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Abstract: Within a river catchment, the relationship between pollutant load migration and its related
factors is nonlinear generally. When neural network models are used to identify the nonlinear
relationship, data scarcity and random weight initialization might result in overfitting and instability.
In this paper, we propose an averaged weight initialization neural network (AWINN) to realize
the multi-index integrated prediction of a pollutant load under data scarcity. The results show that
(1) compared with the particle swarm optimization neural network (PSONN) and AdaboostR models
that prevent overfitting, AWINN improved simulation accuracy significantly. The R2 in test sets of
different pollutant load models reached 0.51–0.80. (2) AWINN is effective in overcoming instability.
With more hidden layers, the stability of the models’ outputs was stronger. (3) Sobol sensitivity
analysis explained that the main influencing factors of the whole process were the flows of the
catchment inlet and outlet, and main factors changed across seasons. The algorithm proposed in this
paper can realize stably integrated prediction of pollutant load in the catchment under data scarcity
and help to understand the mechanism that influences pollutant load migration.

Keywords: catchment; pollutant load migration; neural network; weight initialization; Sobol
sensitivity analysis; stability

1. Introduction

Water pollution caused by human activities has become a vital element that affects
the health of rivers and is an obstacle to sustainable development [1]. The change in water
quality is related to water quality upstream, migration of pollutants from the catchment,
and hydrodynamic factors [2,3]. The pollutant load from a catchment is the first reason that
brings uncertainty to the corresponding water environment. Because of the influences of
nature and human activities, the inner mechanism of pollutant load generation, migration,
and reduction has the characteristics of high dimension and complex nonlinearity [4]. The
synthesis simulation of the nonlinear relationship between pollutant loads and factors
within a catchment has become a hotpot in the field of water pollution control [5].

The methods of pollutant load simulation include the coefficient model, statistical
model, process-based model, and machine learning model. The export coefficient model
(ECM) builds the relationship between pollutant loads and pollution sources by coefficients
to predict pollutant loads [6]. To avoid the uncertainty from precipitation and terrain,
researchers developed the improved export coefficient model (IECM) [7]. Nevertheless, co-
efficient models make it hard to consider the integrated effects of multiple factors. Statistics
models (e.g., multiple linear regression (MLR)) were considered to simulate pollutant loads,
but the statistical method did not yield a good generalization [8]. With the in-depth study
of non-point source pollution, more process-based models such as SWAT and AGNPS have
been widely used in simulating pollutant loads [9,10]. Process-based models need many
practical measured variables and model parameters, and they are not fit in regions that
lack data. The models mentioned above make it hard to reach a trade-off between model
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precision and data accessibility. So, there are limitations in researching water pollutant
loads systematically.

Machine learning models are always seen as black boxes that can link various input
data and output data. Until now, machine learning has become an important means of
realizing the integrated simulation of different types of water pollution. Machine learning
studies related to water pollution have been involved in the following aspects: (1) recogniz-
ing the relationships between the targeted water-quality indicator and other water-quality
indicators that are monitored easily by investigating the special relationships of water-
quality indicators in different positions [3,11–13], (2) predicting time series of water-quality
indicators [14–17], (3) simulating water-quality indicators by remote sensing informa-
tion [18,19], and (4) extending some influencing factors into the input of machine learning
models. Some unknown influences from river channels, natural conditions, and human
activities have been considered in simulations [20–24]. However, integrated simulations
of water pollutant loads that include socioeconomic data have rarely been considered in
machine learning models.

Usually, machine learning models’ generalization ability is weak under data scarcity [25].
As the most widely used machine learning model, the neural network (NN) model also
faces the problem of overfitting when data are deficient. The model’s structure and the
random initialization of weight are two main reasons [26]. To overcome the problem
of overfitting in NN models, many methods have been proposed, such as (1) dropout
and L-regularization methods, which randomly reduce neurons and increase the penalty
term of the loss function during the training process to avoid the model falling into local
optimum [27]; (2) ensemble learning methods, which integrate multiple models to reduce
overfitting caused by a single model [28]; (3) data dimension reduction methods like
principal component analysis (PCA) that can select the most relevant factors and reduce the
influences of redundant factors on model training [29]; (4) intelligent training methods like
particle swarm optimization (PSO), the genetic algorithm (GA), or the cuckoo algorithm
(CA) that can search the global optimum effectively in the training process [30–33]; (5) deep
learning structures like RNN or CNN that can understand the deep structures of data
by changing the structures of neural network models [14,34,35]; and (6) other machine
learning methods, like support vector machine (SVM), the adaptive neural fuzzy inference
system (ANFIS), and extreme learning machine (ELM), which are based on theories such as
hyperplane and fuzzy inference to improve generalization ability [3,12,36]. These methods
address the overfitting problem to some extent; however, methods that fully mine available
poor data to improve generalization ability are lacking research.

Stability refers to the property of a model being able to maintain a certain range of
output when the model is disturbed. In addition to overfitting, it is also an important
feature for measuring the generalization ability of machine learning models. Stable machine
learning models can generate reliable results [37]. Under data scarcity, random weight
initialization will make neural network models over-fitted and unstable. There are two
types of initialization methods, including non-pre-training initialization and pre-training
initialization [38]. Non-pre-training initialization methods can improve the overfitting
problem partly by adjusting the initial weight to adapt to the model structure [38–40].
Pre-training initialization methods extract the information from the trained NN model
weights to determine the final initial weights [41]. Go et al. (2004) clustered the weights
in the weight space and took the average of the cluster centers as the initial weights to
classify vegetation types corresponding to the spectral data and achieved good classification
results [42]. However, it needs to be verified whether the accuracy and stability of the
NN model using the pre-training initialization method can be improved when fitting the
regressive relationship of variables under data scarcity.

In addition to stable and accurate machine learning simulation of water pollutant
loads, the identification of the main influencing factors in water pollutant load migration is
helpful to understanding the inner mechanism of water pollution [43]. However, the black-
box nature of NN models makes them difficult to interpret. Up to now, some researches



Water 2024, 16, 1132 3 of 24

have employed local sensitivity analysis to explain the importance of factors, and they
have neglected the mutual influence of factors [44]. Some machine learning models, like
random forest (RF), have an interpretable mechanism inside [45]. But they are hardly used
to identify the main factors in the case of multi-index. As a global sensitivity analysis
method, Sobol sensitivity analysis could overcome the shortcomings mentioned above [46].

The goal of this study is to improve the stability and accuracy of neural network
models in the integrated prediction of multi-index pollutant loads under data scarcity.
The proposed averaged weight initialization neural network (AWINN) model can solve
this problem well. The Sobol sensitivity analysis method is used to identify the temporal
variation of influencing factors globally. The remainder of the paper is organized as
follows. In Section 2, the study area background and the methods applied in the study
are introduced. Accuracy and stability comparisons of different methods and sensitivity
analyses are displayed in Section 3. The effects of different factors on AWINN model
outputs and the variations in different seasons can be seen in Section 4. Finally, Section 5
introduces the main conclusions.

2. Materials and Methods
2.1. Study Area

The Xiangyang section of the Hanjiang River catchment lies between 31◦13′ − 32◦38′N
and 110◦45′ − 113◦7′ E, and occupies most of the area of Xiangyang City in Hubei province,
China (Figure 1). Mean annual precipitation is 904.45 mm, with the precipitation from May
to October accounting for 79.2% of the annual precipitation. The main reach of the Hanjiang
River flows from northwest to southeast of Xiangyang City, and many tributaries (the
Tangbaihe River, the Nanhe River, the Qinghe River, etc.) flow into the main reach, which
transports all pollutant loads of the catchment. Upstream of the study area, Danjiangkou
Reservoir is the water source of the middle line of the south-to-north water transfer project,
the largest water transfer project in the world. Meanwhile, the catchment is about to take
on the water from the Water Diversion Project from Three Gorges Reservoir to the Hanjiang
River. The water environment of this catchment is of great significance to the healthy
development of the middle and lower reaches of the Hanjiang River.
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According to new statistical data, the population of the river catchment is 5.68 million,
and urban residents account for 35.1% of the population. The annual disposable income per
urban resident is CNY 37,300, and the number is increasing year by year. Agricultural and
sideline food processing, automobile manufacturing, the textile industry, and non-metallic
mineral product, chemical raw material, and chemical product manufacturing are the main
sectors of Xiangyang City’s industry. Urban wastewater treatment capacity has reached
0.337 billion tons per year, and the rate of wastewater treatment is 92.3%. Winter wheat, rice,
and corn are the main crop types, and plant areas include 0.355, 0.202, and 0.198 million
hectares, respectively. The area of farmland accounts for 36.98% of the whole city, to which
around 35.6 tons of chemical fertilizer are applied every year, the highest in Hubei province.
Irrigation and precipitation drive pollutant loads from farmland into rivers. Livestock and
poultry production accounts for 13.66% of Hubei province. It could be concluded that the
region’s pollutant migration is affected by multiple sources and factors.

2.2. Data Collection

Monthly data on pollutant-associated influencing factors in the Xiangyang region
from 2015 to 2017 were adopted. The related factors in the input dataset of the study were
collected in categories, as shown in Table 1. Different from previous studies, which ignored
the socio-economic factors, this study extensively considered the impact of socio-economic
factors from towns to villages. The data sources are shown in Table 2. The details of the
data processing of the collected data can be seen in Appendix A. Variables with monthly
monitoring data are identified by *.

Table 1. Related factors in the input dataset (variables with monthly monitoring data are identified
by the asterisk symbol).

Category Related Factor

Point source
of urban life

Permanent resident population (PRP), gross national product * (GDP), rate of urbanization
(ROU), water price * (WP), urban disposable income * (UDI), temperature * (T), capacity of

sewage treatment plant * (COS), grade of sewage treatment * (GOST), rate of sewage treatment
(ROST), rate of sewage interception * (ROSI)

Point source
of industry

Value of industrial output * (VOIO), volume of water by CNY 10,000 industrial output
(VOWTIO), capacity of industrial sewage treatment (COIST), industrial electricity consumption

* (IEC), value of service industry output * (VOS)

Non-point source of urban life Area of urban (AOU), precipitation * (P), ratio of rainwater and sewage diversion * (RORSD),
air-quality index * (AQI)

Non-point source of rural life Rural population (RP), volume of rural life water utilization (VORLWU), precipitation * (P)

Non-point source of planting Area of paddy field (AOPF), irrigation water (IW), nitrogen fertilizer application (NFA),
phosphate fertilizer application (PFA), pesticide application (PA), precipitation * (P)

Non-point source of the
breeding industry

Stock of livestock and poultry breeding (SOLPB), rate of intensive livestock farm (ROILF),
comprehensive utilization rate of aquaculture manure (CUROAM), precipitation * (P)

Pollutant reaction in channel Flow of catchment inlet * (FOCI), flow of catchment outlet * (FOCO)

The output data had the problem of uneven distribution, and the monthly pollution
load values were concentrated in 5000–20,000 t/mon (88.9%, COD (chemical oxygen de-
mand)), 0–6000 t/mon (91.7%, NH4-N (ammonia nitrogen)), and 0–200 t/mon (69.4%, TP
(total phosphorus)). The calculation and distribution of the output data can be seen in
Appendix B.



Water 2024, 16, 1132 5 of 24

Table 2. Source of collected data.

Related Factor Source

PRP, ROU, WP, COS, GOST, ROST, ROSI,
COIST, AOU, RORSD Statistical Yearbook of Xiangyang City 1980–2020

AOPF, NFA, PFA, PA, SOLPB, ROILF Rural Yearbook of Hubei Province 2015–2020

GDP, UDI, VOIO, IEC Xiangyang City statistics monthly report January 2015–December 2017

AQI PM2.5 historical data website https://www.aqistudy.cn/historydata/ (accessed on 1
January 2015)

T, P China meteorological data website http://data.cma.cn/ (accessed on 1 January 2015)

FOCI, FOCO Official website of Hubei Water Conservancy Department https://slt.hubei.gov.cn/
(accessed on 1 January 2015)

Water quality (WQ) Water Resources Department of Hubei Province

2.3. Methodology

This study executed an NN model training with a backpropagation neural network
(BPNN) algorithm. The model fitted to the dataset in the study by a BPNN with random
weight initialization had the problems of overfitting and instability. The accuracy of the
test set fluctuated greatly after the training set and validation set of the BPNN models
reached the standard. It can be concluded that the models were overfitted. When the
accuracy of the BPNN models with random weight initialization in the training, validation,
and test sets was met, the sensitivity results of multiple models with different training
data combinations had great variation, which reflected the instability of these models. The
details can be seen in Appendix C.

To solve the above problems, the logic of the methods proposed in this study was
applied and is shown in Figure 2.
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2.3.1. Settings of BPNN Model

The BPNN model is an NN model with reverse weight adjustment based on the
mean square error (MSE). The structure of the model is a forward connection. Commonly
used activation functions are the logistic function (sigmoid) and linear rectifier function
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(ReLU), and the activation functions of the hidden layer and the output layer are usu-
ally linear. In the study by LeCun et al. (2016), the deeper structure of the NN model
could improve the generalization ability of the NN models to complex relationships to
a certain extent and could mine deeper relationships [47]. Since the traditional gradient
descent algorithm is prone to problems such as disappearing gradients, this paper used the
Levenberg–Marquarelt (LM) algorithm to train the model [48].

Three different hidden-layer numbers were set to investigate the influences of the
depth of NN models on simulation precision and stability in this study. The number of
neurons in the hidden layer was set according to Setting Scheme 1 (the number of neurons
in the hidden layer is more than the number of variables in the input layer) and Setting
Scheme 2 (set according to the recommended Formula (1)). The specific values are shown
in Table 3.

Nh =
√

Ni + No + l (1)

Nh is the number of hidden-layer neurons, Ni is the number of prior-layer neurons,
and No is the number of latter-layer neurons. l is a positive integer of less than 10.

Table 3. Structures of BPNN models.

Number of
Hidden Layers Structure Setting

Scheme 1
Setting

Scheme 2

One

Water 2024, 16, x FOR PEER REVIEW 6 of 24 
 

 

the study by LeCun et al. (2016), the deeper structure of the NN model could improve the 
generalization ability of the NN models to complex relationships to a certain extent and 
could mine deeper relationships [47]. Since the traditional gradient descent algorithm is 
prone to problems such as disappearing gradients, this paper used the Levenberg–Mar-
quarelt (LM) algorithm to train the model [48]. 

Three different hidden-layer numbers were set to investigate the influences of the 
depth of NN models on simulation precision and stability in this study. The number of 
neurons in the hidden layer was set according to Setting Scheme 1 (the number of neurons 
in the hidden layer is more than the number of variables in the input layer) and Setting 
Scheme 2 (set according to the recommended Formula (1)). The specific values are shown 
in Table 3. 𝑁 = 𝑁 + 𝑁 + 𝑙  (1)𝑁  is the number of hidden-layer neurons, 𝑁  is the number of prior-layer neurons, 
and 𝑁  is the number of latter-layer neurons. 𝑙 is a positive integer of less than 10. 

Table 3. Structures of BPNN models. 

Number of 
Hidden Layers Structure Setting Scheme 1 Setting Scheme 2 

One {29,50,1} {29,14,1} 

Two 

 

{29,50,35,1} {29,14,10,1} 

Three 

 

{29,50,25,10,1} {29,14,10,6,1} 

2.3.2. K-Means Clustering Algorithm and Division of Training–Validation–Test (TVT) Set 
Because of the uneven distribution of some datasets, using random data allocation 

can easily lead to a reduction in the training learning range of the NN model and the 
maximum and minimum points not fitting well. After clustering, selecting data from dif-
ferent categories to validate and test NN models enhances the models’ credibility. The K-
means clustering algorithm randomly selects k points in the data space as clustering cen-
ters at first. Then, all points in the data space are divided into different categories depend-
ing on the closest distance to these centers. A set of new centers would be calculated as 
the means of the points in each category. The iterative process would be stopped until the 
centers are unchangeable. Data within each category have the same properties. 

Through clustering, we selected one point from every category to form a test set and 
completed the same process with the remaining points from every category to form a val-
idation set. In the end, the training set consisted of the remaining points from all categories 
(Figure 3). To adequately mine a dataset, the number of groups of TVT sets was calculated 
by: 

𝑥𝑥 … …( )𝑥𝑥𝑥
𝑓𝑓𝑓𝑓 𝐿

𝑥𝑥 … …( )𝑥
𝑥𝑥

𝑓𝑓𝑓𝑓
𝑓𝑓𝑓𝑓 𝐿

𝑥𝑥 … …( )𝑥𝑥𝑥 𝐿𝑓𝑓𝑓𝑓
𝑓𝑓𝑓𝑓

𝑓𝑓𝑓

{29,50,1} {29,14,1}

Two

Water 2024, 16, x FOR PEER REVIEW 6 of 24 
 

 

the study by LeCun et al. (2016), the deeper structure of the NN model could improve the 
generalization ability of the NN models to complex relationships to a certain extent and 
could mine deeper relationships [47]. Since the traditional gradient descent algorithm is 
prone to problems such as disappearing gradients, this paper used the Levenberg–Mar-
quarelt (LM) algorithm to train the model [48]. 

Three different hidden-layer numbers were set to investigate the influences of the 
depth of NN models on simulation precision and stability in this study. The number of 
neurons in the hidden layer was set according to Setting Scheme 1 (the number of neurons 
in the hidden layer is more than the number of variables in the input layer) and Setting 
Scheme 2 (set according to the recommended Formula (1)). The specific values are shown 
in Table 3. 𝑁 = 𝑁 + 𝑁 + 𝑙  (1)𝑁  is the number of hidden-layer neurons, 𝑁  is the number of prior-layer neurons, 
and 𝑁  is the number of latter-layer neurons. 𝑙 is a positive integer of less than 10. 

Table 3. Structures of BPNN models. 

Number of 
Hidden Layers Structure Setting Scheme 1 Setting Scheme 2 

One {29,50,1} {29,14,1} 

Two 

 

{29,50,35,1} {29,14,10,1} 

Three 

 

{29,50,25,10,1} {29,14,10,6,1} 

2.3.2. K-Means Clustering Algorithm and Division of Training–Validation–Test (TVT) Set 
Because of the uneven distribution of some datasets, using random data allocation 

can easily lead to a reduction in the training learning range of the NN model and the 
maximum and minimum points not fitting well. After clustering, selecting data from dif-
ferent categories to validate and test NN models enhances the models’ credibility. The K-
means clustering algorithm randomly selects k points in the data space as clustering cen-
ters at first. Then, all points in the data space are divided into different categories depend-
ing on the closest distance to these centers. A set of new centers would be calculated as 
the means of the points in each category. The iterative process would be stopped until the 
centers are unchangeable. Data within each category have the same properties. 

Through clustering, we selected one point from every category to form a test set and 
completed the same process with the remaining points from every category to form a val-
idation set. In the end, the training set consisted of the remaining points from all categories 
(Figure 3). To adequately mine a dataset, the number of groups of TVT sets was calculated 
by: 

𝑥𝑥 … …( )𝑥𝑥𝑥
𝑓𝑓𝑓𝑓 𝐿

𝑥𝑥 … …( )𝑥
𝑥𝑥

𝑓𝑓𝑓𝑓
𝑓𝑓𝑓𝑓 𝐿

𝑥𝑥 … …( )𝑥𝑥𝑥 𝐿𝑓𝑓𝑓𝑓
𝑓𝑓𝑓𝑓

𝑓𝑓𝑓

{29,50,35,1} {29,14,10,1}

Three

Water 2024, 16, x FOR PEER REVIEW 6 of 24 
 

 

the study by LeCun et al. (2016), the deeper structure of the NN model could improve the 
generalization ability of the NN models to complex relationships to a certain extent and 
could mine deeper relationships [47]. Since the traditional gradient descent algorithm is 
prone to problems such as disappearing gradients, this paper used the Levenberg–Mar-
quarelt (LM) algorithm to train the model [48]. 

Three different hidden-layer numbers were set to investigate the influences of the 
depth of NN models on simulation precision and stability in this study. The number of 
neurons in the hidden layer was set according to Setting Scheme 1 (the number of neurons 
in the hidden layer is more than the number of variables in the input layer) and Setting 
Scheme 2 (set according to the recommended Formula (1)). The specific values are shown 
in Table 3. 𝑁 = 𝑁 + 𝑁 + 𝑙  (1)𝑁  is the number of hidden-layer neurons, 𝑁  is the number of prior-layer neurons, 
and 𝑁  is the number of latter-layer neurons. 𝑙 is a positive integer of less than 10. 

Table 3. Structures of BPNN models. 

Number of 
Hidden Layers Structure Setting Scheme 1 Setting Scheme 2 

One {29,50,1} {29,14,1} 

Two 

 

{29,50,35,1} {29,14,10,1} 

Three 

 

{29,50,25,10,1} {29,14,10,6,1} 

2.3.2. K-Means Clustering Algorithm and Division of Training–Validation–Test (TVT) Set 
Because of the uneven distribution of some datasets, using random data allocation 

can easily lead to a reduction in the training learning range of the NN model and the 
maximum and minimum points not fitting well. After clustering, selecting data from dif-
ferent categories to validate and test NN models enhances the models’ credibility. The K-
means clustering algorithm randomly selects k points in the data space as clustering cen-
ters at first. Then, all points in the data space are divided into different categories depend-
ing on the closest distance to these centers. A set of new centers would be calculated as 
the means of the points in each category. The iterative process would be stopped until the 
centers are unchangeable. Data within each category have the same properties. 

Through clustering, we selected one point from every category to form a test set and 
completed the same process with the remaining points from every category to form a val-
idation set. In the end, the training set consisted of the remaining points from all categories 
(Figure 3). To adequately mine a dataset, the number of groups of TVT sets was calculated 
by: 

𝑥𝑥 … …( )𝑥𝑥𝑥
𝑓𝑓𝑓𝑓 𝐿

𝑥𝑥 … …( )𝑥
𝑥𝑥

𝑓𝑓𝑓𝑓
𝑓𝑓𝑓𝑓 𝐿

𝑥𝑥 … …( )𝑥𝑥𝑥 𝐿𝑓𝑓𝑓𝑓
𝑓𝑓𝑓𝑓

𝑓𝑓𝑓 {29,50,25,10,1} {29,14,10,6,1}

2.3.2. K-Means Clustering Algorithm and Division of Training–Validation–Test (TVT) Set

Because of the uneven distribution of some datasets, using random data allocation
can easily lead to a reduction in the training learning range of the NN model and the
maximum and minimum points not fitting well. After clustering, selecting data from
different categories to validate and test NN models enhances the models’ credibility. The
K-means clustering algorithm randomly selects k points in the data space as clustering
centers at first. Then, all points in the data space are divided into different categories
depending on the closest distance to these centers. A set of new centers would be calculated
as the means of the points in each category. The iterative process would be stopped until
the centers are unchangeable. Data within each category have the same properties.

Through clustering, we selected one point from every category to form a test set
and completed the same process with the remaining points from every category to form
a validation set. In the end, the training set consisted of the remaining points from all
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categories (Figure 3). To adequately mine a dataset, the number of groups of TVT sets was
calculated by:

Ngroup =
k

∏
i=1

Cnk
Nk−1 (2)

Ngroup is the total number of groups of TVT sets, and Nk is the number of points in the
k-th category.
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2.3.3. Fitting Precision

The determined coefficients (R2) and root mean square error (RMSE) were adopted to
describe the fitting ability of the NN models as:

R2 =

[
∑i

(
Lm,i − Lm

)(
Ls,i − Ls

)]2

∑i
(

Lm,i − Lm
)2

∑i
(

Ls,i − Ls
)2 (3)

RMSE =

√
1
N ∑N

i=1(Lm,i − Ls,i)
2 (4)

where Lm is the monitoring data, Ls is the output of the NN model simulation, and N is the
number of data.

2.3.4. Average Weight Initialization Neural Network

As mentioned in the study by Jinwook Go (2004), the matrixes of an NN model’s
weight and bias can be tiled into a vector [42]. The representative vectors that reflect the
nonlinear relationships of existing data are located in a specific region of a vector space, as
shown by the red dashed area in Figure 3. Even if these weight vectors are not located in
the target region of vector space, they belong to a region that is close to the region of the
solution, as shown by the blue dashed area in Figure 4. Vectors selected from the region
consisting of trained weight vectors can avoid the interference of the local minimum of the
training error and ensure that the weights can be effectively approximated to the nonlinear
relationship after training.

Based on the principle above, the detailed steps of the average weight initialization
algorithm are as follows:

1. Implement the K-means algorithm in the existing dataset and divide the dataset into
K categories. The TVT set is divided in the proportion of 70%:15%:15%. The number
of groups of the TVT sets is Ngroup = ∏k

i=1 Cnk
Nk−1.

2. Train the training sets on the TVT sets. When the accuracy of the training–validation
sets is up to standard, subtract the weight of the trained BPNN model as follows:

Wi =
{

Wi

∣∣∣R2
train−validate(Wi|groupi) ≥ R2

constain

}
(5)

Wi = {Wi|RMSEtrain−validate(Wi|groupi) ≤ RMSEconstrain} (6)
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where Wi is the weight of the trained NN model in the i-th group. R2
train−validate and

RMSEtrain−validate are the accuracies of the training set and the validation set in the trained
NN model. R2

constain and RMSEconstrain are the limits of the accuracy of the training set and
validation set in the trained NN model.

3. Average the weights of the trained models:

Wavg−initial =
1

Ngroup
∑Ngroup

i=1 Wi (7)

where Wavg−initial is the averaged weight and Ngroup is the number of groups of TVT sets.

4. Divide the existing dataset into k TVT sets. The average weight in step (3) is applied
as the initial weight to train and validate the NN models by the k TVT sets. The k-fold
cross-validation method is used to assess the performance of the average weight
initialization algorithm. The process stops when the accuracy in the test set reaches
the standard of accuracy.

5. The average of the k models’ outputs can be used as the total output of the AWINN
model.
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2.3.5. Sobol Sensitivity Analysis

Sobol sensitivity analysis is a global sensitivity analysis method [46]. The method
randomly generates input data using Latin hypercube sampling (LHS) and calculates
sensitivity by the output value variance. According to the size of the input of the NN models,
the LHS method generates two input datasets. When the i-th parameter’s sensitivity is
explored, the parameter value in the two datasets is exchanged, and two new datasets
are formed. The output values calculated by the investigated models can be combined
to calculate the variances. Last, the first-order, second-order, and total sensitivity can be
calculated as follows [49]:

• First-order sensitivity coefficient (Si): standing for the sole influence of a single input
parameter xi:

Si =
Vxi (E∼i(Y|Xi))

V(Y)
(8)
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• Second-order sensitivity coefficient
(
Si,j

)
: standing for the joint influence of two input

parameters xi and xj:

Si,j =
Vxixj

(
E∼ij

(
Y
∣∣Xi, Xj

))
− Vxi (E∼i(Y|Xi))− Vxj

(
E∼j

(
Y
∣∣Xj

))
V(Y)

(9)

• Total sensitivity coefficient (STi): standing for all of the influences, including a single
input parameter xi:

STi = 1 − Vx∼i (E∼i(Y|X∼i))

V(Y)
(10)

where V(Y) is the variance of the unchanged input dataset’s output, Vxi (E∼i(Y|Xi)) is the
variance of output expectation that corresponds to input datasets exchanging i-th parameter
value xi, Vxixj

(
E∼ij

(
Y
∣∣Xi, Xj

))
is the variance of the output expectation that corresponds

to the input dataset exchanging i-th and j-th parameter values xi and xj. Vx∼i (E∼i(Y|X∼i))
is the variance of the output expectation that corresponds to the input dataset but not
exchanging i-th parameter value xi.

2.3.6. Methods of Overfitting Prevention

The particle swarm optimization neural network (PSONN) is a modified NN model
that trains datasets with the help of the PSO algorithm. The weight vector is a particle
in the algorithm. A swarm of particles is randomly generated, and the swarm evolves
by selecting the best particle and updating the best particle in an iterative process. The
iteration stops after satisfying some criterion, and the final best particle is selected as the
weight and bias of the post-trained NN model. Generally, the PSONN model can overcome
the local minimum and is a classical training algorithm that has been proven to reduce the
influence of overfitting. The detail of the algorithm can be seen in the source paper [33].

AdaboostR is an important ensemble learning algorithm suitable for small dataset
data mining. Adaboost regression (AdaboostR) is used for regression problems. The
algorithm can adopt the abilities of multiple weak learning machines to learn unbalanced
data. Combined with BPNN models, the algorithm can detect the error of the trained
weak BPNN model in the validation set. Compared to PSONN, it is also a good choice
to solve overfitting from a different angle. Details about AdaboostR can be seen in the
source paper [28].

3. Results
3.1. Comparison of Different Algorithms’ Fitting Accuracy

In this study, the models’ performances were compared according to the NN models’
structure set in Table 1. The R2 and RMSE were used to compare the accuracy of the COD
load data fitting in the AWINN, PSONN, and AdaboostR models, with different numbers of
hidden layers and neuron numbers in each hidden layer. Figures 5 and 6 show the results.
It was found that (1) compared to the PSONN and AdaboostR models, the accuracy of the
AWINN models in the test set was higher. The results of the R2 of the AWINN models
were in the range of 0.42 to 0.57. The results of the RMSE were in the range of 3027 to
3811 (t/mon). The best R2 performance of the PSONN models was 0.5, and 0.39 for the
AdaboostR models. The best RMSE performance of the PSONN models was 3625 (t/mon)
and 3071 (t/mon) for the AdaboostR models. According to the study by Schoner (1992) [50],
it is difficult to reach a balance in the accuracy of training, validation, and test datasets. The
accuracy of the test set in the interval between 0.4 and 0.6 was acceptable. (2) The increase
in the number of hidden layers of the NN models may have contributed to the accuracy
of the test set. The number of hidden layers had a significant influence on the PSONN
models, and models with more hidden layers reached higher accuracy. (3) As for the issue
of the number of neurons in the hidden layers, the setting rules only affected the results of
PSONN. It was proven that the AWINN method has strong applicability.
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The loads of Nh4-N and TP were also modeled by the AWINN models, with three
hidden layers. The accuracy in the test set was 0.84 and 0.51 in R2, and 143.94 t/mon and
43.23 t/mon in RMSE. High fitting accuracy was obtained. This shows that the AWINN
model can produce high fitting accuracy under the conditions of different output indicators.
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3.2. Results of Sensitivity Analysis

For the usage of NN models, the k-fold cross-validation method was adopted. We
divided the collected dataset into 5–10 groups of TVT sets for the final application. The
Sobol global sensitivity analysis method was used to analyze the sensitivity of the AWINN
models with one, two, and three hidden layers that simulated the COD load. The results of
sensitivity analysis can be seen in Figure 7 as boxplots.
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At the same time, sensitivity analysis was also carried out for the NH4-N and TP
models. The index sensitivity results of three types of pollutant load models are shown in
Figure 8. The main factors affecting the COD load included WP, P, IW, FOCI, and FOCO.
The main factors affecting NH4-N included GDP, P, SOLPB, FOCI, and FOCO. The main
factors affecting TP included GDP, T, P, NFA, FOCI, and FOCO.

The results show that the differences between the ST and S1 of the indicators affecting
the COD were small, so the joint influence of the indicators affecting the COD was small.
There were certain difference values between the ST and S1 of the indicators affecting
NH4-N and TP, so there was a combined influence in the two pollutant loads’ models.
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By analyzing the second-order sensitivity, the joint influence of various factors affecting
the pollution load was analyzed, as shown in Figure 9. The results show that the joint
influence of FOCI and FOCO was the most significant indicator pair for the three types
of pollutants. The main joint influence of two factors on loads of NH4-N included (GDP,
FOCI) and (SOLPB, FOCI). The main joint influence of two factors on loads of TP included
(T, FOCO), (T, FOCI), (P, FOCO), (P, FOCI), (NFA, FOCO), and (NFA, FOCI). Other joint
influences of the two factors on the load of COD were not significant.
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3.3. Results of Model Stability

Through the sensitivity analysis results of the AWINN models with different hidden
layers, it was found that the sensitivity results of the models with three hidden layers did
not display any exceptional data points, which means the model was more stable.

To effectively evaluate the stability of these models, the R-factor was used in this study:

R − f actor =
Sp

Sx
(11)

Sp is the average value of the difference of the quantiles of the sensitivity results of
each index, and Sx is the standard deviation of the average value of the results of each
index. When the R-factor value is less than 1, the smaller the value, the higher the stability
of the model.

Based on the random weight initialization NN model and the proposed AWINN model,
the indicator sensitivity results of the five models trained in the five-fold cross-validation
dataset were obtained. The results show that the index sensitivity of the weighted average
initialization model was more consistent than that of the sensitivity analysis obtained from
the randomly initialized weighted NN model, as shown in Figure 10. This shows that the
AWINN model was more stable. As the indicator described, it was found that the R-factor
value of the AWINN model was 0.544, and the R-factor value of the BPNN model with
random weight initialization was 3.613, indicating that the AWINN model was more stable.
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4. Discussion

Although the low-sensitivity indicator has little influence on the output of the model,
whether the model output changes stably with the low-sensitivity indicator reflects the
performance of the model in practice. Based on the five-fold cross-validation dataset, this
study analyzed the changes in the output of models with one and three hidden layers
caused by the increase in low-sensitivity indicators such as UDI, VOS, AQI, and SOLPB. It
can be seen from Figure 11 that the outputs of the three-hidden-layer NN models changing
with the low-sensitivity index were more consistent than those of the single-hidden-layer
models. This indicates that the model obtained from the training of the three-hidden-
layer NN models on different datasets was better able to capture the inherent nonlinear
mechanism of these models. This shows that the AWINN model was more stable and
reliable under the condition of multiple hidden layers.

The results of the sensitivity analysis show that FOCI, FOCO, and P were the most
important factors affecting the three types of pollutant load. It can be inferred that the pol-
lution load in the Xiangyang section of the Hanjiang River catchment is greatly affected by
the variation of rainfall and sink discharge. Through single-indicator and double-indicator
scenario analysis, it was found that an increase in the three factors would lead to an increase
in pollutant loads. However, according to a study by Yonggui Wang (2016), an increase in
water volume would lead to an increase in water environmental capacity, thus reducing the
risk of exceeding water quality [51]. According to the study by Cheng et al. (2021), the flow
in the Xiangyang section of the Hanjiang River has the greatest impact on water quality,
which also confirms the fact that the inlet and outlet flow have great impacts [52].

Human activities such as industrial and agricultural production and natural conditions
are usually different in different seasons. Identifying the main factors that affect the
generation of pollution load in different seasons is of great significance for controlling
pollution load. Therefore, this study explored the main factors affecting the pollution
load in the catchment in different seasons through Sobol sensitivity analysis. In this
study, the year was divided into the first, second, third, and fourth seasons according to
January–March, April–June, July–September, and October–December, respectively. The
indicators of greater total sensitivity in each season are shown in Figure 12.
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It can be seen that after the seasonal analysis, the number of main factors affecting
different pollution loads increased, such as the influence of WP and GOST on the three
pollutant loads. At the same time, it was found that IW in the third season was the main
influencing factor for the three pollutant loads. This is because the main irrigation period
in the Xiangyang area is concentrated in the third season. Paddy field irrigation is the
main irrigation field, so we should pay attention to the irrigation management of paddy
fields. This finding was difficult to detect in the full-time analysis. The impact in the fourth
season is more consistent with the full year. From the first season to the fourth season, the
impact of WP on the three pollutant loads gradually decreased, and the impact of FOCI
and FOCO gradually increased. This indicates that the impact of human activity was more
significant in the first three seasons of the catchment. For the influence of human activities
to be intensified, we should pay attention to the influence of controllable human activity
factors in different seasons, such as WP, COS, CUROAM, IW, and FA.

The results of the full-time second-order sensitivity analysis were compared with those
of the seasonal second-order sensitivity analysis, as shown in Figure 13. In the third season,
there always existed a joint influence between IW and other factors that affected the three
pollutant loads. The results of the second-order sensitivity analysis in the fourth season
were similar to those of the all-time analysis. It was found that WP had a high sensitivity to
the joint influence on COD load in each season of the year. This phenomenon was difficult
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to find in previous single-indicator sensitivity research, in which WP was regarded as a
secondary influencing factor. Among the second-order sensitivity of NH4-N in the first
season, AQI in the first season had a significant impact. Through analysis of historical data,
it was found that AQI in the first season was usually the worst in the whole year. This
could be an important reason why air quality affects the NH4-N load. In the results of the
second-order sensitivity analysis of the TP model, sewage treatment-related indicator pairs
had high sensitivity in the first three seasons.
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Finally, we should say that there are still some limitations in this study. (1) Due to the
lack of detailed data, it was difficult to explore the spatial variation of pollution load within
the catchment. This needs to be achieved in the future with spatial data interpolation,
remote sensing data, and more data monitoring. (2) Future studies can also be explored in
the field of data enhancement to make machine learning models more effective.

5. Conclusions

In this paper, aiming at solving the instability of the BPNN model under the con-
dition of random weight initialization and data scarcity, the AWINN model is proposed
for simulating the nonlinear relationship between pollutant loads and factors within the
Xiangyang section of the Hanjiang River catchment. The model can improve the stability
of multi-index integrated prediction of catchment pollutant load. Compared with the
results of the AdaboostR model and PSONN model, the AWINN model has higher accu-
racy than the other two models. The AWINN model significantly improves the stability
of the NN model. Different numbers of hidden layers and hidden-layer neurons were
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investigated. The addition of the hidden layers of the NN model can increase the stability
of the integrated prediction.

Through global sensitivity analysis, the main factors affecting three pollutant loads
of COD, NH4-N, and TP are identified, which mainly include the flow of the catchment
inlet, the flow of the catchment outlet, and precipitation. It is also confirmed that water
volume is the main factor affecting pollutant load in this catchment. At the same time, the
combinations of indicators that affect the loads of different pollutants are different. The
temporal variation of factors that affect pollutant loads across seasons is manifested in the
influence of water price on three types of pollutants and the grade of sewage treatment on
NH4-N. The main effect in the third season should focus on the irrigation water. This study
provides a more stable method for the integrated prediction of catchment water pollution
while enabling quantitative analysis for the attribution of different factors for the pollutant
load within a catchment.
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Appendix A. Monthly Data Collection and Data Processing of Input Factors

According to the actual situation, only some factors had monthly monitoring data,
while the data of the remaining factors were derived according to relevant rules. Now the
situation of each input factor is introduced:

Population, urbanization rate, and urban area: Linear interpolation is performed
between two years according to the statistical values at the end of each year.

GDP, disposable income, industrial output value, and industrial electricity consump-
tion: Except for the months with monthly statistics, the remaining months are calculated on
average within the quarter according to the statistical values of the corresponding quarter
and year.

Water price: The overall water price is summarized monthly based on the water price
data released by each county in Xiangyang City.

Sewage treatment capacity and sewage treatment grade: According to the treatment
scale and completion and the operation time of sewage treatment plants built, operated, and
reconstructed in Xiangyang City since 1980, it is sorted out and updated on a monthly basis.

Sewage treatment rate: This represents the monthly sewage treatment rate of the
current year based on the sewage treatment rate in the annual statistical yearbook.

Sewage interception rate, rainwater, and sewage separation rate: The length of sewer
pipes built in Xiangyang City since 1980 is counted, the length of sewage collection pipes
and rainwater pipes is counted every year, and the proportion of sewage collection pipe
length and rainwater pipe length is updated monthly.

Proportion of output value of service industry: This is calculated according to the ratio
of the output value of the service industry to the GDP in the annual statistical yearbook,
and it is used as the ratio of the output value of service industry in each month of the year.
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Water consumption of CNY 10,000 of industrial added value: According to the sta-
tistical data of the Hubei Provincial Water Resources Bulletin, the statistical value of the
current year is calculated as the monthly water consumption value of the current year.

Rainfall and climatic conditions: The overall average value is calculated based on the
monitoring data of rainfall and temperature from six meteorological stations in Xiangyang
in the China Meteorological Data Network.

Air-quality index: monthly air quality index data from the China Air Quality Monitor-
ing Network.

Breeding quantity: according to the Hubei Rural Statistical Yearbook on the four
categories of pig, cattle, sheep, and poultry stock and the market conversion into pig
equivalent for calculation, and according to the year-end stock and the year of the market
to calculate the breeding stock of the year.

Comprehensive utilization rate of manure: based on relevant statistics from the Hubei
Rural Statistical Yearbook and the Xiangyang Statistical Yearbook, and used as monthly
values within the year.

Large-scale breeding rate: The large-scale breeding coefficient is obtained by summing
the ratio of the four types of large-scale breeding volume of pigs, cattle, sheep, and poultry
to the total stock.

Paddy field area: According to the Hubei Rural Statistical Yearbook, the paddy field
area is counted as the paddy field area value for each month of the year.

Nitrogen fertilizer and phosphate fertilizer: The monthly fertilizer application amount
is calculated by multiplying the standard usage amount of major crops of wheat, rice,
rape, corn, and vegetables in each month with the planting area of each crop, and scaling
according to the final annual application amount.

Pesticide quantity: The monthly average value of pesticide application according to
the Hubei Rural Statistical Yearbook is used as the value of pesticide application in each
month of the year.

Irrigation process: According to the monitoring situation of the Xiangyang Changqu
irrigation area, rice is irrigated only in the sixth, seventh, eight, and ninth months, and
the farmland obtains water through natural precipitation in the other months. Therefore,
January to May and October to December of each year are set as the non-irrigation period,
and June to September is the irrigation period. According to the process of rice water
consumption in the Changqu irrigation area, the required irrigation water amount during
the irrigation period is calculated in combination with the annual monthly precipitation.

Outlet and inlet flow: The monthly average flow is calculated from the monthly daily
monitoring flow data.

Appendix B. Details of Output Data

According to the load estimation procedure proposed by the USGS, the calculation
method of pollutant loads in the river section was applied [53]. The effect of water flow
on pollution load reduction was considered in this study. According to the difference of
pollutant loads at the outlet and inlet of the basin, the pooled amounts of three pollutant
loads of COD, NH4-N, and TP were calculated as shown in Equation (A1).

Lm = ∑Tmon
i=1 (cout,i × Qout,i − ∑N

j=1 cin,i,j × Qin,i,j)× 0.0864 (A1)

Lm is the monthly loads of pollutants (t/mon), Qout,i is the flow of catchment outlet
in the i-th day

(
m3/s

)
, cout,i is the water quality of the catchment outlet on the i-th day

(mg/L), Qin,i,j is the flow of the catchment inlet on the i-th day
(
m3/s

)
, and cin,i,jcout,i is

the water quality of the catchment outlet on the i-th day (mg/L).
By analyzing the monthly load distribution of different pollutants (see Figure A1), it

can be seen that 88.9% of the COD load was distributed in the range of 6000–20,000 (t/mon),
91.7% of the NH4-N load was distributed in the range of 0–6000 (t/mon), and 69.4% of the
TP load was distributed in the range of 0–200 (t/mon). However, there were few large and
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small values, which shows that the data distribution was imbalanced. This will also affect
the performance of machine learning in the imbalanced part.
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Appendix C. Overfitting and Instability of the Random Weight Initialization
BP Algorithm

Based on the data set of this study, the BP NN was trained and verified. After uncertain
times of training and verification, a model with training and verification standards (R2

of the training set is greater than 0.8 and R2 of the validation set is greater than 0.7) was
obtained. By analyzing the accuracy of the test set of 710 trained and verified models
reaching the target (see Figure A2), we found that the results of the test set were unstable
and did not present a regular distribution. This raises the question of whether the model
that meets the test set the one that can be trusted.
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The five data sets divided by the clustering algorithm in Section 2.3.2 were trained
several times by random weight initialization, and five models that met the requirements
of training, validation, and testing accuracy were obtained. If the outputs of the models are
consistent under the condition of the same input, it indicates that the models are reliable.
The results of the sensitivity analysis can also illustrate the consistency of the output, so the
sensitivity outputs of these models were analyzed, and it was found that the sensitivity
outputs of the five models were inconsistent. The result can be seen in Figure A3. This
shows that the model trained by random weight initialization was still unstable when the
accuracy of the training set, validation set, and test set were up to the standard. This also
reflects the defect of the random weight initialization NN model under the condition of
data scarcity.
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