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Abstract: Karst water resources represent a primary source of freshwater supply, accounting for nearly
25% of the global population water needs. Karst aquifers have complex recharge characteristics,
storage patterns, and flow dynamics. They also face a looming stress of depletion and quality
degradation due to natural and anthropogenic pressures. This prompted hydrogeologists to apply
innovative numerical approaches to better understand the functioning of karst watersheds and
support karst water resources management. The Soil and Water Assessment Tool (SWAT) is a semi-
distributed hydrological model that has been used to simulate flow and water pollutant transport,
among other applications, in basins including karst watersheds. Its source code has also been
modified by adding distinctive karst features and subsurface hydrology models to more accurately
represent the karst aquifer discharge components. This review summarizes and discusses the findings
of 75 SWAT-based studies in watersheds that are at least partially characterized by karst geology,
with a primary focus on the hydrological assessment in modified SWAT models. Different karst
processes were successfully implemented in SWAT, including the recharge in the epikarst, flows of
the conduit and matrix systems, interbasin groundwater flow, and allogenic recharge from sinkholes
and sinking streams. Nonetheless, additional improvements to the existing SWAT codes are still
needed to better reproduce the heterogeneity and non-linearity of karst flow and storage mechanisms
in future research.

Keywords: karst hydrology; SWAT model; modified SWAT model; hydrological modeling

1. Introduction

Karst aquifers are an abundant source of water in many regions across the globe,
providing freshwater supply to 20–25% of the world population [1] and upwards of 50% of
the total drinking water supply in some countries [2]. They cover nearly 15.2% of Earth’s
continental surface [3] and form by chemical dissolution of soluble carbonate rocks (i.e.,
limestone, dolomite, marble or evaporates) exerted by water enriched with carbon dioxide
(CO2) from the atmosphere or soil zone [4]. Depending on the degree of karstification,
distinctive karst features can develop, including sinkholes and dolines, losing streams,
springs, and vast networks of subsurface and hydrologically connected cracks, fissures,
conduits, and caves [5].

1.1. Characteristics of Karst Systems

A karst system is generally composed of four main water-bearing mediums with
distinct geomorphology, hydrodynamic properties, storage, and flow patterns: (1) the soil
and non-karstic zone, (2) the epikarst, (3) the transmission zone—the latter three forming
the unsaturated zone, and (4) the saturated zone [6]. These contrasting layers, which
are interactively connected by water flow and solute transport, form the karstic critical
zone [7,8].

Figure 1 shows a schematic model of a typical karst aquifer, including the surface
hydrological processes and flow mechanisms of the underground karst subsystems. The
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epikarst represents a weathered horizon of a few meters above the vadose zone, with high
permeability and porosity driven by the large supply of CO2 that increases dissolution of
carbonate rocks near the land surface. The epikarst, together with the soil cover, controls
water infiltration, storage, temporal delay of recharge, and mixing processes. On the other
hand, seasonal changes in surface temperature and vegetation cover substantially alter
evapotranspiration and recharge, thus intensifying the variability of spring discharge and
affecting the quality of the underground water resources [9–11]. Two recharge mechanisms
are generally observed in a karst system: (1) diffuse recharge by slow percolation of in-
filtrated water from the epikarst to the saturated zone through low permeability small
fissures in the vadose zone and (2) concentrated recharge via highly conductive karst
features (enlarged fractures, sinkholes), allowing a fast transit of flow through the vadose
zone to the saturated zone [12]. The transmission zone connects and transfers recharge
water from the epikarst to the saturated zone where highly permeable karst conduits
drain the fissured rock matrix, generating a flow to the groundwater discharge. Karst
systems thus exhibit a duality of the storage and subsurface flow fields with (1) prolonged
groundwater storage and low flow velocity/laminar flow in the matrix, and (2) low ground-
water storage with rapid flow velocity/non-linear (turbulent) flow in the conduits. Dual
discharge patterns to the aquifer outlet are also observed with (1) slow and continuous
flow from the matrix during dry periods and (2) fast flow from the conduits during heavy
rainfall events [6,13–15]. There is also limited karst hydrogeological research on the flow
exchange mechanism between the conduit and the matrix, which primarily depends on
the conduit properties and hydraulic head differences between the two mediums [16].
Internal runoff and infiltration provide autogenic recharge, whereas external runoff and
sinking streams represent allogenic recharge from the neighboring areas [13]. Moreover,
many karst watersheds are non-conservative (losing or gaining watersheds) due to inter-
basin groundwater flow (IGF) through their topographic divides. IGF may represent a
substantial component of the streamflow where rivers traverse karst areas, thus affecting
the catchment annual water balance. IGF is also not explicitly measurable, requiring the
application of hydrogeochemical approaches based on major dissolved elements, isotopes,
electrical conductivity, and water temperature monitoring or hydrogeological studies of
groundwater flow paths [17].

Due to their intrinsic properties and complex hydrodynamic behavior, karst aquifers
are vulnerable to contamination, overexploitation, and climate change [18,19]. In well-
developed karst systems, natural processes such as absorption, degradation, and filtration
are inefficient due to low storage capacity, fast water movement, short residence time, and
limited interaction with the material of the aquifer. Contaminants can rapidly reach the
groundwater table by concentrated recharge and propagate easily through karst conduits
over large distances [20,21]. Moreover, climate change could result in more frequent and
extended periods of high/transit or low groundwater levels [22]. Therefore, anticipating
the impacts of climate change and anthropogenic hazards, and understanding the func-
tioning of the karst aquifer water bearing components are compulsory tasks to safeguard
these dwindling water supplies and set effective management schemes for karst water
resources [23,24].
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Figure 1. Conceptual schematic of a karst aquifer illustrating the heterogeneous hydrological be-
havior of a karst system (epikarst, matrix, and conduits), with dual infiltration and recharge pro-
cesses, dual subsurface flow fields, and dual discharge characteristics. Karst aquifers are a primary 
source of freshwater supply for residential, industrial, and agricultural uses and are highly vulner-
able to climate change and anthropogenic hazards . 

1.2. Numerical Modeling Approaches in Karst Hydrology 
Hydrological models have become robust tools to simulate karst aquifer processes 

for a wide range of applications, which include integrated hydrodynamic analysis, mod-
eling of karst hydrology, and forecasting of karst water resources availability under cli-
mate change [25]. These models can be classified into the following categories: the black 
box models, lumped models, and semi-distributed to distributed models. 

Black box models use mathematical transfer functions or neural networks to relate 
the input rainfall signal to the output spring discharge without spatial information or an 
explicit representation of the watershed physical processes [26]. Thus, they may not be 
adequate to estimate future karst water resources over long time periods [23]. 

Lumped models conceptualize the physical processes at the scale of the entire hydro-
logical system. They are generally used by modelers facing data scarcity problems [27]. 
Most lumped groundwater models adopt a series of linear or non-linear reservoirs to sim-
ulate the storage and flow components of the karst aquifer mediums, with parameters that 
represent the spatially averaged characteristics of the system [23]. 

In comparison to lumped models, the semi-distributed and distributed models ex-
plicitly represent the spatial variability of the watershed land and subsurface characteris-
tics, boundary conditions, inputs, and hydrological processes [27]. Semi-distributed mod-
els could divide the catchment into hydrological response units (HRUs) and simulate the 
various hydrological processes in each HRU, use conceptual reservoirs to model areal re-
charge processes that lack spatial resolution, or represent the internal structure of a karst 
aquifer using pipe networks as conduit domains. On the other hand, fully-distributed 
models represent processes by discretizing the system in two- or three-dimensional grids 
and assigning parameters to each grid cell. In terms of karst hydrological modeling, the 
distributed karst models are subdivided into three categories: (1) the fully equivalent po-
rous media approach, which uses average hydraulic properties over the aquifer area 

Figure 1. Conceptual schematic of a karst aquifer illustrating the heterogeneous hydrological behavior
of a karst system (epikarst, matrix, and conduits), with dual infiltration and recharge processes, dual
subsurface flow fields, and dual discharge characteristics. Karst aquifers are a primary source of
freshwater supply for residential, industrial, and agricultural uses and are highly vulnerable to
climate change and anthropogenic hazards.

1.2. Numerical Modeling Approaches in Karst Hydrology

Hydrological models have become robust tools to simulate karst aquifer processes for
a wide range of applications, which include integrated hydrodynamic analysis, modeling
of karst hydrology, and forecasting of karst water resources availability under climate
change [25]. These models can be classified into the following categories: the black box
models, lumped models, and semi-distributed to distributed models.

Black box models use mathematical transfer functions or neural networks to relate
the input rainfall signal to the output spring discharge without spatial information or an
explicit representation of the watershed physical processes [26]. Thus, they may not be
adequate to estimate future karst water resources over long time periods [23].

Lumped models conceptualize the physical processes at the scale of the entire hydro-
logical system. They are generally used by modelers facing data scarcity problems [27].
Most lumped groundwater models adopt a series of linear or non-linear reservoirs to
simulate the storage and flow components of the karst aquifer mediums, with parameters
that represent the spatially averaged characteristics of the system [23].

In comparison to lumped models, the semi-distributed and distributed models explic-
itly represent the spatial variability of the watershed land and subsurface characteristics,
boundary conditions, inputs, and hydrological processes [27]. Semi-distributed models
could divide the catchment into hydrological response units (HRUs) and simulate the
various hydrological processes in each HRU, use conceptual reservoirs to model areal
recharge processes that lack spatial resolution, or represent the internal structure of a karst
aquifer using pipe networks as conduit domains. On the other hand, fully-distributed
models represent processes by discretizing the system in two- or three-dimensional grids
and assigning parameters to each grid cell. In terms of karst hydrological modeling, the
distributed karst models are subdivided into three categories: (1) the fully equivalent
porous media approach, which uses average hydraulic properties over the aquifer area
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(concentrated fast flows and diffuse slow flows are not explicitly simulated), (2) the double
continuum approach, which represents the matrix and karst conduits as two interacting
continua with their hydraulic attributes, and (3) the combined discrete-continuum approach
in which the karst conduits are embedded as discrete elements inside the matrix [26,27].
The use of distributed parameters models remains a challenge due to the complexity of
karst aquifer mechanisms and the need for extensive hydrological and hydrogeological in-
vestigations to define the characteristics of the karst system (i.e., aquifer geometry, conduits
network geometry and location, hydraulic properties and interactions between the matrix
and conduits) [23,26].

1.3. Rationale of This Review of Karst Hydrological Modeling with SWAT

Improving the management and sustainability of karst groundwater resources remains
a challenge. This is due to the limited understanding of the critical zone processes in
karst watersheds across space and time, as well as the lack of research that characterizes
the influence of vegetation cover, climate change, and anthropogenic activities on these
processes [8,9]. Jeannin et al. [28] recently tested 13 karst numerical models in a karst
watershed. The models consisted of lumped neural networks, reservoir models, and
semi- to fully distributed models, and were compared for their performance efficiency in
simulating groundwater recharge and karst spring hydrographs. The impact of the spatial
distribution of recharge (land use, vegetation, precipitation) on the discharge was found
to be low, as the semi- and fully distributed models had a comparable performance to the
lumped reservoir models. The modelers stated, however, that the relative significance of
the spatial distribution of the recharge function depends on the watershed characteristics.
Other studies showed the substantial impact of vegetation and soil parameters (e.g., leaf
area index, root depth, soil hydraulic conductivity and moisture content at saturation)
on the evapotranspiration/infiltration and recharge functions in karst watersheds [29].
Sarrazin et al. [30] have found that karst recharge is not only sensitive to climatic factors
but also to changes in land cover, using the large scale semi-distributed karst recharge
model V2Karst V1.1. Bittner et al. [31] successfully simulated spring discharge in a karst
watershed using the semi-distributed model Land use change modeling in KARSt systems
(LuKARS). They validated the impact of land-use change on the spring water supply.
Different techniques have also been developed to estimate evapotranspiration from remote
sensing data and estimate groundwater recharge based on the reconstruction of distributed
models of precipitation and evapotranspiration. These approaches were classified into four
categories, namely: (1) the empirical direct methods, (2) the residual methods of the energy
budget, (3) the deterministic methods, and (4) the vegetation index methods [32]. Ollivier
et al. [33] established that incorporating the remote sensing-driven evapotranspiration
model Simple Crop coefficient for Evapotranspiration (SimpKcET) into the grid-based
distributed Karst Recharge and discharge Model (KaRaMel) improved the karst spring
discharge simulations in low, intermediate, and high flow seasons, as well as the correlation
between recharge events and recharge volumes. Yang et al. [34] also concluded that
accounting for the heterogeneous spatial distribution of land cover and karst geological
properties in a conceptually-based distributed karst hydrological model, referred to as the
distributed karst Xinanjiang (DK-XAJ) model, improved the runoff simulation and the
separation of groundwater recharge into rapid conduit flow and slow matrix flow.

As the need to predict future karst water resources under climate change projections
and scenarios of land-use change increased, the use of the Soil and Water Assessment
Tool (SWAT) in karst hydrological studies has gradually gained popularity. SWAT is a
time-continuous, semi-distributed, process-based model that is widely used to simulate
the spatial and temporal evolution of a catchment hydrological cycle, soil erosion and
water quality, as well as the effects of land-use change and climate variability on catchment
processes by dividing the watershed into subbasins and further into HRUs based on the
land use, soil characteristics, and slope [35]. Numerous studies have directly applied the
standard SWAT in karst basins, while others have modified its source code to improve the
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representation of karst hydrology by considering different karst flow regimes and features
(e.g., sinkholes, springs, and IGF) [36]. Therefore, there exists a need for a comprehensive
review on the applications of SWAT in karst watersheds in order to: (a) identify the areas
of research in the water resource field in which SWAT was implemented in karstified water-
sheds, (b) investigate the different approaches in which karst processes were incorporated
into SWAT, and (c) evaluate the modified SWAT models performance and adequacy in
representing the heterogeneous and non-linear karst flow mechanisms.

1.4. Overview of Previous SWAT Applications and Modifications for Karst Modeling

The earliest SWAT studies in karst watersheds (a total of 4 articles) have been reported
by Gassman et al. [37] as part of a full range review of research findings and methods for
different application categories with SWAT (e.g., discharge, hydrological analyses, sensitiv-
ity analyses and calibration techniques, climate change impacts on hydrology, pollutant
transport and fate). Their review was based on more than 250 SWAT articles identified
in the literature up to the year 2007. Since then, the use of SWAT has seen a tremendous
growth globally for a wide range of scales and complex environmental studies, with more
than 5000 articles currently published in peer-reviewed journals [38]. The number of SWAT
review studies has also expanded to cover a variety of applications, such as: SWAT devel-
opments in landscape representation, stream routing, and soil phosphorus dynamics [39],
SWAT improvements in addressing environmental issues [40], quantification of ecosystem
services [41], runoff simulation, hydrological impacts under changing environment, and
non-point source pollution [42], SWAT limitations in simulating subdaily processes [43],
methods used to develop a SWAT model at field-scale [44], SWAT simulations of hydro-
climatic extremes [45], and SWAT applications in Mediterranean catchments [46], to name
a few.

Despite these advancements, the numerical simulation of karst watersheds and their
processes in SWAT is still underway. In fact, a recent research study by Eini et al. [36]
cited only 36 articles describing SWAT-based applications in partially karstified and karst
dominated watersheds, with just 13 studies featuring a modified SWAT code. To note, Eini
et al. [36] did not provide a detailed overview of the karst modeling approaches adopted
in articles that they cited but rather an introductory synopsis prior to presenting two
modified SWAT codes that they developed and applied in a karst watershed. Therefore,
our paper is the first—to our best knowledge—to present an in-depth review of the studies
conducted with SWAT in karst watersheds, building on the selected list of publications by
Eini et al. [36] and extending to the full range of studies between the years 2000–2022. The
objectives of our present review are to: (a) describe the SWAT subroutines that correspond
to the different processes driving the flow of water in the critical zone (i.e., surface runoff,
evapotranspiration, infiltration, interflow, recharge, baseflow), (b) summarize and discuss
the research methods and findings for the standard and modified SWAT models in karst
influenced watersheds, (c) identify potential constraints of the existing SWAT modeling
approaches in representing the heterogeneous and non-linear flow mechanisms in karst
aquifers, and (d) propose future research directions in order to enhance the applicability of
SWAT in karst watersheds and the reliability assessment of karst water resources for future
management and planning.

This review will present the different applications of SWAT (i.e., water quantity and
quality, land-use and climate change, erosion processes, ecohydrological assessment, and
water resources management) in karst influenced and karst dominated watersheds. How-
ever, the primary focus of the discussion will be the hydrological assessment in the SWAT
applications that featured SWAT coupling with other hydrological models or modifications
to the SWAT recharge and groundwater flow equations. These studies aimed to improve
the representation of karst features, baseflow, and peak flows in SWAT prior to simulating
other watershed processes, such as sediment or pollutant transport.
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2. Equations in SWAT for Hydrological Simulation

SWAT is a continuous-time semi-distributed agro-eco-hydrological model developed
by the United States Department of Agriculture (USDA) [47]. The model has been suc-
cessfully applied to monitor and predict the impacts of environmental and anthropogenic
changes on the physical processes in watersheds at small, regional, and subcontinental
scales (e.g., [48–57]). SWAT uses meteorological data, i.e., precipitation, air temperature, rel-
ative humidity, wind speed, and solar radiation, in addition to topography, soil properties,
and land-use data, to simulate the watershed water balance components at different time
steps (subdaily to annual). It can also model water quality and soil erosion [43,58]. The
watershed is first disaggregated into subbasins connected through a stream channel and fur-
ther into HRUs that represent areas of homogenous land use, soil, and slope properties [59].
The definition of HRUs is performed using a geographic information system (GIS), such
as the ArcSWAT interface of ArcGIS or the QSWAT plugin of QGIS, coupled to the SWAT
model to integrate the topographic, soil, and land-use inputs [60]. The simulated catchment
processes in SWAT include surface runoff, infiltration, evapotranspiration, lateral flow, tile
drainage, percolation, water stored in the soil profile, return flow from unconfined aquifers,
consumptive water use through pumping (if any), recharge from surface water bodies,
and in-stream processes, such as channel routing (main and tributary) and transformation
of nutrients and pesticides [61]. These components are represented in each HRU by five
storage volumes, namely the canopy interception, snow pack, soil profile, shallow aquifer,
and deep aquifer [62].

Watershed hydrology in SWAT is represented by a land phase and a routing phase,
whereby runoff, sediments, and agricultural chemical yields from all subbasin HRUs are
aggregated to the main reach of the subbasin and routed rough the channel network to the
outlet(s) of the main catchment [63]. The fundamental daily water balance equation used
in SWAT to represent the land phase of the hydrological cycle is given as follows [64]:

SWt − SW0 = ∑t
i=1

(
Pday − Qsur f − ETa − Wseep − Qgw

)
(1)

where SW0 and SWt are the initial and final soil water content of the entire soil profile
for the simulation period, respectively, Pday, Qsur f , ETa, Wseep, and Qgw are precipitation,
surface runoff, actual evapotranspiration, percolation and bypass flow exiting the soil
bottom to the vadose zone, and return flow, respectively (all variables are expressed in mm
H2O.day−1).

SWAT offers different options to simulate scheduled irrigation and auto-irrigation of
crops. The auto-irrigation approach is generally used when irrigation scheduling data are
lacking. Auto-irrigation is triggered by two stress identifiers: (1) plant water stress, whereby
irrigation is applied to meet the plant water demand if the ratio of actual transpiration
to potential transpiration falls below a user-specified threshold, and (2) soil water deficit,
whereby irrigation is applied if the water content in the soil profile drops below field capac-
ity by more than a user-defined soil water depletion threshold [65]. Sources of irrigation
include river reaches, reservoirs, shallow and deep aquifers, or a source from outside the
watershed, and irrigation demand is met based on the source water availability [66]. When
irrigation is applied, the SWAT water balance is adjusted as follows:

SWt − SW0 = ∑t
i=1(P + Irr)− ∑t

i=1

(
Qsur f − ETa − Wseep − Qgw

)
(2)

where SW0 and SWt are the initial and the final soil water content of the entire soil profile for
the simulation period, P, Irr, Qsur f , ETa, Wseep, and Qgw represent precipitation, irrigation,
surface runoff, actual evapotranspiration, percolation and bypass flow exiting the soil
bottom to the vadose zone, and return flow, respectively (all variables are expressed in mm
H2O.day−1).

Water routed through channels to the main watershed outlets is generated from direct
surface runoff, lateral soil flow, baseflow from groundwater storage, and tile flow [67].
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These flow components contribute to the catchment water yield, which is considered a
critical parameter in the sustainable management of water resources [68]. Hence, water
yield is defined as the net water volume leaving the HRU and entering a reach at the
subbasin level into the main channel, as follows:

WYLD = Qsur f + Qlat + Qgw + Qtile − Tloss (3)

where WYLD is the water yield, Qsur f , Qlat, and Qgw are the surface runoff, soil lateral
flow, and return flow from the shallow aquifer to the main channel, respectively, Qtile is
the tile flow, and Tloss represents the losses from the tributary in the HRU via transmission
through the riverbed (all variables are expressed in mm H2O.day−1).

The governing equations of the watershed hydrological components are presented
thoroughly in the theoretical documentation of SWAT [69]. Hence, the primary focus in
Sections 2.1 and 2.2 below was devoted to flow processes in the critical zone that directly
impact streamflow simulation in standard SWAT. These processes were grouped under: (1)
surface water hydrology (Section 2.1) and (2) subsurface water hydrology (Section 2.2). A
set of equations that are fundamental in hydrological modeling with SWAT were provided
in each subsection, with a corresponding list of SWAT variables in Appendix A (Table A1).
These equations serve to help the reader understand the methods used in SWAT to simulate
surface and groundwater flows, prior to discussing the modifications made to the SWAT
source code for the different applications in the realm of karst hydrology (Section 4 of
the review).

2.1. Surface Water Hydrology
2.1.1. Evapotranspiration

SWAT provides three methods to simulate daily potential evapotranspiration (PET)
at the HRU scale, namely the Penman-Monteith [70], the Priestley-Taylor [71], and the
Hargreaves methods [72]. Between the three approaches, the Penman-Monteith equation is
considered the most suited to estimate PET, as it explicitly separates the effects of climate
and land cover properties on each of the evapotranspiration components [30,33]. This
method is represented with Equation (4), as follows [69]:

λE =
∆(Hnet − G) + ρair × cp

(
e0

z − ez
)
/ra

∆ + γ(1 + rc/ra)
(4)

where λE is the latent heat flux density (MJ.m−2.day−1), λ is the latent heat of vaporization
(MJ.kg−1), E is the depth rate evaporation (mm.day−1), ∆ is the slope of the saturation vapor
pressure–temperature curve (de/dT) (kPa.◦C−1), Hnet is the net radiation (MJ.m−2.day−1),
G is the heat flux density to the ground (MJ.m−2.day−1), ρair is the air density (kg.m−3), cp
is the specific heat at constant pressure (MJ.kg−1.C−1), e0

z is the saturation vapor pressure
of air at height z (kPa), ez is the water vapor pressure of air at height z (kPa), γ is the
psychometric constant (kPa.◦C−1), rc is the plant canopy resistance (s.m−1), and ra is the
diffusion resistance of the air layer (aerodynamic resistance) (s.m−1).

PET in SWAT depends on plant growth, which considers canopy resistance expressed
as a function of the minimum effective stomatal resistance for a single leaf and the leaf area
index (LAI). The LAI, defined as one half the total leaf area per unit ground area, reflects
the structural characteristics of the plant canopy and defines the size of the interface for
energy and mass exchanges between the vegetation surface and the atmosphere [73]. Evap-
otranspiration is also related to the canopy height required to determine the aerodynamic
resistance parameter [69].

SWAT uses the LAI in conjunction with a simplified version of the Environmental
Policy Integrated Climate (EPIC) plant growth model to simulate the phenological develop-
ment of plants and estimate evapotranspiration [74]. In addition to the LAI development,
the plant growth module of SWAT includes the simulation of the light interception and the
conversion of intercepted light into biomass, assuming a plant species-specific radiation-
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use efficiency [75]. Plant development is primarily dependent on the base temperature
for growth derived from minimum, maximum, and optimum temperature requirements.
The plants heat unit requirements are quantified and related to the time of planting and
maturity [76]. The LAI is incremented daily based on the accumulated potential heat units.
It first increases to a crop-specific maximum value, remains constant until the senescence
stage, then decreases linearly to zero at harvest. Similarly, the canopy height increases until
a crop-specific maximum is achieved and stays at this height through the remainder of
the growing season [77]. The potential crop leaf growth and biomass are first computed
under optimal conditions and further adjusted for actual growth under stress factors such
as water, temperature, and nutrients [78]. SWAT also uses dormancy in function of day
length and latitude to repeat the annual growth cycle for trees and perennials [73].

After estimating potential evapotranspiration, SWAT calculates actual evapotranspi-
ration (ETa), which includes four components: the canopy evaporation, the plant transpi-
ration, the sublimation and soil surface evaporation, and the groundwater evapotranspi-
ration [79]. The model first evaporates any precipitation intercepted by the plant canopy.
Then, actual plant transpiration is estimated as a function of the potential transpiration
adjusted for the wet canopy storage, root depth, soil water content, and the leaf area index,
which depends on the plant developmental stage. Soil evaporation is modeled as a function
of potential evapotranspiration adjusted for canopy evaporation and the rate of shading.
If snow is present in the HRUs, sublimation takes place until evaporation from soil could
occur after snow melting. Subsequently, SWAT proceeds to adjust the maximum possible
soil evaporation for plant water use and partitions the evaporative demand between the
different soil layers, in order to estimate the actual evaporation at each layer based on the
soil water content [74,79,80].

2.1.2. Surface Runoff and Infiltration

In SWAT, soil surface runoff and infiltration are estimated from precipitation by one of
the following two approaches: (1) the modified Soil Conservation Service Curve Number
(SCS-CN) procedure and (2) the Green and Ampt Mein Larson (GAML) excess rainfall
method. The SCS-CN approach simulates cumulative surface runoff based on cumulative
precipitation and soil retention properties for daily time step, whereas the GAML approach
simulates surface runoff for subdaily time step applications using subdaily precipitation
input data [45,81,82].

Surface runoff is estimated with the SCN-CN procedure as follows [66]:

Qsur f =
(P − Ia)

2

(P − Ia) + S
when P > Ia; else Qsur f = 0 (5)

where Qsur f is the accumulated runoff, P is the total precipitation, Ia is the initial water
abstraction prior to runoff due to surface storage interception and infiltration (generally
approximated as 0.2S, but can vary with the soil type), and S is the soil moisture retention
parameter (all variables are expressed in mm H2O.day−1).

The soil retention parameter (S) varies temporally with the changes in moisture
content, and spatially in function of the soil type, land use, and management practices. It
can also be assumed to vary with the accumulated plant evapotranspiration. The retention
parameter is expressed as a function of the daily curve number (CN) of the Antecedent
Moisture Condition-II (AMC-II) for a given land use/cover and hydrological soil group as
follows [66]:

S =
25,400

CN
− 254 (6)

The SCS approach defines three antecedent moisture conditions, namely AMC-I for
dry/wilting point condition, AMC-II for average moisture, and AMC-III wet/field capacity,
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represented by curve numbers CN1, CN2 and CN3, respectively. CN1 and CN3 are
computed as a function of CN2 as follows:

CN1 = CN2 − 20(100 − CN2)(
100 − CN2 + e2.533−0.0636(100−CN2)

) (7)

CN3 = CN2 × e0.000673(100−CN2) (8)

Infiltration rate is calculated using the GAML equation as follows [83]:

I(t) = Ke

(
1 +

ψ × ∆θ

Iacc(t)

)
(9)

where I(t) is the infiltration rate (mm H2O) at the simulation time step t (subdaily), Ke
is the effective hydraulic conductivity, which considers soil water content and land-use
impact as a function of CN (mm.h−1), ψ is the wetting front matric potential (mm), ∆θ is the
change in soil moisture content (mm.mm−1), and Iacc(t) is the cumulative infiltration after
ponding (mm H2O.hour−1). The cumulative depth of water infiltration Iacc(t) is computed
as follows:

Iacc(t) = Iacc(t − 1) + Ke × ∆t − ψ × ∆θ × ln
[

Iacc(t) + ψ × ∆θ

Iacc(t − 1) + ψ × ∆θ

]
(10)

where t − 1 is the previous simulation time step. Equation (10) is solved using a successive
substitution technique. Subsequently, the infiltration rate is calculated using Equation (9) for
each time step. Surface runoff is generated when the rainfall intensity exceeds infiltration
rate. Otherwise, the total rainfall volume during the time step infiltrates into the soil.

2.1.3. Channel Flow and Flow Routing

For stream channel routing, Manning’s equation is used to calculate the rate and
velocity of flow in the reach of each subbasin when the streamflow is less than the bankfull
discharge rate, computed as a function of the bankfull channel width and depth. SWAT
incorporates floodplain inundation geometry into the channel routing simulation if the
streamflow is greater than bankfull flow [84].

The peak runoff rate, reached when all the subbasins are contributing to flow at the
outlet, is estimated using the modified rational method, as follows [85]:

qpeak =
αtc × Qsur f × A

3.6 × tconc
(11)

where qpeak is the peak runoff rate (m3.s−1), αtc is the fraction of daily rainfall that occurs
during the time of concentration, Qsur f is the surface runoff (mm H2O.day−1), A is the sub-
basin area (km2), and tconc is the time of concentration for the subbasin (hours), calculated
as the sum of the overland flow time and channel flow time. Water is routed through the
channel network using either the Muskingum routing method (based on the continuity
and empirical linear storage equations) [86] or the variable storage routing method (based
on the continuity equation) [87,88].

Water transmission losses can occur through the side and bottom of the river channels
and enter the bank storage or the deep aquifer. Transmission losses are estimated as
follows [89]:

Tloss = Kch × Lch × Pch × TT (12)

where Tloss represents the channel transmission losses (m3 H2O), Kch is the effective hy-
draulic conductivity of the channel alluvium (mm.h−1), Lch is the channel length (km), Pch
is the wetted perimeter in the channel (m), and TT is the flow travel time (hours).
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2.2. Subsurface Water Hydrology
2.2.1. Soil Water Percolation and Lateral Flow

The water percolation component in SWAT redistributes infiltrated water in the soil
profile using a storage routing method combined with an optional crack-flow routine. Per-
colation is simulated when the water content of a soil layer exceeds its field capacity defined
as the sum of the available soil water content and permanent wilting point. Percolated
water moves to the subsequent layer unless it is saturated, frozen, or impervious [90–92].
Water percolation is estimated as follows:

Wperc,ly = SWly,excess

(
1 − e

−∆t
TTperc,ly

)
(13)

where Wperc,ly is the water percolating from soil layer (ly) to the underlying soil layer (mm
H2O.day−1), SWly,excess is the drainable volume of water in the soil layer (ly) on a given day
(computed as the difference between the water content of the soil layer and field capacity,
in mm H2O.day−1), ∆t is the length of the time step (hours), and TTperc,ly is the travel time
through the soil layer (hours), calculated as follows:

TTperc,ly =
SATly − FCly

Ksat,ly
(14)

where Ksat,ly (mm.h−1), SATly (mm H2O), and FCly (mm H2O) represent the saturated
hydraulic conductivity, saturation water content, and field capacity water content of the
soil layer (ly), respectively.

SWAT incorporates a crack flow module that can be used to simulate bypass (crack) or
preferential flow in the soil. The use of the crack flow approach to increase infiltration rates
from the surface is optional and requires the activation of a crack flow code by the user [36].
Crack volume for each soil layer is modeled in the dry seasons, which allows infiltrated
rainwater to move rapidly through the soil profile along vertical cracks, and disappears in
wet conditions [93]. Bypass flow from the bottom of the soil profile to the saturated zone is
computed using Equation (15), and excess water that leaves the bottom of the soil profile
through the vadose zone is calculated by combining percolation and bypass flow, as shown
in Equation (16) [69]:

Wcrk,btm = 0.5 × crk

(
crkly=nn

depthly=nn

)
(15)

Wseep = Wperc,ly=n + Wcrk,btm (16)

where Wperc,ly=n is the water percolating out of the lowest soil layer, Wcrk,btm is the crack
flow past the lower boundary of the soil profile (mm H2O.day−1), crk is the total crack
volume for the soil profile on a given day (mm), crkly=nn is the crack volume for the
deepest soil layer on a given day (mm), depthly=nn is the depth of the deepest soil layer
(mm), and Wseep is the total volume of water drained from the bottom of the soil profile
(mm H2O.day−1).

Lateral flow (soil interflow) along a steep hillslope is computed simultaneously with
percolation when the soil water content exceeds its field capacity. It is simulated using a
kinematic storage routing method (Equation (17)) that is based the on slope, slope length,
and saturated conductivity of each soil layer [63,92], as follows:

Qlat = 0.024
(2 × SWly,excess × Ksat × slp

∅d × Lhill

)
(17)

where Qlat is the daily water flux from the hillslope outlet (mm H2O.day−1), SWly,excess is
the drainable volume of water stored in the saturated zone of the hillslope per unit area
(mm H2O), Ksat is the saturated hydraulic conductivity of the soil (mm.h−1), slp is the
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increase in elevation per unit distance, ∅d is the drainable (residual) porosity of the soil
layer (mm/mm), and Lhill is the hillslope length (m).

The daily water balance for each soil layer is expressed using Equation (18), as fol-
lows [94]:

∆SWly = Wperc,ly−1 − Wperc,ly − Qlat,ly − Ee,ly − Et,ly (18)

where ∆SWly is the change of soil water content at soil layer (ly), Wperc,ly−1 is the percolation
received from layer (ly − 1), Wperc,ly and Qlat,ly are the percolation and lateral flow generated
from soil layer (ly), respectively, and Ee,ly and Et,ly are the evaporation and transpiration
drawn from the soil layer (ly), respectively (all variables are expressed in mm H2O.day−1).

2.2.2. Groundwater Flow and Baseflow to the Stream

The groundwater module of SWAT comprises a system of two aquifers in each sub-
basin: (1) a shallow unconfined aquifer that generates baseflow into the stream and (2) a
deep confined aquifer contributing to streamflow outside of the watershed (flow lost from
the system) [95]. Recharge from the unsaturated soil profile to the aquifers on a given day is
calculated using an exponential decay weighting function that accounts for the time delay
of the recharge mechanism, as follows [67]:

Wrchrg,i =

(
1 − e

− 1
δgw

)
Wseep,i +

(
e
− 1

δgw

)
Wrchrg,i−1 (19)

where Wrchrg,i and Wrchrg,i−1 represent the recharge to the aquifers (shallow and deep) at
days i and i − 1 (mm H2O.day−1), respectively, Wseep,i is the water drained from the bottom
of the soil profile (mm H2O.day−1), and δgw is the delay time required for recharge to reach
the aquifers (days).

Recharge components routed to the shallow (unconfined) aquifer and the deep (con-
fined) aquifer are computed using Equations (20) and (21), respectively, as follows:

Wrchrg,sh,i =
(

1 − βdp

)
Wrchrg,i (20)

Wrchrg,dp,i = βdpWrchrg,i (21)

where Wrchrg,sh,i and Wrchrg,dp,i represent the water diverted to the shallow and deep aquifers
(mm H2O.day−1), respectively, and βdp is a coefficient of percolation to the deep aquifer.

The shallow aquifer contributes to the streamflow if water stored in the aquifer exceeds
a user-specified threshold. Otherwise, return flow is set to zero. The daily groundwater flow
to the main river channel is computed using an exponential storage-discharge relationship,
which incorporates the recharge from the shallow aquifer and a baseflow recession constant,
as follows:

Qgw,sh,i =

{
Wrchrg,sh,i

(
1 − e−αgw,sh×∆t

)
+ Qgw,sh,i−1

(
e−αgw,sh×∆t

)
, aqsh > aqshthr,q

0, aqsh ≤ aqshthr,q
(22)

where Qgw,sh,i is the baseflow from the shallow aquifer to the main stream channel (mm
H2O.day−1), αgw,sh is the groundwater recession constant of shallow aquifer (days−1), aqsh

is the amount of water stored in the shallow aquifer (mm H2O.day−1), ∆t is the time step
(1 day), and aqshthr,q is the threshold water level in the shallow aquifer for return flow to
occur (mm H2O).

The groundwater flow from the deep aquifer is represented by Equation (23), as follows:

Qgw,dp,i = Wrchrg,dp,i

(
1 − e−αgw,dp×∆t

)
+ Qgw,dp,i−1

(
e−αgw,dp×∆t

)
(23)

where Qgw,sh,i is the groundwater flow from confined aquifer (mm H2O.day−1), ∆t is the time
step (1 day), and αgw,dp is the groundwater recession constant of the deep aquifer (days−1).
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In dry periods, water in the shallow aquifers may be removed by evaporation to the
partially saturated overlaying soil through the capillary fringe that separates the saturated
and vadose zones. Water can also be directly absorbed by deep rooted plants through
transpiration [96]. SWAT accounts for this phenomenon via a process defined as revap,
which occurs when water storage in the shallow aquifer exceeds a user-defined threshold.
The amount of water that can be potentially consumed by revap is calculated as follows [97]:

ETrvp−max = βrvp × PET (24)

where ETrvp,max is the maximum amount of water that can be removed from the shallow
aquifer (mm H2O.day−1), βrvp is the groundwater evaporation coefficient, and PET is the
potential evapotranspiration (mm H2O.day−1). The actual groundwater evapotranspira-
tion ETrvp is subsequently calculated based on water availability in the shallow aquifer,
considering the following cases [69]:

ETrvp =


0, aqsh ≤ aqshthr,rvp

ETrvp,max − aqshthr,rvp, aqshthr,rvp < aqsh <
(

aqshthr,rvp + ETrvp,max

)
ETrvp,max, aqsh ≥

(
aqshthr,rvp + ETrvp,max

) (25)

where aqsh is the water stored in the shallow aquifer at the beginning of day i (mm
H2O.day−1) and aqshthr,rvp is the threshold water level in the shallow aquifer for ground-
water evaporation to occur.

The volumetric water balance for the shallow aquifer is represented as follows [98]:

aqsh,i = aqsh,i−1 + Wrchrg,sh,i − Qgw,sh,i − ETrvp,i − Qpump,sh,i (26)

where aqsh,i and aqsh,i−1 represent water stored in the shallow aquifer on days i and i − 1,
respectively, ETrvp,i is the volume of water that moves upward by capillary rise, and
Qpump,sh,i is the water withdrawn by pumping from the shallow aquifer (all variables are
expressed in mm H2O.day−1).

SWAT also simulates other types of water bodies, including wetlands, ponds, and
depressions or potholes. These water bodies are modeled within the subbasins of the main
stream channel and are fed by runoff originating from the subbasin in which they are
located [99]. They can also contribute to seepage and groundwater recharge, adding to the
recharge from soil water percolation [100].

The downward daily seepage from the pond or wetland Vseep (m3 H2O.day−1) is
estimated using Equation (27) [69]:

Vseep = 240 × Ksat × Awet (27)

where Ksat is the saturated hydraulic conductivity of the pond or wetland bottom (mm.h−1)
and Awet is the water surface area of the pond or wetland (hectares).

Daily seepage from the pothole/depression is computed as a function of soil water
content, as follows [101]:

Vseep,pot =


240Ksat × SA, SW < 0.5FC

240
(

1 − SW
FC

)
× Ksat × SA, 0.5FC ≤ SW < FC

0, SW ≥ FC
(28)

where Vseep,pot is the seepage from a pothole (m3 H2O.day−1), Ksat is the saturated hydraulic
conductivity of the top soil layer (mm.h−1), SA is the pothole surface area (hectares), SW is
the daily soil water content of the profile (mm H2O), and FC is the field capacity moisture
content (mm H2O).
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3. SWAT Studies in Karst Watersheds: Selection and Classification Methods

We used the SWAT Literature Database (CARD) [38] and Google Scholar engine to
identify SWAT research studies in karst watersheds, published between the years 2000 (the
year that the first SWAT study in a karst watershed was published) and 2022. Searching
priority was initially accorded to the 5400+ articles available in CARD and grouped by
specific application categories. All SWAT code iterations (standard and modified) were
included in the search and selection process of the articles, based on the keywords “hydro-
logic”, “hydrologic and pollutants”, and “karst”. Consequently, 17 articles were identified
in CARD. Then, multiple searches were performed using Google Scholar to identify the
studies that have not been included in CARD, considering the above-mentioned criteria
terms in combination with the term “SWAT”. Only peer-reviewed articles and published
thesis reports in Google Scholar were selected for further assessment, whereas technical
reports, abstracts/conference papers, and non-English articles were excluded. Combin-
ing both literature databases, a total of 75 studies related to SWAT simulations in karstic
and partially karstified watersheds were identified. We classified these studies into two
main categories: (1) the standard SWAT model applications (category I) and (2) the cou-
pled/modified SWAT model applications (category II). Subsequently, 25 studies reporting
an application of a modified SWAT or SWAT coupled with a karstic flow model fell under
category II, while the remaining 50 studies fell under the first category I.

In this paper, we grouped the articles under category I by region (North and Latin
America, Europe, Asia, and Africa) and study scope (i.e., hydrological or water quality
modeling, climate or land-use change impacts) (Table 1). For the sake of paper length, we
discussed the studies under category I that presented a novel simulation approach or a
complex application of the standard SWAT in karst watersheds. Next, we subdivided the
articles under category II based upon: (1) the conceptual models/algorithms coupled with
SWAT or used to modify the SWAT source code, (2) the studied karst processes/features
(e.g., matrix, conduits, springs, sinkholes), and (3) the simulation scope (e.g., hydrological or
water quality modeling, climate or land-use change impacts) (Table 2). Then, we thoroughly
presented the core methodology and major findings of the SWAT studies of category II,
which focused primarily on hydrological simulation. Appendices A–K summarize the
equations of the karstic models coupled with SWAT and used in the different modified
variants of the code. Finally, we identified potential constraints of the modified SWAT
models so that they can so that they can be considered in developing future SWAT models
adapted to karst hydrology.

The accuracy of the SWAT models’ outputs was reported in their respective studies us-
ing different statistical indicators, such as the Nash-Sutcliffe Efficiency (NSE), the coefficient
of determination (R2), the percent of bias (PBIAS%), the root mean square error observa-
tions standard deviation ratio (RSR), and the Kling-Gupta Efficiency (KGE) [102,103]. In
this review, the overall trends of the hydrological models’ performance were examined
using NSE, being the most commonly applied statistical indicator across all the reported
studies. NSE is a measure of the relative magnitude of the residual variance against the
observed data variance. It is used to assess the goodness of fit of the plot of observed versus
simulated data, and is computed as follows [102]:

NSE = 1 − ∑n
i=1(Oi − Si)

2

∑n
i=1
(
Oi − O

)2 (29)

where Oiand Si represent the ith value of the observed and simulated data, respectively, O
is the mean of the observed and simulated data, and n is the total number of observations.
NSE values can vary between −∞ and 1. In particular, watershed streamflow simulation at
the daily, monthly, and annual scales is judged as satisfactory if 0.5 < NSE ≤ 0.7, good if
0.7 < NSE ≤ 0.8, and very good for NSE ≥ 0.8. Conversely it is unsatisfactory if NSE ≤ 0.5,
while negative NSE values indicate an unacceptable model performance [102].
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Table 1. Reference, basin description, and application of the standard SWAT studies in karst watersheds (category I).

Region Reference Basin Name (Country, Size in km2) Application

North and Latin
America

Spruill et al. [104] University of KY Research Site (USA; 5.5) Simulation of streamflow
Coffey et al. [105] (University of KY Research Site (USA; 5.5) Simulation of streamflow

Benham et al. [106] Shoal Creek (USA; 367) Simulation of streamflow and bacteria fate and transport
Amatya and Jha [107] Chapel Branch Creek (USA; 15.55) Simulation of streamflow in a watershed with a flooded embayment outlet draining to

a lake
Amatya and Jha [108] Chapel Branch Creek (USA; 15.55) Simulation of streamflow and phosphorus loads and concentrations in karst watershed

tributaries and downstream a reservoir-like embayment outlet
Williams et al. [109] Chapel Branch Creek (USA; 15.55) Simulation of streamflow, nitrogen loads, and phosphorus loads in a karst watershed

draining to a lake via a reservoir-like embayment
Wilson et al. [110] South Branch, Root River (USA; 301.8) Impacts of traditional and alternative conservation management practices on water

quality (sediments and phosphorus)
Jain et al. [111] Nueces River Headwaters (USA; 2126) Impacts of land-use/cover change on watershed hydrology

Sunde et al. [112] Hinkson Creek (USA; 231) Impacts of future urban development on watershed hydrology
Sunde et al. [113] Hinkson Creek (USA; 231) Impacts of climate change on watershed hydrological processes
Sunde et al. [114] Hinkson Creek (USA; 231) Impacts of future urbanization and climate change on watershed hydrology
Sarkar et al. [115] Conestoga River (USA; 1230) Simulation of flow, sediment loads from upland watershed sources, flow routing, and

sediment processes using a coupled SWAT-HSPF model
Merriman et al. [116] Upper East River (USA; 375.3) Impacts of agricultural best management practices on flow, sediment loads, and

nutrient loads
Sullivan et al. [117] Edwards aquifer overlain by Cibolo Creek

watershed (USA; 707) and Dry Comal Creek
watershed (USA; 337)

Simulation of nitrate concentration inputs to MODFLOW CFPv2 and CMT3D models
used to assess nitrate transport in an aquifer

Chen et al. [118] Blanco River (N/A) Multi-model projections of hydrological drought characteristics under climate change
Zeiger et al. [5] James River (USA; 3770) Impacts of climate and land use on streamflow, sediment, and nutrient loads, and

identification of critical source areas of non-point source pollution
Al Aamery et al. [119] Cane Run-Royal Spring (58) Simulation of surface runoff, surface routing, and soil water percolation inputs for a

fluviokarst-specific combined discrete continuum numerical model
Karki et al. [120] Apalachicola-Chattahoochee-Flint River

(USA; 12,000)
Simulation of groundwater areal recharge input for a MODFLOW-NWT aquifer model



Water 2023, 15, 954 15 of 50

Table 1. Cont.

Region Reference Basin Name (Country, Size in km2) Application

Europe

Salerno and Tartari [121] Subbasin of the Lake Pusiano watershed (Italy,
52.5)

Simulation of discharge using SWAT supported by wavelet analysis to assess the
contribution of external flow component to streamflow

Vale and Holman [122] Bosherston Lakes (UK; N/A) Quantitative assessment of the hydrological processes controlling water levels and
groundwater–surface water interactions in a lake system

Tzoraki et al. [123] Evrotas (Greece; 2050) Simulation and analysis of flood events characteristics
Palazón and Navas [124] Linsoles River (Spain; 284) Simulation of surface runoff and sediment yield
Palazón and Navas [125] The Barasona reservoir catchment (Spain;

1509)
Simulation of erosion and sediment yield

Sellami et al. [126] Thau catchment (France; 280) Assessment of SWAT model accuracy in predicting discharge at gauged and ungauged
catchments within an uncertainty framework

Gamvroudis et al. [127] Evrotas River (Greece; 1348) Simulation of watershed water budget and spatial distribution of runoff and sediment
transport

Malagò et al. [128] Scandanavian Peninsula (106); Iberian
Peninsula
(556,000)

Hydrological simulation, sensitivity analysis, multi-variable calibration, and
regionalization of the calibrated parameters for the identification of dominant

hydrological processes in each region
Mehdi et al. [62] Altmühl River (Germany; 980) Impacts of climate and land-use changes on streamflow and nutrients loads

Sellami et al. [129] Thau catchment (France; 280) Impacts of climate change on watershed hydrology
Palazón and Navas [130] The Barasona reservoir catchment (Spain;

1509)
Simulation of streamflow under different precipitation characterization scenarios

Vigiak et al. [131] Danube River (800,000) Simulation of sediment fluxes under soil conservation measures and identification of
sediment budget knowledge gaps

Efthimiou [132] Kalamas River (Greece; 1899.25) Simulation of watershed hydrological budget
Martínez-Salvador and

Conesa-García [133]
Upper Argos River (Spain; 510) Simulation of streamflow and sediment load

Senent-Aparicio
et al. [134]

Castril River (Spain; 120) Simulation of streamflow using SWAT supported by chloride mass balance to estimate
IGF contribution to streamflow

Busico et al. [135] Anthemountas (Greece; 374) Assessment of groundwater recharge variations and their relationship with other
hydrological parameters under climate change

Sánchez-Gómez et al. [136] Henares River (Spain; 4070) Optimization of SWAT streamflow simulation by incorporating watershed geological
properties in model calibration
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Table 1. Cont.

Region Reference Basin Name (Country, Size in km2) Application

Asia

Jiang et al. [137] Shibetsu River (Japan; 672) Simulation of streamflow and external flow contribution to discharge from the water
balance equation, using measured data

Tian et al. [138] Shibantang River (China; 2248) Assessment of trade-offs and synergic relationships between ecosystem services (water
yield, sediment yield, and net primary productivity)

Bucak et al. [139] Lake Beyşehir catchment (Turkey; 4704) Impacts of climate and land-use changes on the hydrological balance of a lake
catchment and water levels

Hou and Gao [140] Sancha River (China, 4068) 1 Simulation of the spatial variability of streamflow, surface runoff, and groundwater
runoff, and analysis of their spatial correlation with environmental factors

Jakada and Chen [141] Miaogou subbasin of Gaolan River Basin
(China; 45)

Simulation of watershed hydrology using SWAT supported by a geological survey and
a tracer test

Mo et al. [142] Xiajia River (China; 799.2) Simulation of watershed runoff under different precipitation input data
Hou et al. [143] Guizhou Province (China 4681) Analysis of the factors affecting streamflow, surface runoff, and groundwater, and their

interactions for different geomorphic types
Gao et al. [144] Sancha River (China, 7061) 1 Assessment of trade-offs and synergic relationships between ecosystem services

(sediment yield and surface/slope runoff, water yield, and slope runoff) and main
factors affecting their relationships, for different geomorphic types

Jiang et al. [145] Sancha River (China, 7061) 1 Simulation of the spatial distributions of rainfall erosivity and runoff erosivity, and
identification of the dominant factors and their interactions affecting the spatial

distributions of rainfall/runoff erosivity, for different geomorphic types
Chang et al. [146] Nanpan River (China; 43,200) Simulation of soil moisture using SWAT and development of a methodology for a

comprehensive drought index based on the watershed hydrological processes
(precipitation, runoff, and soil moisture)

Zhang et al. [147] Lijiang River (China, 5444) Simulation of streamflow and water quality using SWAT and HSPF models driven by
different precipitation input data, and impacts of best management practices on

non-point-source pollution reduction
Mo et al. [148] Chengbi River (China; 2087) Simulation of runoff under different calibration methods and precipitation input data

Yuan et al. [149] Gaoche catchment area of the Dabang River
basin (China; 1877.20)

Assessment of trade-offs and synergic relationships between ecosystem services
(surface/underground runoff and surface sediment yield) and driving factors affecting

their variation

Africa
Zettam et al. [150] Tafna watershed (Algeria; 7245) Simulation of watershed hydrological processes and assessment of the impacts of dam

construction on water balance and sediment flux
Zaibak and Meddi [151] Cheliff basin (Algeria; 43,750) Simulation of streamflow at watershed dam-feeding subbasins and outlet

1 There is a variation in the area of the Sancha River basin reported by Hou and Gao [140] compared to Gao et al. [144] and Jiang et al. [145].
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Table 2. Groundwater modeling approach, reference, basin description and application of the modified SWAT codes in karst studies (category II).

Groundwater Modeling
Approach Reference Basin Name (Region; Size in km2) Application—Modified SWAT Name (When Applicable)

Conceptual linear one-reservoir
groundwater model

Afinowicz et al. [152] North Fork, Upper Guadalupe River
(Texas-USA; 360)

Simulation of streamflow and water budget, and assessment crop
management impacts on water budget

Baffaut and Benson [153] 1 James River (Missouri, USA; 3600) Simulation of streamflow and pollutant transport (in-stream
phosphorous loads and fecal coliform concentrations)—Adapted

SWAT/SWAT-B&B
Yactayo [154] 1 Opequon Creek (Virginia, USA; 890.2) Simulation of streamflow and nitrate transport through the

sinkholes in a karstic watershed—SWAT-karst
Palanisamy and Workman [155] 1 Cane Run Creek

(Kentucky, USA; 115.6)
Simulation of streamflow through sinkholes in the

streambed—KarstSWAT
Zhou et al. [156] 1 South and North Panjiang River (China; 2762) Simulation of streamflow through sinkholes in the watershed

Conceptual linear two-reservoir
groundwater model

Nikolaidis et al. [157] Koiliaris River (Crete, Greece; 132) Simulation of water budget and in-stream nitrate concentrations,
and assessment of climate change impacts on hydrology and water

quality—Karst-SWAT
Nerantzaki et al. [158] 2 Koiliaris River (Crete, Greece; 130) Simulation of suspended sediment transport, and assessment of

climate change impacts on flow, soil erosion, and sediment transport
Tapoglou et al. [159] 2 Crete Island (Greece; 8337) Assessment of climate change impacts on extreme

hydrometeorological events
Demetropoulou et al. [160] 2 Geropotamos (Crete, Greece; 525 km2) Methodology for the prioritization of a Program of

Measures for water quantity and quality protection
Nerantzaki et al. [161] 2 Crete Island (Greece; 8265) Assessment of climate change impacts on hydrology

Lilli et al. [162] 2 Koiliaris River (Crete, Greece; 130) Development of erosion and flood protection nature-based solutions
Nerantzaki et al. [163] 2 Koiliaris River (Crete, Greece; 130) Uncertainty analysis of flow simulation due to the parameter

uncertainty of the SWAT and Karst-SWAT models and internal
variability of climate scenarios

Lilli et al. [164] 2 Koiliaris River (Crete, Greece; 132) Analysis of hydrological and geochemical processes
Malagò et al. [165] Crete Island (Greece; 8336) Simulation of hydrological water balance—KSWAT
Nguyen et al. [166] Area in southwest Harz Mountains

and southern Harz rim (Lower Saxony;
Germany; 384)

Streamflow simulation, including IGF—SWAT_IGF
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Table 2. Cont.

Groundwater Modeling
Approach Reference Basin Name (Region; Size in km2) Application—Modified SWAT Name (When Applicable)

Conceptual linear three-reservoir
groundwater model

Wang et al. [167] 1 Xianghualing River (Hunan, China; 26.8) Streamflow simulation
Geng et al. [168] 1 Daotian River (Guizhou, China; 99.21) Simulation of flow (including IGF) and water budget

Conceptual non-linear
one-reservoir groundwater

model
Wang and Brubaker [169] 1 Shenandoah River of the Potomac River Basin

(USA; 7607) Streamflow simulation

Modified crack flow module;
conceptual linear one-reservoir

groundwater model
Eini et al. [36] 1 Maharlu Lake (Province of Fars, Iran; 4270) Simulation of crack/preferential flow, discharge, and water

budget—SWAT-ML and SWAT-CF

Variable source area hydrology;
conceptual linear one-reservoir

groundwater model

Amin et al. [170] 1 Spring Creek (Pennsylvania, USA; 370) Simulation of streamflow, nutrient loads, and sediment loads for
different agricultural management practices—Topo-SWAT

Amin et al. [171] 3 Spring Creek (Pennsylvania, USA; 370) Impact of dairy cropping practices on nutrient and sediment loads
Amin et al. [172] 3 Spring Creek (Pennsylvania, USA; 370) Impact of agricultural best management practices on nutrient and

sediment loads
Gunn et al. [173] 3 Spring Creek (Pennsylvania, USA; 370) Impact of climate change with increasing atmospheric CO2 on

watershed hydrology—SWAT-VSA_CO2 and
SWAT-VSA_CO2+Plant

SWAT + Water Accounting Plus
(WA+) framework

Delavar et al. [174] Tashk-Bakhtegan (Iran; 27,520) Assessment of water consumption and supply trends under
different water management strategies—SWAT-FARS

Delavar et al. [175] Karkheh River (Iran; 42,267) Assessment of water supply and demand conditions in
wet and dry periods, based on the water resources, consumption,

and withdrawal indicators of the WA+ framewor—kSWAT-Karkheh
1.These studies reported applications of both a standard SWAT model and a modified SWAT model. 2 These studies used the Karst-SWAT version of SWAT developed by
Nikolaidis et al. [157] without making any additional modifications to the model. 3 These studies used the Topo-SWAT version of SWAT developed by Amin et al. [170].
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4. Results and Discussion
4.1. Applications of Standard SWAT in Karst Watersheds
4.1.1. Research Areas Covered in Standard SWAT Applications

The studies that reported an application of standard SWAT in a karst watershed
(Table 1) were mainly conducted in the USA (18 articles; 36%), followed by Europe (17 arti-
cles; 34%), and Asia (13 articles; 26%). In contrast, only two studies (4%) were identified
in Africa.

Different versions of SWAT have been developed over the years to meet the grow-
ing need for water resources modeling and management tools, the latest being SWAT+.
SWAT+ is a completely restructured version of SWAT that offers an enhanced flexibility
in watershed configuration and spatial representation of landscape processes [176,177].
The identified studies in this review were conducted using the previous SWAT versions,
including SWAT v2000, v2005, v2009, and v2012. Noticeably, SWAT+ has not yet been
implemented in karst regions.

The standard SWAT model has been applied to a wide range of karst dominated
and karst influenced watershed scales to assess the hydrological cycle and simulate
streamflow [104,105,107,132,150], flood events [123], erosion processes and sediment
yield [124,125,133], as well as pollutant (nutrients and pathogens) transport [108,109,127].
The model was also used to compare water quality impacts between scenarios of different
crop types and agricultural management practices [110,116].

Several studies evaluated climate change impacts on watershed hydrology based on
historical climate patterns and climate projections [113,118,129,135], as well as the effects of
land-use change on the water budget [111]. Other studies assessed the combined impacts
of land-use and climatic changes on watershed hydrology and or water quality [62,139],
including the influence of future urbanization and impervious surface growth [114], and
other anthropogenic factors, such as wastewater treatment [5].

In other applications, SWAT was used to simulate the spatial and temporal evolu-
tion of runoff, groundwater, erosivity, and surface sediment yield in karst watersheds,
considering various climatic and land features. These studies identified the driving fac-
tors affecting the variation of ecosystem services and analyzed the trade-offs and syn-
ergic relationships between them for rocky desertification containment and ecological
protection [138,140,143–145,149].

Additionally, SWAT has been coupled with other models to expand the assessment of
flow and water quality. For instance, Sarkar et al. [115] linked SWAT with the Hydrological
Simulation Program-FORTRAN (HSPF) to simulate flow and sediment loading from upland
agricultural areas in a karstified watershed using SWAT, followed by in-stream sediment
processes in HSPF. Sullivan et al. [117] applied SWAT to model recharge nitrate concen-
trations from natural and anthropogenic sources in a karst watershed. Then, the recharge
output from SWAT was incorporated into the Modular Three-Dimensional Finite-Difference
Groundwater Flow Model Conduit Flow Process version 2 (MODFLOW CFPv2) and the
Conduit Modular 3-Dimensional Transport (CMT3D) model to predict groundwater flow
and nitrate transport and levels in the aquifer. Similarly, Karki et al. [120] estimated ground-
water recharge in a karst watershed using SWAT, then integrated the recharge output from
SWAT into a MODFLOW model with Newton-Raphson formulation (MODFLOW-NWT)
to evaluate the impacts of irrigation withdrawals on groundwater levels and the stream-
aquifer fluxes. Al Aamery et al. [119] also simulated surface runoff, surface routing, and
soil water percolation in SWAT as inputs for a combined discrete-continuum fluviokarst
numerical model.

Moreover, the performance of SWAT for karst watersheds hydrological and water
quality simulations was evaluated under different precipitation input data [130,142,147]
and with respect to various calibration approaches, such as multi-site calibration [148] and
zonal calibration that incorporates the basin geological properties [136].
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4.1.2. Overall Performance of Standard SWAT Models

More than 70% of the studies that used NSE to assess the performance of SWAT
hydrological models with daily time series calibration scored NSE values greater than 0.5,
and over 90% reported NSE values greater than 0.5 for the daily time series validation.
In comparison, more than 90% of the studies scored NSE values higher than 0.5 with
monthly calibrated models, while upwards of 80% reported NSE values higher than 0.5
with monthly validation (Figure 2). These results indicate a satisfactory performance, with
numerous applications meeting the criteria of a “good” flow simulation, as proposed by
Moriasi et al. [102].
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However, some applications conducted in complex karst watersheds scored poor NSE
statistics. The studies conducted by Spruill et al. [104] and Coffey et al. [105] in the small
experimental watershed of Kentucky revealed that SWAT failed to accurately reproduce
peak and low flows. The observed and simulated daily hydrographs were asynchronous,
with SWAT often underestimating the peak discharge rates and generating recessions that
are faster than the observed data curves. The monthly runoff volumes at the watershed
outlet were also underpredicted, which was attributed to the lack of explicit representation
of karst geology in SWAT. A similar finding was reached by Benham et al. [106] who con-
cluded that SWAT inability to reproduce the flows sustained by karst features reduced the
prediction efficiency of streamflow in their study watershed. At a larger scale, the studies
undertaken in the Scandinavian and Iberian peninsulas of 106 km2 and 556,000 km2 [128],
respectively, and in the Danube River basin of 800,000 km2 [131] revealed that the perfor-
mance of SWAT was lower in karst dominated regions in comparison to non-karst areas,
due to the model misrepresentation of baseflow in karst streams. Martinez-Salvador and
Conesa-Garcia [133] also emphasized on the need to improve the representation of extreme
hydrological events (e.g., low flow and peak flow periods) in SWAT.

Furthermore, several studies underlined the need to account for external and interbasin
groundwater flows to improve the discharge simulation in SWAT [104,121,124,127,134,137,141].
The hydrological simulations performed by Spruill et al. [104] confirmed the dye tracing
results from sinkholes surrounding the study site that an area larger than the watershed
topographic boundaries contributes to streamflow. Amatya et al. [107] underlined the
need to couple SWAT with a subsurface hydrology model to accurately characterize the
dynamics of the karst groundwater flow contribution to the surface drainage network.
Gamvroudis et al. [127] estimated that around 33% of the water balance was lost via deep
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groundwater flow to areas outside their study watershed due to karst formations, while
Palazón and Navas [124] simulated the discharge losses by underground flow through
swallow holes in the upper part of the study basin. On the other hand, Jakada and
Chen [141] confirmed the absence of runoff losses by subterranean flow diversion from
their study watershed prior to conducting a hydrological simulation in SWAT. Their finding
was based on the results of tracer tests conducted through the sinkholes in the watershed
and monitoring of the springs within and outside the basin.

In more complex applications, Salerno and Tartari [121] coupled wavelet analysis
with hydrological modeling in SWAT to identify the streamflow components in a non-
conservative karst subbasin. After excluding the possibility of an incorrect assessment of
the precipitation data, streamflow measurements, and evapotranspiration estimates, a series
of continuous wavelet transform, cross wavelet transform, wavelet coherence, and phase
difference analyses were applied to precipitation, groundwater levels, observed streamflow,
and the time series constructed by the difference between the observed daily discharge
and the streamflow simulated by a calibrated SWAT model of the study site. Based on
the ensemble of correlations, it was established that the external water contribution to
the river discharge was primarily due to groundwater seepage from a hydrogeological
catchment that is larger than the surface watershed. The daily time series of the external
water contribution was generated by multiplying the SWAT-simulated groundwater inflow
by a yearly coefficient. This coefficient was adjusted to match the external contribution
time series with the groundwater fluctuations simulated by SWAT and have the annual
simulated flows equal to the observed flows. The additional water component improved
the prediction efficiency of daily streamflow at the watershed outlet, with NSE increasing
from 0.61–0.56 in the calibration and validation periods to 0.66–0.62, and R2 increasing
from 0.71–0.69 to 0.74–0.72. The mean absolute error of streamflow underestimation was
also reduced from 47 to 33%.

Jian et al. [137] simulated discharge in a non-conservative karst watershed with an
initial average discrepancy of 47% between the observed and measured water balances.
After ruling out the possibility of invalid precipitation, evapotranspiration, and discharge
measurements, the external contribution of the underground flow to streamflow was added
as a point source discharge in SWAT, adopting the mean value of the difference in the annual
water budget. The hydrological calibration and validation were carried out in a two-stage
process. In the first step, the SWAT model and external flow value were calibrated using
discharge data, while surface runoff, baseflow, and evapotranspiration were calibrated
in the next step using available observational data. As a result, the baseflow component
(excluding the external flow contribution) was calibrated in SWAT, and the inclusion of
IGF reduced the underestimation bias of streamflow from nearly 50% to less than 3% at
the monthly scale and 15% at the daily scale. NSE and R2 values greater than 0.5 and 0.65,
respectively, were also reached both in the calibration and validation periods.

More recently, Senent-Aparicio et al. [134] applied SWAT with the atmospheric Chlo-
ride Mass Balance (CMB) method to simulate streamflow of the Castril River basin (Spain).
The study site is steep karst watershed fed by IGF from adjacent aquifers under steady
conditions (i.e., no groundwater abstraction, evapotranspiration from shallow aquifers,
or underflow to deep aquifers). The net aquifer discharge was equated to the baseflow
component of streamflow, and the CMB approach was used to estimate the fraction of net
aquifer recharge from the upstream areas as a proxy for the IGF contributing to additional
baseflow. The corrected baseflow time series with IGF improved the SWAT model perfor-
mance, reducing the underestimation bias of the streamflow simulations to less than 20%
in both calibration and validation.

4.2. Applications of Modified SWAT in Karst Watersheds
4.2.1. Conceptual Linear One-Reservoir Model

This subsection describes the SWAT models with modified recharge functions and a
linear one-reservoir groundwater module to simulate karst flows. These models include:
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the modified SWAT by [152], SWAT-B&B [153], SWAT-karst [154], KarstSWAT [155], and
the modified SWAT by [156]. The latter four models can also represent karst watersheds
dominated by flow through sinkholes.

Referring to Table 2, the first application of a modified SWAT code in a karst watershed
was performed by Afinowicz et al. [152] to evaluate the impacts of woody plants manage-
ment scenarios on the rangeland water cycle of the North Fork of the Upper Guadalupe
River, Texas (USA). The watershed has an area of 360 km2 and is covered by thin soils that
overlie fractured limestone formations.

The return flow (baseflow) function of the groundwater module of SWAT (v2000)
was modified to simulate rapid infiltration in karst areas into the deep aquifer. Therefore,
the deep aquifer recharge component was deducted from the baseflow component of
streamflow to allow a fraction of infiltrated water to bypass the shallow aquifer and enter
the deep aquifer instead of flowing into the channel as baseflow, as shown in Equation (A1)
of Appendix B.

The hydrological model was adjusted using daily streamflow data at the watershed
outlet, with a 5-year warm-up period, a 5-year calibration period, and a 7-year validation
period. The model scored monthly NSE values of 0.29 and 0.5 for the calibration and
validation periods, respectively. It performed less efficiently at the daily scale, with NSE
values of 0.4 and 0.09. It also failed to accurately reproduce all discharge trends at the
daily scale, particularly high peak flows. The results of the hydrograph simulations were
attributed to the nature of the surface runoff in the watershed, which is characterized by
sustained low baseflow and very high flow that brings the soil water capacity to saturation.

Baffaut and Benson [153] modified the groundwater recharge equation of SWAT
(v2005) to model fast infiltration from sinkholes and losing streams to the aquifer and
groundwater flow contribution to surface water. The improved SWAT, known as SWAT-
B&B/Adapted SWAT model, was applied to the 3600 km2 James River basin in southwest
Missouri (USA), characterized by losing streams, sinkholes, and springs.

In SWAT-B&B, recharge into the aquifer was partitioned to two components: (1) the
infiltration from the soil bottom, representing slow flow to the porous matrix, and (2) the
recharge from sinkholes and losing streams, representing fast flow to the conduits. Sink-
holes in the study basin were modeled as ponds with a small drainage area and high
hydraulic conductivity, while losing streams were represented by tributary channels with
high streambed hydraulic conductivity. Thus, the soil and karst infiltration components
were simulated using two recharge functions, each with a specific groundwater delay
coefficient (see Equations (A2) and (A3) of Appendix C). Return flow was then modeled
with the standard SWAT function, based on the groundwater flow of the previous day and
the total aquifer recharge of that day (see Equation (A4) of Appendix C).

The hydrological model was calibrated for 8 years of daily streamflow records at
5 gauging stations and validated for 7 years. Streamflow biases were all less than 25%,
ranging between 4% to 20% during the calibration period and −2% to −21% during
validation. The percent of bias in surface runoff simulation were all around 10%, indicating
a better representation of the baseflow component to streamflow. Moreover, NSE values of
around 0.5 were reached for the calibration and validation periods in the main stem of the
stream and at the outlet, but lower values close to 0.3 were obtained in the upstream small
tributaries. Although a significant improvement in the NSE values could not be spotted
by comparing both the standard and modified SWAT models, SWAT-B&B sustained more
flows during the dry periods in comparison to SWAT.

The model was then used to estimate in-stream phosphorus loads and concentrations,
and fecal coliform concentrations. Poor water quality simulation results were obtained in
almost all observational river reaches of the basin, both in calibration and validation periods.

Yactayo [154] further modified the SWAT-B&B code to simulate fast aquifer recharge
through sinkholes at the HRU scale by introducing a new parameter called sink to the HRU
groundwater input file. This sinkhole partitioning coefficient represented the fraction of
the runoff drained by a sinkhole to the unconfined aquifer. With this approach, a fraction
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of the surface runoff and lateral flow in the karst HRU was no longer included in the
calculation of total streamflow in the main channel but allocated to the daily seepage from
sinking streams and sinkholes. The transmissions losses from the surface runoff entering
the sinkholes were also not simulated. Thus, the unconfined aquifer recharge in non-karst
regions was calculated using Equation (A5) of Appendix D, whereas aquifer recharge in
karst regions was computed using Equation (A6) of Appendix D.

The modified model known as SWAT-karst was applied in the 890.2 km2 Opequon
Creek watershed, located in the Potomac and Shenandoah River basin in Virginia. For
SWAT-karst, a new land-use category was added to the land-use map so that sinkholes
may be represented by HRUs, based on the area of the sinkhole regions and the land use
where the sinkholes are located. Similar to SWAT-B&B, sinking streams were represented
by tributary channels with high hydraulic conductivities.

SWAT-karst, SWAT-B&B and SWAT were run at the daily time step for a period of
11 years and compared in terms of their performance efficiency in simulating streamflow
and other water balance components without any model calibration. All three models
overestimated streamflow, and the values of the PBIAS, NSE, and RSR were unsatisfactory
at all subbasin outlets and streamflow gages where discharge values were compared.
Nonetheless, both SWAT-B&B and SWAT-karst performed better than SWAT in simulating
karst discharge, and SWAT-karst had a more significant impact on the distribution of the
water balance components, by simulating less runoff and more baseflow in karst regions
with sinkholes. The authors noted that aquifer recharge diverted by sinkholes to regions
outside the watershed could be a reason behind SWAT-karst overestimating discharge
and failing to meet the acceptable performance criteria. However, they maintained that
parameter sink values could be modified to control the depth of water that recharges the
unconfined and confined aquifers (water lost from the watershed, see Equation (A7) of
Appendix D). Yactayo [154] also modeled the nitrate loading that recharges the aquifers
through the sinkhole as a function of: (1) the volume of surface runoff and lateral flow
lost to sinkholes in karst regions, and (2) the nitrate aquifer recharge loading from the soil
water percolation. Similar to the flow simulation results, the values of the in-stream nitrate
concentrations calculated from aquifer recharge and nitrate in baseflow were unsatisfactory.

On the other hand, Palanisamy and Workman [155] incorporated an orifice flow
transfer function and a successive summation routing algorithm (SSRA) into SWAT in
order to simulate groundwater flow from sinkholes located in the streambed to a spring.
The modified SWAT code, called KarstSWAT, was applied to the Cane Run watershed of
115.6 km2 in Kentucky (USA), where numerous sinkholes found along the river streambed
divert surface runoff through an underground conduit to the main watershed spring. The
karst aquifers to which sinkholes drain the river flow largely overlap the Cane Run surface
watershed, and runoff routing into the sinkholes depends on the incoming streamflow
volume, the sinkhole size, and the capacity of the underground conduit.

To represent this unique hydrological setting, sinkholes were conceptualized as orifices
and were modeled as outlets of the karst subbasins during watershed delineation in SWAT.
The discharge capacity of the sinkholes was simulated using a head-discharge relationship
(see Equation (A8) of Appendix E) as a function of a diameter range that corresponds to the
size of the sinkholes. The discharge from the sinkholes and infiltration from the soil profile
bottom were then added to the deep aquifer reservoir in SWAT, aggregated at HRU level,
and transferred to the spring outlet using the SSRA algorithm with a maximum travel time
of one day. The number of the subbasin in which the sinkholes are located and the diameter
of the sinkholes were specified in an input file called sink.dat, while groundwater basins
that drain the aquifer water to the spring were defined in a file called gw_flow.dat.

KarstSWAT was calibrated for 3 years using daily streamflow measurements at the
Cane Run River, and validated for another 3 years using runoff data at the Cane Run River
and spring outlet. Compared to the original SWAT model, KarstSWAT showed a better
representation of the hydrological cycle in the karst watershed. The average annual surface
runoff and recharge to shallow aquifer decreased by 65% and 91%, respectively, while deep
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aquifer recharge increased many folds as water was partially diverted through the sinkholes
rather than the soil. The cumulative observed and simulated streamflow plots, with and
without sinkholes, also demonstrated that KarstSWAT reduced channel flow during low
flow and high flow periods. The modified model performance was further assessed against
the original SWAT model under a multitude of runoff events during which at least 10 mm
of peak rainfall was observed. Results showed that KarstSWAT improved the prediction
of the peak flows and baseflow, with average the NSE and R2 values increasing from 0.23
to 0.77 and 0.78 to 0.87, respectively. Moreover, the discrepancy between the observed
and simulated spring flow was attributed to the capacity of the orifices to transfer flow,
whereby the overestimation of streamflow by KarstSWAT resulted in the underestimation
of spring discharge and vice versa. Nonetheless, discharge at the watershed spring was
continuously simulated, showing a good agreement with the observed spring hydrographs
at different time periods.

Zhou et al. [156] also modified SWAT (v2012) to simulate fast infiltration through
karst sinkholes in the upper course of the South Panjiang River, Southwest China. The
basin extends over an area of 2762 km2 that is mainly covered by limestone and under the
influence of a subtropical humid monsoon climate. Due to the karst effect, sinkholes have
formed across the watershed subbasins as opposed to only in the streambed (the case of
the study the Cane Run watershed [155]).

The authors used the pond module of SWAT to represent the sinkhole processes.
While infiltration from the bottom of the soil profile in both karst and non-karst areas is
modeled using the same delay time variable in the original SWAT, the recharge function was
modified to simulate the rapid recharge of groundwater aquifer in sinkholes. Water leaving
the ponds to the aquifer was separated from percolation with a delay time variable specific
to pond leakage and set to 1/50 of its original value. Hence, recharge was divided into two
components: leakage recharge of the soil profile and rapid recharge of the karst sinkholes
(Equation (A9) in Appendix F). The pond module was added at the subbasin scale, and
sinkholes were represented by one pond in each subbasin whereby a fraction of the subbasin
area drains the surface flow into the pond. A high hydraulic conductivity value was set at
the bottom of the ponds in order to maximize infiltration and groundwater recharge.

The SWAT model was adjusted using monthly streamflow data, with 2 years of warm-
up, calibration, and validation each. The modified SWAT model improved the streamflow
simulations: the values of the NSE and R2 indicators increased from 0.35–0.66 (calibration-
validation) and 0.7–0.76, respectively, in the original SWAT to 0.61–0.79 and 0.74–0.83 in
the modified SWAT, with a higher prediction accuracy of the peak flow and baseflow at
the daily time interval. The use of the pond module, with large hydraulic conductivity
values and short recharge durations, also reduced the surface runoff and lateral flow in the
subbasins with sinkholes and increased baseflow depth by rapidly diverting the surface
water to the shallow aquifer.

4.2.2. Conceptual Linear Two-Reservoir Model

This subsection describes the modified SWAT models with a linear two-reservoir
groundwater module to simulate flows of the matrix and conduits components in a karst
system. These models are Karst-SWAT [157], KSWAT [165], and SWAT_IFG [166].

Nikolaidis et al. [157] interfaced SWAT with a spreadsheet version of the linear two-
reservoir model proposed by Kourgialas et al. [178] to simulate discharge and nitrate
transport in the Koiliaris River basin (132 km2) in Crete, Greece, under climate change. The
modified SWAT model, known as Karst-SWAT, comprises an upper reservoir representative
of the fast flow in the conduits and a lower reservoir for the slow flow in the matrix
and narrow fractures. The model uses two proportionality coefficients to partition karst
recharge between the two compartments and models another flow fraction from the upper
to the lower reservoir. The sum of outflows from the matrix and conduit reservoirs forms
the total discharge of the karstic area (see Equations (A10) to (A14) in Appendix G).



Water 2023, 15, 954 25 of 50

In the case of the Koiliaris River basin, the recharge area of the springs contributing to
the total watershed flow extends at least 50 km2 beyond its boundaries. Nikolaidis et al. [157]
first used SWAT to model the surface hydrological processes (precipitation, evapotran-
spiration, infiltration, runoff) and route the percolated water to the deep groundwater
aquifer. The extent of karst areas contributing to the emergence of springs from outside
the watershed boundaries was established based on the geologic knowledge of the study
site and a mass balance modeling approach. Then, the SWAT-simulated deep groundwater
flow in karst areas was assigned to the karstic reservoir model in order to estimate the
spring flow contribution to discharge. After calibration of the reservoir model parameters,
the resultant karst flow time series were input to SWAT as a point source to simulate the
overall watershed runoff.

The parameters of the karst flow reservoir and SWAT models were adjusted using high
frequency flow measurements at the watershed outlet, surface runoff measurements at a
major tributary of the river, and long-term monthly spring flow records. The overall model
prediction efficiency of discharge was satisfactory. At the monthly time step, NSE values of
0.77–0.61, PBIAS of −22.1%; −11.8%, and RSR of 0.62–0.63 were reached during calibration
and validation, respectively, whereas NSE of 0.62–0.43, PBIAS of (−22.3%; −11.6%), and
RSR of 0.48–0.75 were achieved for the daily runoff simulations.

From the water quality perspective, Nikolaidis et al. [157] incorporated a nitrate mass
balance model to the upper and lower reservoirs of the karst flow model, assuming that
nitrate is conservative in karst. A karst factor was added to the nitrate mass balance
equation of the lower reservoir to account for the extra dilution of the incoming nitrate
loads by the permanent karst flow volume below the spring level. After calculating
the nitrogen inputs in the watershed and the extended karst recharge area based on the
local land-use practices, the hydrological and water quality modeling parameters were
adjusted using nitrates grab sample data at a river tributary and groundwater wells,
coupled with high frequency nitrate data, grab samples at the watershed outlet, and flow
measurements. The simulated nitrate concentrations were adequate compared to the nitrate
grab sample measurements.

The impact of climate change on the water budget of the Koiliaris River basin was
also predicted up to the year 2050, using three climate change scenarios for a combination
of general and regional circulation climate models. The results of the climatic projections
suggested that precipitation, evapotranspiration, and runoff could decrease by 17%, 8%,
and 22%, respectively, for the time horizon 2030–2050 compared to 2010–2029.

Nerantzaki et al. [158] later adopted the Karst-SWAT flow model by Nikolaidis
et al. [157] to first simulate the hydrology and suspended sediment transport in the Koil-
iaris River basin then predict the impacts of climate change on discharge, soil erosion, and
sediment transport. The concentration of suspended sediments in the karstic watershed
was calculated using the same mass balance equations and deep karst factor adopted by
Nikolaidis et al. [157] for nitrates. Four additional years of simulation were added to the
validation period of the model previously calibrated by Nikolaidis et al. [157]. Next, climate
change scenarios were run up the year 2090 after adjusting the most sensitive flow and
water quality parameters. The results of the discharge simulations were adequate, with
daily NSE, PBIAS, and RSR of 0.8, 25.3%, and 0.45, respectively, and monthly NSE, PBIAS,
and RSR of 0.83, 23.4%, and 0.41, respectively. The suspended sediments calibration results
were less adequate, with daily NSE of 0.7, PBIAS of 57%, and RSR of 0.55, suggesting an
overestimation bias.

The results of the climate change scenarios showed that surface runoff and spring flow
could decrease by nearly 70 to 77% between the time periods of 2010–2049 and 2050–2090.
The erosion rate of the watershed main subbasin and surface sediments export were also
expected to drop by 48% and 55%, respectively, whereas sediments emerging from the
springs were not substantially affected by climate change.

Following an analysis of climate change impacts in the Crete Island using Karst-SWAT,
Demetropoulou et al. [160] proposed a program of measures to improve water governance
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in the 525 km2 Geropotamos basin located in central-southern part of the island. Nerantzaki
et al. [161] also used Karst-SWAT to forecast the hydrological response of the Crete region
under climate change scenarios up to the year 2098, considering different irrigation sources
in SWAT. Moreover, Tapoglou et al. [159] applied Karst-SWAT to predict the impact of
climate change on the hydrological cycle and the frequency of extreme hydrological and
meteorological events in Crete. Nerantzaki et al. [163] further expanded the research work
conducted in the Koiliaris River basin with Karst-SWAT by assessing: (1) the uncertainty
of the watershed runoff and karstic flow simulations due to the parameter uncertainty in
SWAT and Karst-SWAT, and (2) the impact of internal variability (or stochastic uncertainty)
of the meteorological input data on the flow simulations for the reference period and
under the climate change scenarios. The uncertainty of the flow models was estimated by
combining the Sequential Uncertainty Fitting Version 2 (SUFI-2) in the SWAT Calibration
and Uncertainty Program (SWAT-CUP) interface and the @RISK by PALISADE software,
while the effect of input internal variability on the flow output was evaluate using Monte
Carlo simulations.

Within the framework of studying the hydrological and geochemical processes in the
Koiliaris European Critical Zone Observatory, Lilli et al. [164] used Karst-SWAT to simulate
the hydrological budget of the Koiliaris River basin and gain insight on the hydrological
pathways and response of the karst during extreme events. Additionally, Karst-SWAT
was applied to simulate surface flow and spring flow in the Koiliaris River basin, which
were required to determine the design flows and flood frequency within the framework of
developing nature-based solutions for the riparian forest restoration and flood protection
project at the Koiliaris Critical Zone Observatory [162].

Next, Malagò et al. [165] developed a two-reservoir modeling approach by linking
SWAT-B&B [153] and Karst-SWAT [157]. The resultant hybrid model, called KSWAT, was
used in conjunction with SWAT to simulate the water balance, spring flow, and total
discharge in the Island of Crete in Greece. The study area extends over 8336 km2 of which
2730 km2 is karst.

A SWAT model of the Crete Island was set up and the modified model KSWAT was
applied only in the karst subbasins of the region. The daily aquifer recharge from the
karst subbasins was simulated using SWAT-B&B. The area of the subbasins contributing
to the recharge of a particular spring or group of springs was identified based on the
local geological maps and dominant karst soils. Recharge from the soil profile bottom,
stream losses, and seepage from other water bodies to the deep aquifer were maximized
by: (1) setting the deep aquifer percolation fraction and minimum groundwater delay to
1, (2) adjusting the groundwater coefficient of capillary rise to 0.1 to prevent the upward
movement of water to the unsaturated zone, and (3) minimizing the return flow from the
shallow and deep aquifers in SWAT. The deep aquifer recharge time series generated by
SWAT-B&B were then input to Karst-SWAT in order to simulate and calibrate the discharge
of the springs. The parameters of the Karst-SWAT model were adjusted based on daily
spring discharge data from 47 gauging stations in Crete.

The hydrologic model in SWAT was adjusted using a step-wise calibration with
monthly streamflow data at 15 stream gauging stations. Snow, surface runoff, lateral flow,
and baseflow parameters were first calibrated separately in order to adjust the timing of
the runoff signal and the discharge values (peak flow and baseflow). Then, the model
was recalibrated based on the streamflow-related parameters combined with the adjusted
variables of the other water budget components. The final near optimal parameter set of
the calibrated subbasins was transferred to the ungauged subbasins using the hydrological
similarity approach with the Partial Least Squares Regression, in order to identify similar
subbasins based on the correlation between the watershed and discharge characteristics.

Subsequently, the calibrated spring discharge time series from Karst-SWAT were
added to the Crete SWAT model as point sources in order to predict the total monthly
runoff across the island, and a final calibration was performed to adjust discharge. The
results of the performance indicators showed that only 40% of the calibrated gauging
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stations scored NSE values greater than 0.5, while 50% had R2 values higher than 0.5 and
64% reached PBIAS lower than 25%.

Moreover, Nguyen et al. [166] added a two-reservoir karstic flow model to the original
groundwater module of SWAT. The improved SWAT code, termed SWAT_IFG, consists of
two conceptual groundwater models compiled in a single executable file: (1) the standard
SWAT one-reservoir model applied to non-karst terrains, and (2) the modified two-reservoir
model used in karst areas. The two-reservoir groundwater model of SWAT_IGF represents
a variant of the Karst-flow model by Nikolaidis et al. [157]. In SWAT_IGF, the matrix
reservoir receives diffuse recharge as a linear function of daily infiltration from the soil
bottom, considering the time delay of flow in the unsaturated zone (Equations (A15) and
(A16) of Appendix H). The conduit reservoir receives another fraction of the soil water
seepage as concentrated recharge with infiltration losses from sinking streams. It is also
fed by diffuse discharge from the matrix reservoir, which represents the flow exchange
mechanism between the two karst domains (Equations (A18) and (A19) in Appendix H).
Groundwater outflow from the matrix storage reservoir to the conduit is modeled using
a linear storage-discharge equation with a matrix recession coefficient (Equation (A17)
in Appendix H). Outflow from the conduit reservoir to the spring is also modeled via a
linear storage-discharge relationship adjusted for the total recharge volume to the conduits
and a conduit recession coefficient (Equation (A20) in Appendix H). The total discharge
of the basin where the spring is located is then simulated as the sum of the direct runoff
(surface runoff and lateral flow) and the outflow from the conduit reservoir to the spring
(Equation (A21) in Appendix H). Consequently, SWAT_IGF can simulate surface runoff
and subsurface flow in non-karst and karst areas. It can also account for the dual recharge
and storage functions of the matrix and conduits. and model spring discharge in regions
where the karst aquifer boundaries do not coincide with the surface subbasin areas.

SWAT_IGF was applied to simulate discharge in the drainage basin of the karst
dominated southern Harz rim and non-karst southwest Harz Mountains in Northern
Germany. The watershed covers an area of 384 km2 and has one river outlet and a main
spring outlet (the Rhume spring). The spring is mainly fed by allogenic recharge and river
transmission losses from upstream subbasins via a connected network of losing streams
in the area, with only 4% of the spring discharge originating from autogenic recharge and
nearly 96% from IGF.

When applying SWAT_IGF, an aquifer classification map with information about the
aquifer types and spring recharge area in the study site was incorporated into the model
to delineate karst and non-karst HRUs. Subsequently, the suitable conceptual reservoir
model could be assigned (the two-reservoir model for the karst HRUs and the one-reservoir
model for the non-karst HRUs), and recharge from the extended karst area could be routed
to the spring outlet.

SWAT_IGF was run for 14 years at the daily time step, with 3 years of warm-up, 6
years of calibration, and 5 years of validation. The model parameters were fitted based on
multi-site daily streamflow data and satellite-derived actual evapotranspiration records
(the Moderate Resolution Imaging Spectroradiometer MOD16 ETa). A multi-criteria NSE
objective function was used to assess the overall performance of the model simulation, with
equal weights allocated to the multi-gauge streamflow observations and evapotranspiration
data. Results showed that the use of MOD16 ETa data in the calibration did not affect the
model performance. The flow simulation at the spring outlet improved with multi-gauge
calibration, as the NSE values varied from 0.75–0.48 (calibration-validation) with the single
gauge calibration to 0.69–0.62 under the multi-site calibration. The model performance
for all remaining streamflow gauging stations also improved with multi-site calibration,
and NSE values of 0.54–0.91 and 0.6–0.91 were reached for the calibration and validation
periods, respectively. Additionally, the model prediction uncertainty was reduced. The
PBIAS values calculated at the different gages fell below 10%, while KGE values ranged
between 0.68 and 0.91. Yet, the observed and simulated streamflow hydrographs showed
that SWAT_IGF underestimated the high and low flows, which is a property inherited
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from the original SWAT model. Nonetheless, the model successfully simulated IGF and
transmission losses from the rivers contributing to the spring discharge.

4.2.3. Conceptual Linear Three-Reservoir Model

This subsection describes the modified SWAT models with a linear three-reservoir
groundwater module to simulate flows of the main karst aquifer components (i.e., epikarst,
matrix and conduits). These models include the modified SWAT by [167,168].

Wang et al. [167] coupled SWAT (v2012) with a linear three-reservoir model. The
modified model consists of: (1) an upper reservoir that reproduces the regulation and
storage function of the epikarst and is recharged by percolation from the soil bottom,
(2) a middle reservoir that represents the conduits system fed by infiltration from the
epikarst, depressions, and avens, and (3) a lower reservoir corresponding to the matrix
system recharged by the epikarst and conduit reservoirs. Daily infiltration to the upper
reservoir is simulated as a function of the saturation moisture content in the epikarst
system, its water-holding content, and saturated hydraulic conductivity (Equations (A22)
and (A23) of Appendix I). To simulate the intercompartment fluxes, a proportionality
coefficient (α1 : 0.5–1) is introduced to separate the recharge from the epikarst reservoir
between the quick flow and slow flow reservoirs, based on the degree of karstification of the
watershed. Another coefficient (α2 : 0.1–0.5) is used to split the discharge from the conduit
reservoir between the slow flow reservoir and the basin outlet (Equations (A24) and (A25)
of Appendix I). The outflows from the conduit and matrix reservoirs are modeled using
the standard attenuation functions of SWAT (See Equations (A26) and (A27) of Appendix I).
Finally, the total karst flow is calculated as the sum of the discharge components of the
matrix and conduit reservoirs (Equation (A28) of Appendix I), which is then added to the
surface runoff to simulate the total discharge at the watershed outlet.

The original and modified SWAT models were applied to predict daily runoff for a
fully karstified watershed of 26.76 km2 located in Hunan Province, China, with a calibration
period of 180 days and a validation period of 100 days. The study area is primarily covered
by Devonian and Carboniferous limestone and exhibits karst depressions, caves, and
underground rivers. The SWAT three-reservoir model yielded a streamflow simulation that
was significantly better than that obtained by the standard SWAT model in both calibration
and validation, with NSE values increasing from 0.57–0.63 to 0.81–0.83 and R2 values
increasing from 0.58–0.62 to 0.82–0.84.

Geng et al. [168] later modified the SWAT model proposed by Wang et al. [167] in
order to improve the simulation of rapid recharge to the epikarst reservoir through direct
water percolation from the soil bottom without attenuation. The modelers also added a
discharge component from the epikarst reservoir to the river channels. Three coefficients of
proportionality were thus introduced to the three-reservoir groundwater model in order
to separate the flow from the epikarst reservoir between a surface runoff component and
two recharge components to the matrix and conduit reservoirs (See Equations (A29) to
(A31) of Appendix J). Rapid infiltration through sinkholes, ponors, and fractures was also
replaced by pond leakage with concentrated (fast) recharge similar to the computational
method proposed by Baffaut and Benson [153]. The remaining intercompartment fluxes
were modeled similarly to the model by Wang et al. [167].

The modified SWAT model was applied to simulate the hydrological cycle processes
in the Daotian River basin, including the contribution of the streamflow and baseflow
components to the runoff at the watershed outlet. The study site is situated in the Guizhou
Province, China, and has a temperate monsoon climate. It covers a total area of 99.21 km2

of which ~53% is dolomite, ∼38% limestones, and ∼9% clastic rocks. The karst landscape
is characterized by karst depressions, sinkholes, and well-connected networks of conduits
of high hydraulic conductivity, particularly in the limestone area. Due to karst effects, the
watershed recharge boundaries extend by 24.75 km2 beyond its surface drainage area, and
the additional water is discharged into the watershed through underground conduits. The
areas outside the topographic drainage divides and the flow paths of the karst subterranean
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rivers that exist in the watershed were determined by conducting a karst survey and an
artificial tracer test prior to hydrological modeling. After determining the flow paths of the
subterranean river based on the spatial distribution of the subterranean river inlet, ponors,
and sinkholes, the DEM data were modified to convert the subterranean river into a surface
river. By adopting this approach, the actual catchment boundaries of the watershed were
correctly identified by SWAT for the subbasins delineation.

The modified SWAT model was calibrated using daily streamflow measurements at
the watershed outlet for 6 years (1993–1998). Two validation periods were considered
under various annual precipitation patterns: the first from 1999 to 2002 (normal, dry, and
wet years) and the second from 2003 to 2006 (normal and dry years). The performance
of the modified SWAT model was compared to that of a previous model run in SWAT at
monthly time scale. Both models had satisfactory simulations of monthly discharge. Yet,
the modified SWAT model had a better prediction efficiency than the original SWAT, scoring
NSE values of 0.87–0.83/0.85, R2 of 0.88–0.84/0.86, and PBIAS of 2.5%–(−1.9%/−15%)
for the calibration and two validation periods, respectively. The three-reservoir model
also improved the simulation of the karst water cycle by increasing the groundwater
recharge and return flow components. As a result, the NSE for the baseflow simulation of
the modified SWAT model was 0.09 higher than that of the original SWAT model, which
underestimated flows below 0.7 m3.s−1 in the dry periods and overestimated runoff during
wet periods.

4.2.4. Conceptual Non-Linear One-Reservoir Model

To the best of our knowledge, a non-linear groundwater reservoir has been previously
implemented few times in SWAT to: (1) model groundwater flow in a karstic aquifer [169],
(2) estimate baseflow in rivers dominated by snow and glacier melt [179], and (3) improve
the prediction of streamflow in watersheds with complex groundwater processes under
heavy irrigation pumping [180].

Wang and Brubaker [169] replaced the linear reservoir model in SWAT with a single
non-linear reservoir based on the algorithm of Wittenberg [181] (see Equations (A32) and
(A33) of Appendix K), providing a modified SWAT version called ISWAT. The ISWAT
model was tested in the Shenandoah River watershed of the Potomac River basin (USA),
which drains a large karstic area of 7607 km2. It was calibrated using 13 years of daily
discharge records across 14 gauging stations, with 2 years of warm-up, and validated for
4 years. To account for the spatial variability of the geology and soils in the watershed
during calibration, the parameters of the non-linear reservoir (i.e., groundwater recession
coefficients and exponents) were grouped by soil type.

The ISWAT model performance was assessed against that of the linear SWAT model by
comparing the simulated and observed streamflow hydrographs at the different gauging
stations, and the recession curves in the low flow periods with the baseflow taken as the
lowest 30% of daily discharge. The non-linear ISWAT model reproduced low flow discharge
and recession curves better than SWAT, but simulated peak flows with a comparable
accuracy to SWAT. The NSE (modified) and R2 indices improved with the use of the non-
linear model at the level of eight and ten observational river reaches, respectively, with
values of 0.5 and 0.6. The non-linear model also lowered the overall relative bias of the
simulations by 3%, with the majority of the observational river reaches scoring a bias less
or equal to 10%.

4.2.5. Modified Crack Flow with Conceptual Linear One-Reservoir Model

This subsection summarizes the application of the modified SWAT models by [36],
which were adapted to simulate fast recharge in karstified watersheds based on the crack
flow approach in SWAT.

Eini et al. [36] modified SWAT (v2012) to increase groundwater recharge in karst areas
by: (1) adjusting the groundwater recharge function in SWAT to increase infiltration in
karst HRUs (the SWAT-ML model), and (2) expanding the crack flow module in SWAT to
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retain the formation of cracks independently of soil moisture conditions (the SWAT-CF
model). These modifications were based on the premise that preferential flow through the
soil sinks and cracks can be representative of rapid recharge in karst landforms.

Both SWAT-ML and SWAT-CF were applied in the Maharlu Lake, a large watershed of
4270 km2 in Southwest Iran, of which 37% is covered by extensive karst areas (limestone
and dolomite). Several karst-fissured aquifers are well developed in these areas due to
lithology, climate, and tectonic activity.

In SWAT-ML, infiltration from non-karst areas was calculated using the standard SWAT
recharge equation (Equation (A34) of Appendix L), while fast infiltration from karst areas
was modeled by dividing the delay variable in the original groundwater recharge equation
by a new non-dimensional calibration parameter (X) (Equation (A35) of Appendix L).
This parameter can be increased depending on the volume and numbers of cracks in a
karst HRU.

In SWAT-CF, the standard SWAT function that calculates crack volume during the
crack flow process was modified by adding a new parameter of the crack volume based on
new moisture conditions (Equation (A36) of Appendix L) to achieve a year-round crack
formation in the soil matrix. As a result, SWAT-CF can simulate crack flow in karst HRUs
both in dry and wet soil conditions during surface flow events, as opposed to standard
SWAT, which only models crack volume on drier days as a function of crop capacity and
soil moisture.

The hydrological models developed with SWAT, SWAT-ML, and SWAT-CF were run
using streamflow data recorded at 3 gauging stations, with 3 years of warm-up, 26 years of
calibration, and 4 years of validation. Both modified SWAT models outperformed SWAT
in simulating monthly streamflow at different stations, with SWAT-ML having the best
overall accuracy. The average NSE value increased from 0.64 with SWAT to 0.67 using
SWAT-CF and 0.69 using SWAT-ML, while the average R2 value varied from 0.70 to 0.69
and 0.72 under SWAT-CF and SWAT-ML, respectively. The modified models also increased
the prediction accuracy of the baseflow and water budget components.

4.2.6. Variable Source Area Hydrology with Conceptual Linear One-Reservoir Model

Topo-SWAT (initially termed SWAT-VSA) is a modified version of SWAT that was
applied to simulate flow, sediments yield, and nutrients loads in a watershed with vari-
able source area (VSA) hydrology [170]. Compared to SWAT, Topo-SWAT incorporates a
topographic wetness index (TI) that indicates the saturation potential of a landscape unit
and the subsequent likelihood of runoff generation. Ten equal-area wetness classes ranging
from 1 to 10 (1 being 10% of the watershed with the lowest runoff potential, and 10 being
10% of the watershed with the highest runoff potential) were used to overlay a wetness
class layer with the soil map of the study site and generate a single GIS layer and associated
lookup tables for the SWAT slope class and soil layers.

Topo-SWAT was tested in the Spring Creek watershed in northeastern USA. Spring
Creek has a surface water watershed area of 370 km2 but is defined by a groundwater
recharge boundary of 450 km2, which is characterized by saturation excess surface runoff
from VSAs (e.g., perched and losing streams in the headwater regions of the watershed,
low surface runoff in the forested uplands due to quick infiltration through shallow soils,
overland flow generated at the base of hillslopes). Some of the adjustments made to the
model parameters to accurately represent karst hydrology in the study watershed included
reducing the initial curve number, restricting the groundwater delay factor to 1 day, setting
the baseflow recession factor to 0.011 day based on observed daily streamflow records,
and introducing the contribution of the springs that recharge outside Spring Creek but
discharge inside the watershed as point sources.

Topo-SWAT outperformed SWAT in modeling daily streamflow for a 12-year simu-
lation period, with NSE of 0.73–0.79, PBIAS of −2.8 to −3.7%, and R2 of 0.71–0.77 in the
calibration and validation periods. Moreover, Topo-SWAT successfully reproduced the VSA
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hydrology of the watershed using the wetness class distribution approach and predicted
water quality adequately.

The calibrated Topo-SWAT model of the Spring Creek watershed was later used to
simulate nutrient and sediment loadings under four dairy cropping scenarios of different
land areas, feed production, and nutrient input strategies [171]. The model was also applied
to evaluate the impacts of agricultural best management practices on nutrient water quality
in the watershed [172]. Gunn et al. [173] further modified SWAT-VSA by integrating a
daily dynamic time series of CO2 into the model and implementing changes to the plant
subroutines to additionally include flexible stomatal conductance and LAI parameters.
The generated models, namely SWAT-VSA_CO2 and SWAT-VSA_CO2+Plant, were used
to predict the impacts of climate change with increasing atmospheric CO2 on the water
balance of the Spring Creek watershed.

4.2.7. SWAT + Water Accounting Plus (WA+) Framework

Delavar et al. [174] coupled SWAT with the Water Accounting Plus (WA+) framework,
providing a hybrid tool to analyze water resources and support macro and micro water
planning in watersheds, based on past, current and future trends in water demand and
supply. WA+ uses four sheets to assess water resources in a basin, including resource
base, evapotranspiration, productivity, and withdrawal components. In order to populate
these sheets with input data generated by hydrological simulation in SWAT, the SWAT
source code was modified to: (1) simulate and report the daily groundwater level changes,
and (2) model the interactions and exchanges between the aquifers located in different
subbasins by overlaying the subbasin HRUs layer and aquifer boundaries during HRUs
definition. The SWAT-WA+ tool was used to evaluate the trends in water supply and
consumption in the Tashk-Bakhtegan karst watershed (27,520 km2) in Iran, where 60% of
the irrigation demand is met by groundwater. Delavar et al. [175] remodified SWAT (v2012)
and linked it with WA+, adding the crack flow module proposed by Eini et al. [36] with
the other modifications previously implemented by Delavar et al. [174] to link SWAT and
WA+. The model was applied to assess different conditions of water supply and demand
under wet and dry periods in the karstified Karkheh River basin (42,267 km2) in Iran.

The customized SWAT-WA+ frameworks, namely SWAT-FARS for the Tashk-Bakhtegan
basin and SWAT-Karkheh for Karkheh River basin, were calibrated for streamflow, ground-
water levels, evapotranspiration, and crop yields using a multi-stage calibration process.
Both models scored NSE and R2 values higher than 0.5 for the streamflow and groundwater
levels simulations in the calibration and validation periods. The outputs of the modified
SWAT models were then used to run the WA+ framework. The results of the WA+ assess-
ments revealed that the Tashk-Bakhtegan basin has suffered a decline in the volume of
manageable water by more than 20% while irrigation demand increased by more than 50%,
and that the volume of manageable water in the Karkheh River basin has dropped while
groundwater abstraction increased by 17% due to climate change.

4.2.8. Overall Performance of Modified SWAT Models

Based on the reviewed literature, a total of 18 modified SWAT models have been
developed and applied across 25 studies in watersheds characterized by karst geology
(Table 2). Models that were run at daily and monthly time intervals reported a higher
prediction efficiency of the flow at the monthly scale than the daily scale, both in calibration
and validation periods [152,157,163,170]. Around 80% of the studies that used NSE to
evaluate the hydrological model performance at the daily time step reported NSE values
greater than 0.5 for the calibration and validation periods. In comparison, more than
80% of the studies that used the monthly time step scored NSE values higher than 0.5
for calibration, and more than 90% reported NSE values greater than 0.5 for validation
(Figure 3).
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Several applications showed that accounting for external flows from sinkholes and IGF,
in conjunction with the implementation of reservoir models in SWAT, is needed to achieve
an adequate representation of karstic flows [155,157,158,163,166,167,170,174]. Overall,
coupling SWAT with karst flow models and adding external functions that reproduce karst
features and processes to the SWAT source code have resulted in semi-distributed karstic
flow models that simulated discharge with a comparable or better prediction efficiency than
standard SWAT [36,155,156,167–169] while accounting for the dynamics of the different
components in a karst system (when applicable).

However, poor daily and monthly performance statistics were still reported by Afinow-
icz et al. [152], Baffaut and Benson [153], and Malagò et al. [165] following the modification
of the SWAT code. These results which suggest that modified approaches applied to the
groundwater recharge and reservoir functions in SWAT may not always guarantee a suc-
cessful simulation of the flow in complex karstic environments. For instance, Afinowiz
et al. [152] indicated that additional modifications to the SWAT flow modules could be
required to adequately simulate the large volumes of surface runoff and return flow during
flood events as opposed to baseflow during low flow periods. Additionally, we could
not identify published studies in which the modified SWAT models were applied across
different watersheds, with the exception of the Karst-SWAT model [157] which has been
used in the Koiliaris River Basin and the Island of Crete for a multitude of applications (i.e.,
hydrological and geochemical analyses, climate change impacts, management practices).
Thus, one could infer that these models have not been widely tested in other karst basins or
they only worked for watersheds with comparable geomorphological and hydrogeological
characteristics to the basins in which they were initially applied. Consequently, the modi-
fied SWAT models listed in Table 2 can be further improved to have a better representation
of karstic heterogeneity and non-linearity in their structure.

5. Recommendations and Perspectives for Future Research
5.1. Constraints of Modified SWAT Models in Representing Karst Flow Characteristics

Highlighting the constraints of the modified SWAT models (Table 2) would be the
initial step to enhance their adaptability to other karst watersheds with complex surface
water-groundwater hydrodynamics.

First, the Karst-SWAT [157] and KSWAT [165] two-reservoir models do not consider
the function of the epikarst and do not explicitly include the diffuse and concentrated
recharge components of infiltration from the karstic soils to the deep aquifer reservoir in
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SWAT. Both models use the exponential decay weighting function to simulate recharge and
outflows of the matrix and conduit reservoirs. However, the non-linear models are generally
more suitable than the linear ones in representing the hydraulic behavior of karst systems,
particularly during low flow periods and flood events [182–184]. Moreover, the two
models follow the watershed surface delineation in SWAT to determine the recharge area
of the spring, which may not always coincide with the groundwater recharge boundaries.
This requires a tedious assessment of the karst areas recharging the springs outside the
watershed in tandem with the introduction of the spring flow time series contributing to
the watershed discharge as point sources in SWAT to simulate IGF.

Some of the Karst-SWAT and KSWAT modeling constraints were improved in the
two-reservoir SWAT_IGF model [166], which simulates the hydrological processes in non-
karst and karst regions as well as IGF in a single executable file. Although SWAT_IGF
considers the dual recharge and storage functions in karst systems, it uses the linear storage-
discharge relationship to model the outflows of the matrix and conduit reservoirs, and
does not account for the function of the epikarst either. In SWAT_IGF, the exchange flow
rate between the matrix and conduits is simulated as a diffuse net unidirectional flow from
the matrix to the conduit. Yet, flow can be transferred from the conduit to the matrix, and
vice versa, based on the change in the water level gradient between the two mediums.
Additionally, SWAT_IGF models the spring flow contribution to discharge in karst areas
as a single outflow from the conduit reservoir, whereas both the matrix and conduits can
contribute to the karst discharge with different flow regimes (slow matrix discharge during
low flow periods and fast conduit discharge during heavy rainfall seasons).

Next, the three-reservoir models developed by Wang et al. [167] and Geng et al. [168]
incorporate the epikarst, matrix, and conduit functions, and thus represent a complete
underground karst system. Yet, their main constraint is that fluxes between the reservoirs
are simulated using a linear storage–discharge relationship.

SWAT-B&B [153], SWAT-karst [154], KarstSWAT [155], and the karst model developed
by Zhou et al. [156] can simulate fast infiltration in karst watersheds dominated by spring
flow fed by sinkholes. However, they all apply the linear reservoir of SWAT to model
groundwater flow without considering the different storage and recharge functions of the
main karst components (epikarst, matrix, and conduits). In comparison with SWAT-B&B,
SWAT-karst, and the modified SWAT model by Zhou et al. [156], which all rely on the
pond and wetland modules of SWAT for the simulation of flow through the sinkholes, only
KarstSWAT can simulate IGF. With KarstSWAT, groundwater basins that drain the aquifer
water to the spring can be identified during watershed delineation and included in a user
defined input file to route the total recharge to the spring. Nonetheless, the model may only
be applied in karst watersheds where sinkholes are solely located along the river streambed.
Moreover, KarstSWAT assumed that flow from the losing streams directly recharges the
deep aquifer through the sinkholes and emerges at the spring within a day, as the length
of the flow path from the aquifer to the spring in the study watershed was unknown.
Although this assumption was suitable for a specific study basin, additional data on
storage, time of travel, and flow diversion pathways would have been required to simulate
discharge in other watersheds. The study by Yactayo [154] corroborates this finding, as field
investigations were needed to improve the model performance by determining whether the
sinkholes route the flow within the study watershed or divert it outside of the watershed.

The SWAT-ML and SWAT-CF dedicated to watersheds with crack/preferential flow [36],
the Topo-SWAT specific to watersheds with variable surface area hydrology [170], and the
SWAT-WA+ models [174,175] may be directly applied to basins affected by karst hydrology
or other rapid infiltration phenomena. Nevertheless, they do not represent the underground
flow dynamics (epikarst-matrix-conduits) of karst aquifers either.

Finally, the non-linear ISWAT model [169] does not account for the diffuse/slow
recharge and concentrated/rapid recharge into karst aquifer systems. In addition, it does
not explicitly represent the storage and discharge functions of three main subsystems in
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karst (epikarst, matrix, and conduits) due to the lumped feature of the reservoir model
in SWAT.

5.2. Future Research Areas for the Application of Modified SWAT Models

Climate change effects on karst hydrology and water quality were investigated with
the modified SWAT models proposed by Nikolaidis et al. [157], Nerantzaki et al. [158],
Tapoglou et al. [159], Nerantzaki et al. [161], and Gunn et al. [173]. Additionally, some
studies evaluated water resources in a karst watershed for different trends in water supply
and consumption [174] as well as the joint impacts of climate change and groundwater
withdrawal on water resources availability [175]. Other studies simulated in-stream water
quality under different agricultural management practices [170–172].

However, the use of modified SWAT models for the integrated understanding of the
critical zone processes and the quantification of the impacts of evapotranspiration and
vegetation cover change on karst water resources are still lacking. Among the studies that
applied a modified SWAT code in a karst basin (Table 2), Lilli et al. [164] confirmed the
conceptualization of the two reservoir well-mixed karstic system with Karst-SWAT. using
geomorphologic and tidal analyses. Then, the authors applied Karst-SWAT to simulate the
hydrological budget and pathways in the critical zone and investigate the response of karst
during extreme events.

On the other hand, Nguyen et al. [166] investigated the impact of evapotranspiration
on the hydrological performance of SWAT_IGF by using satellite-derived ETa (Moderate
Resolution Imaging Spectroradiometer MOD16 ETa at 8-day time step and 1 km2 spatial
resolution) in tandem with multi-site streamflow records to calibrate the model. ET was
simulated in SWAT_IGF using the Penman-Monteith approach. Results of the NSE index
showed that the use of ETa as an additional variable for the calibration of discharge had
little to no effect on the model performance in the study watershed, compared with the case
in which multi-gage streamflow calibration was carried out separately. In addition, a strong
positive correlation was established between the MOD16 ETa data and SWAT-simulated ET
with only streamflow used in calibration. As the model performance for ETa was shown
to improve with the improvement of the model performance for streamflow, the use of
MOD16 ETa for model calibration was disregarded. The authors maintained, nonetheless,
that these findings should not be generalized to other remote sensing products and to
studies in other karst areas, considering more research on the use of ETa for the calibration
of karst hydrological models and streamflow estimation is needed.

Moreover, only Afinowicz et al. [152] used a modified SWAT code to predict the
impact of land-use change on the hydrological cycle of a karst area. In particular, the
authors developed scenarios for brush control strategies in function of slope, rangeland
cover density, and soil depth, to determine the most favorable areas for increasing the
watershed water yield. All scenarios of the brush reduction cover resulted in a decrease in
evapotranspiration and increases in surface runoff, baseflow, and deep aquifer recharge,
with the greatest effect observed on recharge.

Therefore, future research in the realm of karst hydrological modeling should integrate
spatially distributed ET data from remote sensing models that account for the dynamics of
the land use [33] with multi-source precipitation data derived from ground-based observa-
tions or satellite products [147,148]. This approach could improve the spatial distribution
of aquifer recharge and the overall rainfall-discharge relationship in karstic watersheds.

Other areas of future research could include testing the capabilities of the newly
released SWAT+ version in simulating discharge in karst watersheds, particularly extreme
flows (peak and low flows), and comparing the performance efficiency of SWAT+ to
previous SWAT versions. The performance of SWAT should also be compared to other
modeling approaches used in karst hydrological applications [28] in order to improve
its representation of the high and low flows sustained by karst features. Additionally,
it is recommended to model the rainfall-discharge relationship in highly dynamic karst
aquifers using subdaily time intervals (e.g., hourly time step) in order to reach a better
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prediction of the flood peak discharge during high rainfall events. Assessing the discharge
at lower time series can improve the mitigation of karst flash floods at the spring outlet
and the management of groundwater storage for future water supply [185]. Finally, future
studies could focus on developing solute transport models that incorporate the different
components and flow dynamics in karst hydrosystems.
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Appendix A

Table A1. List of SWAT Variables in the Main Text.

Variable Definition

SW Soil water content
P Precipitation

Qsur f Surface runoff
PET Potential evapotranspiration
ETa Actual evapotranspiration

Wseep Percolation and bypass flow drained from the soil profile
Qgw Return flow
Qlat Soil lateral flow
Qtile Tile flow
Tloss Channel transmission losses

WYLD Water yield
Irr Irrigation

LAI Lead area index
λ Latent heat of vaporization
E Depth rate evaporation
∆ Slope of the saturation vapor pressure–temperature curve

Hnet Net radiation
G Heat flux density to the ground

ρair Air density
cp Specific heat at constant pressure
e0

z Saturation vapor pressure of air at height z
ez Water vapor pressure of air at height z
γ Psychometric constant
rc Plant canopy resistance
ra Aerodynamic resistance
S Soil moisture retention parameter
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Table A1. Cont.

Variable Definition

CN Curve number
Ia Initial water abstraction prior to runoff

I(t) Infiltration
Iacc(t) Cumulative infiltration after ponding

ψ Wetting front matric potential
∆θ Change in soil moisture content
Ke Effective hydraulic conductivity

qpeak Peak runoff rate
αtc Fraction of daily rainfall during the time of concentration
A Subbasin area

tconc Time of concentration for the subbasin
Kch Effective hydraulic conductivity of the channel alluvium
Lch Channel length
Pch Wetted perimeter in the channel
TT Flow travel time
Ksat Saturated hydraulic conductivity
SAT Saturation water content
FC Field capacity water content

Wperc,ly Water percolation to an underlying soil layer
Wperc,ly=n Water percolating out of the lowest soil layer
SWly,excess Drainable volume of water in the soil layer

TTperc Travel time through the soil layer
Wcrk,btm Crack flow past the lower boundary of the soil profile

crk Total crack volume for the soil profile
crkly=nn Crack volume for the deepest soil layer

depthly=nn Depth of the deepest soil layer
slp Increase in elevation per unit distance
∅d Drainable (residual) porosity of the soil layer
Lhill Hillslope length
Ee,ly Evaporation drawn from the soil layer
Et,ly Transpiration drawn from the soil layer
δgw Delay time for recharge to reach the aquifers

Wrchrg Recharge to the aquifers
Wrchrg,sh Recharge to the shallow aquifer
Wrchrg,dp Recharge to the deep aquifer

Qgw,sh Return flow from the shallow aquifer
Qgw,dp Groundwater flow from the deep aquifer
αgw,sh Groundwater recession constant of the shallow aquifer
αgw,dp Groundwater recession constant of the deep aquifer

βdp Coefficient of percolation to the deep aquifer
aqsh Water level in the shallow aquifer

aqshthr,q Threshold water level in the shallow aquifer for return flow
ETrvp Actual groundwater evapotranspiration by plant uptake/capillary rise

ETrvp,max Maximum water removed from the shallow aquifer
βrvp Groundwater evaporation coefficient

aqshthr,rvp
Threshold water level in the shallow aquifer for groundwater evaporation to
occur

Qpump,sh Water withdrawn by pumping from the shallow aquifer
Vseep Seepage from the pond or wetland
Awet Water surface area of the pond or wetland

Vseep,pot Seepage from a pothole
SA Pothole surface area
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Appendix B. Afinowicz et al. [152]

Baseflow is computed using Equation (A1):

Qgw,i = Qgw, i−1 × e−αgw×∆t +
(

wrchrg − wdeep

)
×
(

1 − e−αgw×∆t
)

(A1)

where Qgw,i and Qgw, i−1 are the baseflow values for the current and previous day (mm
H2O.day−1), αgw is baseflow recession constant, ∆t is the time interval (days), wrchrg is the
water percolated past the root zone (mm H2O.day−1), and wdeep is the water percolated to
the deep aquifer (mm H2O.day−1).

Appendix C. Baffaut and Benson [153]

Slow recharge from the bottom of the soil profile and fast recharge in karst areas are
computed by Equations (A2) and (A3), respectively:

rchrgseep(t) =

(
1 − e

−1
gwdelay

)
soilseep(t) +

(
e

−1
gwdelay

)
rchrgseep(t−1) (A2)

rchrgkarst(t) =

(
1 − e

−1
karstdelay

)
karstseep(t) +

(
e

−1
karstdelay

)
rchrgkarst(t−1) (A3)

where rchrgseep(t) and rchrgkarst(t) are the slow recharge from the soil layers and fast
recharge from the sinkholes and losing streams to the aquifer on a given day (t) (mm
H2O.day−1), respectively, soilseep(t) and karstseep(t) are the percolation from the soil bot-
tom and losses from the sinkholes and losing streams (mm H2O.day−1), respectively,
gwdelay and karstdelay represent the time delay for the water percolating from the soil bot-
tom and water infiltrating from the sinkholes and riverbeds to reach the aquifer (days),
respectively, and rchrgseep(t−1) and rchrgkarst(t−1) are the recharge values of the previous
day (mm H2O.day−1).

Daily return flow is calculated using the standard equation of SWAT as a function of
groundwater flow of the previous day and aquifer recharge of that day, as follows:{

Qgw,t = rchrg(t) ×
(

1 − e−αgw×∆t
)
+ Qgw,t−1 × e−αgw×∆t

rchrg(t) = rchrgseep(t) + rchrgkarst(t)
(A4)

where Qgw,t is the daily return flow (mm H2O.day−1), rchrg(t) is the total aquifer recharge

calculated as the sum of the slow recharge from the soil layers
(

rchrgseep(t)

)
and fast

recharge from sinkholes and losing streams to the aquifer
(

rchrgkarst(t)

)
(mm H2O.day−1),

and αgw is the baseflow recession coefficient (days−1).

Appendix D. Yactayo [154]

In non-karst regions, the recharge to the unconfined aquifer is calculated using
Equation (A5):rchrgseep(t) =

(
1 − e

−1
gwdelay

)
seep +

(
e

−1
gwdelay

)
rchrgseep(t−1)

seep = sepbtm(t) + twlpnd + twlwet
(A5)

where rchrgseep(t) and rchrgseep(t−1) represent the recharge from the water percolating from
the soil bottom to the aquifer on a given day (t) and the day before (mm H2O.day−1),
respectively, seep is percolating water and seepage from impoundments on a given day
(mm H2O.day−1), sepbtm(t) is the water drained from the bottom of the soil profile (mm
H2O.day−1), twlpnd is the seepage from the ponds (mm H2O.day−1), twlwet is the seepage
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from the wetlands (mm H2O.day−1), and gwdelay is the time delay for the water percolating
from the soil bottom to reach the aquifer (days).

If a sinkhole is simulated as an HRU in karst regions (sink > 0), surface runoff and
lateral flow are added to karst seepage, and karst recharge via direct conduits is calculated
as follows:rchrgkarst(t) =

(
1 − e

−1
[gwdelay/10]

)
seepdirect +

(
e

−1
[gwdelay/10]

)
rchrgkarst(t−1)

seepdirect = sink × (sur f q + latq)
(A6)

where rchrgkarst(t) and rchrgkarst(t−1) represent the recharge from sinkholes and losing
streams via direct conduits to the aquifer on a given day and the day before (mm H2O.day−1),
respectively, seepdirect is the seepage from the sinking streams, ponds, and sinkholes on
a given day from the HRU (mm H2O.day−1), sink is the sinkhole partitioning coefficient
(0–1), and sur f q + latq is the sum of surface runoff and lateral flow from the HRU (mm
H2O.day−1).

Water routed to the deep (confined) aquifer is assumed to be lost from the system and
is calculated as follows:

deepst = gwseep + (1 − sink)× (sur f q + latq) (A7)

where deepst is the depth of water in the deep aquifer for the day from the HRU (mm
H2O.day−1), gwseep is the water recharging the deep aquifer from the HRU (mm H2O.day−1),
sink is the sinkhole partitioning coefficient (0–1), and sur f q + latq is the sum of surface
runoff and lateral flow from the HRU (mm H2O.day−1).

Appendix E. Palanisamy and Workman [155]

The capacity of a sinkhole is computed using the head-discharge relationship shown
in Equation (A8):

Q = Cd A
√

2gH (A8)

where Q is the capacity of the sinkhole (L3/T), Cd is a coefficient of discharge, A is the area
of the orifice (L2), g is the acceleration due to gravity (L/T2), and H is the head (water level)
at the orifice mouth, set as the depth of water leaving the reach segment upstream of the
sinkhole (L).

To compute the diversion of flow from a stream channel located upstream of a sinkhole,
the daily flow of water in the reach is input into the sinkhole, and water leaving the reach
is set to zero if the incoming simulated streamflow is lower than the capacity of the
sinkhole. Conversely, the sinkhole inflow is set to its full capacity, and the remaining flow
is transferred to the next reach if the streamflow is higher than the capacity of the sinkhole.

Appendix F. Zhou et al. [156]

The daily recharge to the aquifer is computed using a modified version of the recharge
function of SWAT, shown in Equation (A9):

rchrg(j) =

(
1 − e−

1
delay

)(
sepbtm(j) + gwqru(j)

)
+

(
1 − e−

1
delay

50

)
× rchrgkarst +

(
e−

1
delay

50

)
rchrg(j−1) (A9)

where rchrg(j) is the recharge to the shallow aquifer on a given day (j) (mm H2O.day−1),
delay is the groundwater delay time required for the water to infiltrate from the soil
bottom to the aquifer (days), sepbtm(j) is the daily percolation from the bottom of the soil
profile (mm H2O.day−1), gwqru(j) is the daily groundwater contribution to streamflow (mm
H2O.day−1), rchrgkarst is the amount of water seeping through the ponds (mm H2O.day−1),
and rchrg(j−1) is the recharge from the previous day (mm H2O.day−1).
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Appendix G. Nikolaidis et al. [157]

The daily inflows of water to the upper and lower reservoirs are calculated using the
following equations:

Qin,up = α1 × Qin_deepGW (A10)

Qin,low = (1 − α1)× Qin_deepGW + α2Qup (A11)

where Qin,up and Qin,low represent the water inflows to the upper and lower reservoirs
(mm H2O.day−1), respectively, Qin_deepGW is the deep groundwater flow from SWAT (mm
H2O.day−1), α1 is the fraction of deep groundwater flow entering the upper reservoir, α2 is
the fraction of flow from the upper reservoir to the lower reservoir, and Qup is the outflow
of the upper reservoir (mm H2O.day−1).

The outflows from the reservoirs and the total spring discharge are calculated as follows:

Qup = Qup−1e−kut +
(

α1Qin_deepGW

)(
1 − e−kut

)
(A12)

Qlow = Qlow−1e−kl t +
[
(1 − α1)Qin_deepGW + α2Qup

](
1 − e−kl t

)
(A13)

QT = (1 − α2)Qup + Qlow (A14)

where QT is the total spring discharge (mm H2O.day−1), Qup and Qlow represent the
outflows of the upper and lower reservoirs (mm H2O.day−1), respectively, Qup−1 and
Qlower−1 are the values of Qup and Qlow at the previous time step (mm H2O.day−1), respec-
tively, ku and kl are the recession coefficients of the upper and lower reservoirs (day−1),
respectively, Qin_deepGW is the deep groundwater flow from SWAT (mm H2O.day−1), α1 is
the fraction of deep groundwater flow entering the upper reservoir, α2 is the fraction of
flow from the upper reservoir to the lower reservoir, and t is the time step (1 day).

Appendix H. Nguyen et al. [166]

The diffuse recharge (mm H2O.day−1) from the bottom of the soil profile to the matrix
storage reservoir on day i is calculated as follows:

Wrd,i =

[(
1 − e

− 1
δgw

)
Wseep,i

]
× β +

(
e
− 1

δgw

)
Wrd,i−1 (A15)

where Wrd,i and Wrd,i−1 (mm H2O.day−1) represent the amount of diffuse recharge to the
matrix reservoir on day i and i− 1, respectively, δgw is the delay time for the infiltrated water
to reach the matrix storage reservoir (days), β is a recharge separation factor (0–1), Wseep,i is
the total amount of water exiting the bottom of the soil profile on day i (mm H2O.day−1).

The total volume of diffuse recharge Qinmatrix,i (m3 H2O.day−1) to the matrix reservoir
on day i is computed as follows:

Qinmatrix,i =
nhrus

∑
j=1

Wrd,i,j × aj × 10−3 (A16)

where Wrd,i,j (mm H2O.day−1) and aj (m2) are the diffuse recharge and area of HRU number
j, respectively, 10−3 is a unit conversion factor from mm H2O to m H2O, and nhrus is the
number of HRUs in the recharge area.

The outflow from the matrix storage reservoir is simulated using the linear storage–
discharge relationship, as follows:

Qmatrix,i = Qmatrix,i−1

(
e−αmatrix∆t

)
+
(

1 − e−αmatrix∆t
) nhrus

∑
j=1

Wrd,i,j × aj × 10−3 (A17)
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where Qmatrix,i and Qmatrix,i−1 are the outflows from the matrix storage reservoir on day
i and i − 1 (m3 H2O.day−1), respectively, αmatrix is the recession constant of the matrix
storage reservoir (day−1), ∆t is the time step (1 day), Wrd,i,j (mm H2O.day−1) and aj (m2)
are the diffuse recharge and area of HRU number j, respectively, 10−3 is a unit conversion
factor from mm H2O to m H2O, and nhrus is the number of HRUs in the recharge area.

The concentrated recharge Wrc,i (mm H2O.day−1) from closed depressions, fractures,
and sinkholes to the conduit storage reservoir on day i is calculated as follows:

Wrc,i = (1 − β)Wseep,i (A18)

where β is a recharge separation factor (0–1), and Wseep,i is the total amount of water exiting
the bottom of the soil profile on day i (mm H2O.day−1).

The total volume of concentrated recharge Qin,conduit (m3 H2O.day−1) to the conduit
reservoir on day i is calculated as follows:

Qin,conduit =
nhrus

∑
j=1

Wrc,i,j × aj × 10−3 + rttlci + Qmatrix,i (A19)

where Qmatrix,i is the outflow from the matrix storage reservoir on day i, rttlci is the
recharge from losing streams on day i (m3 H2O.day−1), ∆t is the time step (1 day), Wrc,i,j

(mm H2O.day−1) and aj (m2) are the concentrated recharge and area of HRU number j,
respectively, 10−3 is a unit conversion factor from mm H2O to m H2O, and nhrus is the
number of HRUs in the recharge area.

The outflow from the conduit storage reservoir is simulated using the linear storage–
discharge relationship, as follows:

Qconduit,i = Qconduit,i−1

(
e−αconduit∆t

)
+

[
nhrus

∑
j=1

Wrc,i,j × aj × 10−3 + rttlci + Qmatrix,i

](
1 − e−αconduit∆t

)
(A20)

where Qconduit,i and Qconduit,i−1 are the outflows from the conduit storage reservoir on day
i and i−1 (m3 H2O.day−1), respectively, αconduit is the recession constant of the conduit
storage reservoir (day−1), rttlci is the amount of recharge from losing streams on day i
(m3 H2O.day−1), ∆t is the time step (1 day), Wrc,i,j (mm H2O.day−1) and aj (m2) are the
concentrated recharge and area of HRU number j, respectively, 10−3 is a unit conversion
factor from mm H2O to m H2O, and nhrus is the number of HRUs in the recharge area.

The total runoff Qriver,i (m3 H2O.day−1) of the basin at the location of the spring is
calculated as follows:

Qriver,i = Qconduit,i + Qdirect,i (A21)

where Qdirect,i is the daily direct runoff calculated as the sum of the surface runoff and
lateral flow from the basin where the spring is located (m3 H2O.day−1), and Qconduit,i is the
outflow from the conduit storage reservoir on day i (m3 H2O.day−1).

Appendix I. Wang et al. [167]

According to the model proposed by Wang et al. [167], water added to the epikarst
is first computed as a function of the water percolated from the bottom of the soil profile
minus the water recharge from the depression and aven.

The attenuation function of the epikarst is represented as follows:

TT =
sat − fc

k
(A22)

where TT is the attenuation coefficient, sat is the saturation moisture content in the epikarst
system (mm H2O), fc is the water holding capacity in the epikarst system (mm H2O), and k
is the saturated hydraulic conductivity (mm.h−1).
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Infiltration water through the epikarst is calculated as follows:

Qi = Wst

(
1 − e

−t
TT

)
(A23)

where Qi is the water infiltrated through the epikarst on a given day (mm H2O.day−1), Wst
is the water content in the epikarst which varies in function of the daily percolation from
the soil bottom (mm H2O.day−1), and t is the simulation time step (1 day), and TT is the
attenuation coefficient.

The daily recharge values to the upper and lower reservoirs are computed as follows:

Qin,up = α1Qi + QC (A24)

Qin,low = (1 − α1)Qi + α2Qup (A25)

where Qi is the water infiltrated through the epikarst on a given day (mm H2O.day−1), QC
is the injection volume from the depression and aven (mm H2O.day−1).

The discharge values of the upper and lower reservoirs are calculated using
Equations (A26) and (A27), respectively, as follows:

Qup = Qup−1

(
e−kut

)
+ (α1Qi + QC)×

(
1 − e−kut

)
(A26)

Qlow = Qlow−1

(
e−kl t

)
+
[
(1 − α1)Qi + α2Qup

]
×
(

1 − e−kl t
)

(A27)

where Qup and Qlow are the daily discharge values of the upper and lower reservoirs (mm
H2O.day−1), Qup−1 and Qlow−1 are the discharge values of the upper and lower reservoirs
on the previous day (mm H2O.day−1), Qi is the water infiltrated through the epikarst
on a given day (mm H2O.day−1), QC is the recharge from the depression and aven (mm
H2O.day−1), α1 is the coefficient of proportionality for infiltration from the epikarst to the
upper reservoir, and α2 is the coefficient of proportionality for infiltration from the upper
to the lower reservoir, and ku and kl are the recession coefficients of the upper and lower
reservoirs (day−1), respectively.

The total contribution of the reservoirs to the streamflow QT (mm H2O.day−1) is then
calculated as the sum of outflows from both reservoirs:

QT = (1 − α2)Qup + Qlow (A28)

where Qup and Qlow represent the discharge components from the upper reservoir and
lower reservoirs (mm H2O.day−1), respectively, and α2 is the coefficient of proportionality
for infiltration from the upper to the lower reservoir.

Appendix J. Geng et al. [168]

In the model proposed by Geng et al. [168], the upper reservoir is recharged by water
infiltration from the bottom of the soil profile. The fast recharge through the sinkholes and
cracks is modeled using pond leakage, as follows:

Qkr = (1 − Kd)twlpnd + KdQkr0 (A29)

where Qkr and Qkr0 represent the recharge of karst groundwater on a given day and the day
before (mm H2O.day−1), respectively, twlpnd represents pond leakage (mm H2O.day−1),
and Kd is the flow delay coefficient in the karst groundwater recharge from sinkholes (days).
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The discharge for each reservoir is calculated as follows:
Qi = Qi,0

(
e−αi∆t)+ Qin,i

(
1 − e−αi∆t)

Qin,up = Qseep
Qin,mid = Qkr + β1Qup

Qin,low = β2Qup + β3Qmid
i = up, mid, low

(A30)

where Qi is the discharge of reservoir i on a given day (mm H2O.day−1), i denotes the
reservoir (one of the upper, middle, and lower reservoirs), Qin,i is the daily recharge to
reservoir i (mm H2O.day−1), αi is the recession constant of reservoir i (day−1), ∆t is the time
step (1 day), Qi,0 is the discharge of reservoir i on the previous day (mm H2O.day−1), Qkr is
the karst groundwater recharge on a given day (mm H2O.day−1), Qseep the daily infiltration
recharge from the soil bottom (mm H2O.day−1), and β1, β2, and β3 are coefficients of
proportionality.

The total discharge of karst groundwater QT (mm H2O.day−1) is then calculated as
the sum of outflows from the three reservoirs, as follows:

QT = (1 − β1 − β2)Qup + (1 − β3)Qmid + Qlow (A31)

where Qup, Qmid and Qlow represent the outflows from the upper, middle, and lower reser-
voirs (mm H2O.day−1), respectively, and β1, β2, and β3 are coefficients of proportionality.

Appendix K. Wang and Brubaker [169]

The return flow is estimated as an explicit function of the shallow aquifer storage
based on the non-linear algorithm of Wittenberg [180], as follows:

Ssh − Ssh,min =
1

αgw
Qgw

βgw (A32)

Qgw =
(
αgw(Ssh − Ssh,min)

)1/βgw (A33)

where Ssh is the shallow aquifer storage (L), Ssh,min is the minimum storage for groundwater

flow to occur (L), αgw is a scale parameter
(

TβL3(1−β)
)

, βgw is a dimensionless coefficient.
If βgw = 1, the non-linear model becomes linear.

Appendix L. Eini et al. [36]

Appendix L.1. SWAT-ML

In SWAT-ML, aquifer recharge from the non-karst areas and recharge from the karst
areas are computed separately using Equations (A34) and (A35), respectively, each with a
different delay time parameter.

rchrg(j) =
(

1 − gwdelay(j)

)
×
(

sepbtm(j) + gwqru(j)

)
+ gwdelay(j) × rchrg1 (A34)

rchrgkarst(j) =

(
1 − e

−1
gwdelay(j)

X

)(
sepbtm(j) + gwqru(j)

)
+

(
e

−1
gwdelay(j)

X

)
rchrgkarst1 (A35)

where rchrg(j) and rchrgkarst(j) represent the daily recharge values from non-karst and karst
HRUs (mm H2O.day−1), respectively, j denotes the HRU number, gwdelay(j) is the recharge
delay time (days), sepbtm(j) is the daily percolation from the bottom of the soil profile
(mm H2O.day−1), gwqru(j) represents the seepage from the lakes, wetlands, and riverside
branches (mm H2O.day−1), rchrg1 and rchrgkarst1 represent the recharge values from the
previous day (mm H2O.day−1), and X is a non-dimensional calibration parameter (1, +∞)
used to adjust infiltration rates in karstic HRUs.
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Appendix L.2. SWAT-CF

In the standard SWAT, crack volume is set to zero for wet conditions. Conversely, the
crack volume in SWAT-CF is calculated using Equation (A36), which allows cracks to form
in wet soils, thus removing the distinction of dry and wet soil conditions during the crack
flow process.

volcrk(l,j) = crlag × volcrk(l,j) + (1 − crlag)× volcrknew (A36)

where volcrk is the crack volume for soil layer (mm), crlag is a daily lag factor for crack
development, volcrknew is the crack volume for soil layer based on new moisture conditions
(mm), j is the HRU number, and l is the counter.
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2. Biondić, R.; Meaški, H.; Biondić, B.; Loborec, J. Karst Aquifer Vulnerability Assessment (KAVA) Method—A Novel GIS-Based
Method for Deep Karst Aquifers. Sustainability 2021, 13, 3325. [CrossRef]
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