources, urban living sources,
and agricultural sources. The basic unit of the pollutant loads at the spatial scale was the
prefecture-level city. The industrial and urban living pollutant loads were characterized
by six variables from the statistical yearbooks of Sichuan Province, which included the
industrial wastewater discharged, COD emissions from industrial wastewater, ammonia
nitrogen emissions from industrial wastewater, urban living wastewater discharged, COD
emissions in urban sewage, and ammonia nitrogen emissions from domestic sewage. The
data points for these variables across 10 years were fitted to their dates. Then data during
the research period (2016–2020) were extracted and downscaled to the daily frequency and
used as input data. On the other hand, the migration and transformation of pollutants from
agricultural sources are more complex [24]; therefore, there are few effective methods to
accurately quantify the pollutant loads from agricultural sources on a large basin scale [25].
Therefore, the fertilizer use data in the Sichuan statistical yearbooks were used to reflect
the agricultural pollutant loads. The raw data of the pollutant loads were collected based
on the administrative division, requiring further spatial split or integration based on the
distribution of GDP, population, and area of each prefecture-level city within the MRB. The
data on pollutant loads used in this study were from 2016 to 2020.

http://tjj.sc.gov.cn/scstjj
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2.2.2. Water Quality Data

The water quality data in this study were monitored at the Liangjianggou Station (lon-
gitude 104.62◦ E, latitude 28.78◦ N), which is located at the outlet of the MRB. In this study,
the concentrations of CODMn and NH3-N were selected as the objects characterizing the
water quality of the Minjiang River. The monitored indices and corresponding monitoring
methods used in this study are shown in Table 1. The water quality data were monitored
from 1 January 2016 to 31 December 2020, and the temporal resolution was 1 d. The mean
annual concentrations of CODMn and NH3-N were 2.04 mg/L and 0.20 mg/L, respectively.

Table 1. Methods of measurements of water quality indices at the Liangjianggou Station.

Water Quality Indices Methods of Measurements Unit

CODMn
Potassium permanganate oxidation-ORP

potentiometric titration method mg/L

NH3-N Salicylic acid spectrophotometry mg/L

2.2.3. Meteorological Data

The meteorological data in this study were collected from the National Centers for
Environmental Information of the United States (https://www.ncei.noaa.gov, accessed
on 15 May 2023). There are eight meteorological stations involved in the MRB (Figure 2
and Table 2), scattered in the upper, middle, and lower reaches of the study area. The
meteorological indices used in this study included the air temperature and precipitation
depth. After raw data preprocessing, the time frequency was integrated from 3 h to 1 d.
The period of the meteorological data is from 1 January 2016 to 31 December 2020.

Table 2. Meteorological station information in the MRB with the collected data used in the
present study.

Station Name Latitude (Degree) Longitude (Degree) Elevation (m)

Seda 32.28 100.33 3896
Maerkang 31.90 102.23 2666
Songpan 32.67 103.60 2883
Wenjiang 30.75 103.87 541.0

Yaan 29.98 103.00 629.0
Kangding 30.05 101.97 2617
Emeishan 29.52 103.33 3049

Yibin 28.80 104.60 342.0

2.3. Wavelet Analysis

The long-term trend and periodic pattern are both important for time series data
analysis [26,27]. The long-term trend describes the overall changes in an indicator over the
past several years. The periodic pattern describes the cyclic variation in data on smaller time
scales, such as the monthly, seasonal, quarterly, or annual patterns. The monitored water
quality data include both long-term trends and periodic signals; therefore, it is necessary to
decompose the water quality data through a time–frequency domain analysis to further
quantify the impact of different driving factors on the long-term trend and periodic signals
of water qualities.

Wavelet analysis is a classic time–frequency domain method that can decompose
non-stationary signals into wavelet functions at different scales and positions [28]. The
basic principle is to decompose a signal into a linear combination of a set of wavelet
basis functions, where each wavelet basis function is constructed from a mother wavelet
function with different scaling and shifting parameters [29]. The scaling and shifting
parameters of these wavelet basis functions control the time and frequency resolution of
the analysis results. The wavelet analysis process consists of two steps: decomposition
and reconstruction. At first, the original signal is decomposed into wavelet coefficients at

https://www.ncei.noaa.gov
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multiple scales and frequencies. Then, in the reconstruction step, the wavelet coefficients
are combined to simulate the original signal [30].

In this study, the single-level discrete wavelet transform (DWT) and discrete Meyer
(dmey) mother wavelet function were used in the wavelet analysis. The wavelet decompo-
sition level was set to 10 (Figure 3).
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(c) NH3-N concentrations.

2.4. Machine Learning Models

Machine learning algorithms have advantages in nonlinear modeling, including
missing data processing, large-scale data processing, and fast prediction optimization
capabilities [31]. The accuracy of the relationships established between the driving factors
and water quality indices of the MRB using different machine learning algorithms were
compared. Then, the model with the highest accuracy was used for further quantitative
analysis of the impacts of the driving factors. Support vector machines (SVM), ensembles
of trees, neural networks, and regression trees were included in this study. The computing
platform is MATLAB R2020b.

SVMs are boundary-based classification methods to divide data into different cate-
gories by searching for the optimal hyperplane in the feature space [18]. Ensembles of trees
is an ensemble learning method that can be used for data regression and classification [17].
It consists of a weighted combination of multiple trees, including various algorithms such
as the random forest and gradient boosting. Neural networks are based on neurons and
their connections, simulating complex nonlinear functions by optimizing model hyper-
parameters [16]. The regression tree algorithm is based on a tree structure that is used to
perform regressions which use a series of decision rules to divide the data into different
subsets, thereby achieving data classification and prediction [32].

2.5. Shapley Analysis

The Shapley analysis is based on cooperative game theory to explain the results
of machine learning models [33]. For each feature, the Shapley analysis first constructs
a “feature set” that includes all the possible combinations with other features, then it
calculates the contribution of each feature set to the model prediction. Using the model
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including the feature set to calculate the prediction value and subtracting the prediction
value calculated by the model without the feature set, the obtained results were identified
as the contribution of the feature set to the model prediction value, which quantifies the
impacts of each feature on the result [34].

2.6. Statistical Index

The determination coefficient (R2) output by algorithm modules in MATLAB was
used to evaluate the modeling performance, which was compared the simulated and
observed results.

3. Results and Discussion
3.1. Decomposition Results of Water Quality Indices through the Wavelet Analysis

The observed daily CODMn and NH3-N concentrations from 2016 to 2020 at Liangjiang-
gou Station, the outlet of the MRB, were decomposed based on the wavelet analysis. The
raw data were decomposed into a long-term trend signal CA10 on the interannual scale
and periodic signals CD1~10 of different frequencies fluctuating around 0 (Figures 4 and 5).
The CA10 signal characterized the long-term patterns of these two water quality indices,
reflecting long-lasting impacts from anthropogenic activities, policy measures, and global
climate change in the MRB. The signals CD1~10 were composed of a series of signals with
different frequencies, characterizing periodic fluctuations of water quality indices and
reflecting seasonal and stochastic impacts within the year in the MRB.

The long-term trends in both the CODMn and NH3-N concentrations from 2016 to
2020 showed an increasing and then a decreasing trend. The CA10 curve of the CODMn
concentration increased and decreased by nearly the same magnitude (Figure 4), while the
long-term NH3-N signal decreased significantly after a slight increase, close to an overall
downward trend (Figure 5). In terms of the periodic signals, the amplitudes of the CODMn
concentration variation gradually increased over time, while the amplitudes of the NH3-N
concentration variation were relatively gentler except for the period from 2018 to 2019.
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The results of the present study were different from Yuan et al. [3], in that the CODMn
and NH3-N concentrations had significant decreasing trends between 2011 and 2020. This
is likely because that the decreasing trends in the CODMn and NH3-N concentrations were
averaged and calculated based on the observed raw data of 26 water quality monitoring
stations within the MRB, where the sites in the upper reaches of the basin presented more
significant trends [3]. The results of the present study only originated from data at the
watershed outlet, where the water quality signals were from various sources and the trends
were eliminated. Likewise, the decreasing trends in the raw CODMn and NH3-N data in
Yuan et al. [3] might have been disturbed by large magnitudes of periodic fluctuations,
which were detected as having considerable interannual variations in our results. This is
why we the raw data should be decomposed into signals with different time frequencies.

3.2. The Quantified Impacts of Driving Factors on Water Quality Indices of the MRB

The variations in the CODMn and NH3-N concentrations monitored at the outlet of
the MRB were affected by a combination of meteorological and anthropogenic factors.

In terms of the anthropogenic factors, the relevant driving factors for the water qual-
ities of the MRB demonstrated distinct patterns as a result of economic developments
and environmental policy implementation. The pollutant loads from industrial sources
decreased from 2016 to 2020. With rapid urbanization and improvements in rural sewage
treatment systems, the wastewater and chemical oxygen demand (COD) discharges from
urban living sources showed increasing trends, while the NH3-N discharge from urban
living sources was continuously reduced (Table 3). Agricultural non-point pollution is
one of the most difficult factors in accurately quantifying the impacts of anthropogenic
factors. This study applied fertilizer use to characterize the agricultural pollutant loads
from non-point sources. The amounts of total fertilizer use, nitrogen fertilizer use, and
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phosphorus fertilizer use in the MRB decreased year by year, while the compound fertilizer
use increased (Table 3).

Table 3. Pollutant load data in the MRB (ten thousand tons per year).

Year
Agricultural Emissions Industrial Emissions Urban Living Emissions

Chemical
Fertilizers

Nitrogenous
Fertilizers

Phosphate
Fertilizers

Compound
Fertilizers Wastewater COD NH3-N Wastewater COD NH3-N

2016 249.0 121.9 48.90 60.20 5.079 × 104 5.000 0.3200 3.017 × 105 62.20 7.700
2017 242.0 117.0 47.10 60.20 4.662 × 104 4.200 0.1700 3.217 × 105 66.40 7.500
2018 235.2 112.1 45.40 60.30 4.346 × 104 4.100 0.1900 3.417 × 105 70.50 7.400
2019 222.8 103.5 41.40 62.10 4.662 × 104 3.900 0.1700 3.617 × 105 74.70 7.200
2020 210.8 90.70 38.00 67.00 4.374 × 104 2.600 0.1300 3.817 × 105 78.80 7.100

In terms of the meteorological factors, the air temperature and precipitation depth
from eight meteorological stations were used to analyze the impacts on the water quality
indices of the MRB (Figure 1). The air temperature demonstrated significant seasonal
patterns (Figure 6), which can impact the migration and transformation of aquatic organ-
isms and pollutants by changing the dissolved oxygen concentrations, pH values, and
biological activities in water as well as the water density and flow state [35]. Precipitation
is an important driving force for water and material cycles. The amount, form, timing,
and spatial distribution of precipitation events can affect material cycles in land–shore–
river-coupled systems through runoff generation and confluence processes in basin-scale
aquatic environments. Precipitation events will thus affect the pollutant concentrations and
distributions in river systems [36]. According to the data from eight meteorological stations
in the MRB, the annual precipitation in the MRB showed an upward trend from 2016 to 2020
(Figure 7). More precipitation can significantly increase the river runoff and improve the
hydrodynamic conditions of rivers, which are conducive to enhancing the self-purification
capacity of rivers. However, rainfall–runoff processes can increase the amount of pollutants
entering rivers, which produces certain risks to the aquatic environment [37].
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Based on the time series data of variables characterizing the anthropogenic factors
and meteorology monitored in different locations of the MRB, machine learning algorithms
and a Shapley analysis were combined to quantify the impact of the driving factors on the
water quality indices.

The performances of four mapping models between the driving factors and water
quality indices, constructed using four machine learning algorithms, were evaluated and
compared, including the ensemble tree, regression tree, neural network, and support vector
machine. The input data for the machine learning training included the pollutant loads
derived from industrial, agricultural, and urban living sources as well as air temperature
and precipitation data. The output data of the model included the mean daily CODMn
and NH3-N concentrations at the Liangjianggou Station from 2016 to 2020 as well as the
decomposed trend and periodic CODMn and NH3-N concentration signals.

The training results of the CODMn models were better than the NH3-N models. Ac-
cording to the determination coefficients (R2) of the training processes, the training results
of the trend signals were the best (R2 ≥ 0.99), followed by the periodic signals and mon-
itored raw data (Table 4). This is mainly because the variation in the trend signals is
smoother and simpler, which make it easier for the models to learn. The periodic data also
had better periodicity than the raw data, making the learning process easier. Likewise, the
periodic data are much more complex than the trend signals, so the training results for the
long-term trend signals were the best. Among the four training methods, the ensemble trees
had the best performance, which was based on the R2 values and the Taylor diagram of the
modeling results (Table 4 and Figure 8). The comparisons between the simulated results
and observed data are presented in Figure S1, Figure S2, Figure S3, Figure S4. Hence, the
results obtained using the ensemble trees were used for the subsequent Shapley analysis.

Table 4. The determination coefficients of different training models.

Model
CODMn NH3-N

Monitored Data Trend Data Periodic Data Monitored Data Trend Data Periodic Data

Ensembles of trees 0.6378 0.9997 0.6685 0.3648 0.9998 0.3659
Regression trees 0.5386 0.9995 0.5157 0.2052 0.9997 0.2204
Neural networks 0.5525 0.9979 0.5554 0.2272 0.9946 0.1226

Support vector machines 0.6436 0.9915 0.6494 0.2454 0.9950 0.3097
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Using the Shapley analysis and the trained machine learning models, the impacts
of the driving factors on the monitored raw data, long-term trend signals, and periodic
signals of the CODMn and NH3-N concentrations were quantified (Figures 9 and 10). For
the monitored raw CODMn concentrations, the impacts of meteorological factors occupied
a proportion of 64.13%, while the results for the anthropogenic factors occupied 35.87%.
Of the meteorological factors, the impacts caused by air temperature and precipitation
were 42.14% and 21.99%, respectively. On the other hand, the anthropogenic factors had
much less impact than the meteorological factors, with agricultural, urban living, and
industrial factors accounting for 18.32%, 7.98%, and 9.57%, respectively. As for the long-
term trend signal of the CODMn concentration, the anthropogenic factors accounted for
98.38%, among which the industrial sources (48.93%) and agricultural sources (32.00%)
were more important than the urban living sources (17.45%). For the periodic signals of
the CODMn concentrations, the result was similar to the raw monitored data, with a slight
increase in the impacts of meteorological factors (68.89%).

For the monitored raw NH3-N concentrations at the outlet of the MRB, the anthro-
pogenic factors were the main factors controlling the variations in NH3-N concentrations,
with a contribution of 58.88%, exceeding the meteorological factors of 41.12%. Among
the anthropogenic factors, the impacts on the monitored raw NH3-N data from industrial
sources (23.74%) and urban living sources (22.65%) were more significant than the impacts
of agricultural sources (12.49%). For the long-term trend signals of the NH3-N concentra-
tion, the impacts of anthropogenic factors accounted for 98.18%, indicating the leading
role of human activities in the long-term trend variations in NH3-N concentrations at the
outlet of the MRB. However, different from the long-term trend signals of the CODMn
concentrations, agricultural sources (43.09%) and urban living sources (35.78%) had signifi-
cantly higher impacts than industrial sources (19.32%). Likewise, variations in the NH3-N
concentration periodic signals were mainly controlled by meteorological factors (63.94%),
which were similar to the results of the CODMn concentration periodic signals.
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Overall, in the MRB, the long-term trend variations in the water quality data were
primarily controlled by anthropogenic factors, while the periodic fluctuations were dom-
inated by meteorological factors. The results indicated the positive effect of restricted
policies for pollutants emissions and ecological protection. In addition, similar results
for monitored raw data and periodic signals also reflected the key role of meteorological
factors like precipitation and temperature changes for short-term patterns in the water
quality of the Minjiang River. The results of the monitored raw data in this study were
in agreement with the findings of Yuan et al. [3], who demonstrated that meteorological
factors accounted for approximately 60% of the impacts on the CODMn concentrations of
the MRB, while approximately 40% of the impacts on the NH3-N concentrations can be
attributed to meteorological factors. Notably, our study further delineated the impacts of
different driving factors in a more detailed classification and realized a dynamic assessment
of these impacts, as described in the following section.

3.3. Seasonal Patterns of Quantified Impacts of Driving Factors on Water Quality

The driving factors of the water quality at the outlet of the MRB had significant
seasonal patterns within the year, especially meteorological factors. Therefore, the impacts
of different driving factors on the water quality at the outlet of the MRB also varied
dynamically. The monthly patterns of impacts on the CODMn and NH3-N concentrations
from 2016 to 2020 in the MRB were calculated (Figure 11) based on variations in driving
factors like precipitation, air temperature, and pollution from different sources.
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Significant seasonal patterns in the impacts of all the driving factors on the CODMn
and NH3-N concentrations were identified. Meteorological factors had greater impacts on
the water quality indices in periods with high air temperature and flood events (July to
September), as well as periods with low air temperatures (December to February) com-
pared to in other seasons. The increased impacts in periods with higher air temperatures
could be explained by enhanced biogeochemical processes in river water, for instance,
by affecting microbial metabolic rates, which can subsequently influence the dissolved
oxygen concentrations, self-purification capacity, and water quality of water bodies. [38].
Under low-temperature conditions in winter, the thermal movement of water molecules
and the kinetic energy of Brownian motion of colloidal particles are slowed down, which
may reduce the degradation rate of pollutants in river water [39], resulting in a tougher
aquatic environment. Furthermore, seasonal patterns were also derived from the impacts
of the precipitation factor, which displayed significantly high values during flood sea-
sons. Accelerated migration processes of water and pollutants into rivers triggered by
more storms during this period might lead to stronger impacts on the water quality of the
Minjiang River.

4. Conclusions

In this study, the monitored raw data of the CODMn and NH3-N concentrations at
the outlet of the MRB from 2016 to 2020 were decomposed into two distinct kinds of
signals through a wavelet analysis: the long-term trend signals and the periodic signals.
Machine learning approaches and a Shapley analysis were further used to quantify the
impacts of different driving factors on water quality signals at the outlet of the MRB, and
the seasonality of the quantified impacts were analyzed. The coupled framework for the
quantification of the impacts of driving factors on decomposed water quality signals is the
highlight of our study. The main research conclusions are as follows:

• The long-term trend signals of both the CODMn and NH3-N concentrations showed an
increasing trend followed by a decreasing trend, in which the CODMn concentration
increased and decreased by roughly the same magnitude, while the NH3-N concentra-
tion decreased more. This indicated that within the study period, the deterioration
trend of water quality in the Minjiang River had been effectively controlled and sig-
nificantly improved. The periodic signals of the CODMn concentrations exhibited a
greater amplitude of fluctuation compared to the NH3-N concentrations, implying
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that the meteorological periodic drivers may have more pronounced influences on the
CODMn concentrations.

• Four machine learning algorithms were used to construct relationships between the
driving factors and water quality indices of the MRB. The ensembles of trees approach
demonstrated the best performances for both CODMn and NH3-N concentrations
(R2 = 0.3648–0.9998).

• For the monitored raw data, the meteorological factors were the dominant factors
affecting the variations in CODMn concentrations at the outlet of the MRB (accounting
for 64.13%), while the anthropogenic factors were the major factors affecting the NH3-
N concentrations (accounting for 58.88%). In terms of the long-term trend signals,
anthropogenic factors were the uncontroversial controlling factors, with quantified
impacts of 98.38% on the CODMn concentrations and 98.18% on the NH3-N concen-
trations. For periodic signals, the meteorological factors had higher impact values,
with a 68.89% impact on the CODMn concentrations and a 63.94% impact on the
NH3-N concentrations.

• The quantified impacts of the driving factors on the water quality of the Minjiang
River had seasonal patterns. The meteorological factors demonstrated higher impacts
during the flood season with high temperatures (July to September) and the dry season
with low temperatures (December to February) compared to other seasons, indicating
that the high temperature, low temperature, and precipitation events can significantly
alter the biogeochemical processes in the MRB, further affecting the water quality.

Likewise, compared with pollution from industrial sources and urban living sources,
agricultural emissions have more dramatic fluctuations and stronger randomness, making
pollutants more difficult to accurately quantify. Therefore, more efforts should be consid-
ered in our future work regarding the accurate data acquisition and quantification of the
pollutants loads from agricultural sources.
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https://www.mdpi.com/article/10.3390/w15183299/s1, Figure S1: Comparisons of simulated re-
sults versus different signals of observed data for CODMn concentrations using different machine
learning algorithms; Figure S2: Comparisons of simulated results versus different signals of observed
data for NH3-N concentrations using different machine learning algorithms; Figure S3: Temporal
variations of simulated results versus different signals of observed data for CODMn concentrations
using different machine learning algorithms. Red lines represent simulated results and blue circles
represent observed data; Figure S4: Temporal variations of simulated results versus different signals
of observed data for NH3-N concentrations using different machine learning algorithms. Red lines
represent simulated results and blue circles represent observed data
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