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Abstract: Background: Wastewater-based epidemiology (WBE) has become crucial for early microbial
outbreak detection and public health surveillance globally, underscored by the COVID-19 pandemic.
However, despite advancements in sampling and analyses, interpreting results and estimating
infection rates pose challenges. Enhancements in sewer system engineering, understanding the
wastewater environment, and addressing the impact of the environment on the accuracy of results
are needed. Objective: This scoping review aims to identify engineering knowledge gaps in WBE
to guide future study designs. Design: Research on “wastewater-based epidemiology” involving
“engineering”, published between 2015 and 2023, was extracted from the Scopus database. Results:
This scoping review examines elements influencing WBE’s precision and reliability, especially in
identifying and measuring SARS-CoV-2 RNA. It identifies significant effects of engineering, analytical
practices, and the wastewater’s composition on WBE performance. Conclusions: This review calls
for further investigation into economical evaluation methods of these factors to enhance WBE
data normalization and interpretation, utilizing existing wastewater treatment plant data used
for treatment control, which could be a cost-effective approach over more expensive population
biomarkers. This approach, aside from SARS-CoV-2, holds potential for application to a broader
number and types of diseases, as well as population consumption habits.
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1. Introduction

Wastewater-based epidemiology (WBE) has gained acknowledgment as an effective
method for providing early alerts on the spread of infectious diseases [1], recognition
that surged during the COVID-19 pandemic in 2020 [2]. The necessity for WBE arises if
real-time, accurate estimates of disease prevalence within a community can be achieved
through public health data. One way to achieve this is to develop statistical correlation
models between public health data and wastewater measurements. However, the corre-
lation is watershed-specific and usually requires a large pool of data [3]. WBE has been
demonstrated to be a cost-effective instrument for forecasting the spread of infections and
facilitating preemptive actions that lessen the potential societal and economic repercussions
of epidemiological factors while simultaneously preserving the anonymity of the individu-
als involved in the study [4]. To achieve this, it is necessary to develop physical models that
can accurately depict how environmental factors, like water quality or flow rates, influence
the outcomes. Improvement in normalization techniques via biochemical markers would
be beneficial [3]. The novelty in WBE lies in its advancement and application in monitoring
a wide range of biomarkers for public health, including viruses, bacteria, pharmaceuticals,
illicit drugs, and lifestyle chemicals [5–8]. However, WBE has several drawbacks, including
insufficient spatial resolutions and integration with existing surveillance methods, that
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limit its precision and, thus, wider application [9]. For instance, research conducted by
Polo et al. [10] revealed multiple factors contributing to the misestimation of virus quan-
tities in wastewater, including higher infection rates in the local area and colder weather.
Conversely, virus concentrations can be underestimated when mixed with stormwater or
other surface waters or due to infiltration [10]. Therefore, it is crucial to create sophisticated
models that can accurately link the viral load detected at the sampling site to the actual
virus presence within the community served [10]. Moreover, collecting samples for SARS-
CoV-2 in wastewater, for example, from hospitals, might be affected by the diverse array of
cleaning agents and disinfectants entering the sewage system [10].

The range of obstacles confronting WBE is broad, commencing with choosing opti-
mal locations for sample collection, methods of collection, preservation of samples, and
procedures for sample concentration [9]. Also critical is selecting the right analytical tech-
niques [11]. Beyond these initial steps, several elements can influence how results are
interpreted and the models are constructed to predict epidemiological trends [10]. These
elements include normalizing the data collected from analyses; the specific constituents
of the wastewater; and environmental factors such as the water’s temperature, pH, and
conductivity, and how long it remains within the sewer network [12]. Demographic vari-
ables such as the population density, movement patterns, age demographics, economic
status, and lifestyle habits (e.g., differences in behavior on working days versus weekends)
significantly factor into the model [13,14]. Furthermore, the design and state of the sew-
erage infrastructure is important—whether it is a combined or separate system—as well
as the degree of impact from industrial effluents, stormwater, and infiltration, which all
significantly add to the complexity of WBE efforts [9,11,14,15]. Thus, integrating WBE with
wastewater engineering not only enhances our ability to monitor and respond to diseases
and population consumption habits, but also contributes to the development of smart,
resilient, and public-health-informed wastewater infrastructure [10,16,17]. This interdis-
ciplinary approach requires continuous collaboration among engineers, epidemiologists,
public health officials, and policymakers to optimize the use of WBE in disease surveil-
lance and control. This field is still evolving, and continuous research and innovation are
necessary to refine these strategies and their implementation.

In this paper, a scoping review describes currently known factors that may influence
WBE and approaches based on WBE, such as wastewater surveillance (WWS), early warn-
ing system (EWS), and near-source tracing (NST) results and its application in particular
situations. The main goal of this review is to identify and analyze the factors that may
impact the accuracy and reliability of WBE and its application in different scenarios. By
addressing the research gaps in the current understanding of these factors, this review aims
to provide insights into improving the precision and wider application of WBE in detecting
infectious and other types of diseases and developing effective preventive measures, as well
as monitoring population consumption habits. Through a systematic and comprehensive
review of existing studies, this research also aims to provide a comprehensive understand-
ing of the challenges and limitations of WBE and ultimately contribute to advancing this
emerging field of study. To our knowledge, this is the pioneering review study to examine
publicly accessible data on the extensive engineering aspects of WBE that influence its
outcomes and interpretation.

2. Materials and Methods

We used a literature review to identify relevant publications concerning WBE based on
the PRISMA approach, which stands for “Preferred Reporting Items for Systematic Reviews
and Meta-analyses” [18], and its modification for scoping reviews, called PRSIMA-ScR [19].
According to the PRISMA, we applied four basic phases of procedure: (1) the identification
of records, (2) the screening of abstracts and titles, (3) the eligibility assessment of full-text
articles, and (4) the inclusion in this review. WBE has been applied extensively since
2008 [20], and many publications have been published, starting in 2015 [21]; therefore,
in this study, the search criteria for publications were set from 2015. “Wastewater-based
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epidemiology” as a keyword was used for a literature search in the Scopus database
search engine for documents published until the beginning of 2024. Publications from
the acquired list were screened using abstracts, and 47 relevant to our study subjects
were selected for further review. The following inclusion criteria were used: COVID-19,
SARS-CoV-2, SARS-CoV-2 RNA detection, wastewater surveillance, early warning systems,
shedding sources and rates, infectivity of RNA, wastewater sampling, sample preparation
and analysis, sample normalization, wastewater composition, and environmental factors.
Further studying selected publications, some referenced publications were identified and
studied for points of interest linked to the main subject of this study while using the
above-mentioned inclusion criteria. Searching, screening, and data charting of the articles
were performed manually by one team member and then reviewed by another. While
synthesizing the results, we identified relevant topics and collected information from
studies that could be valuable and relevant to closing knowledge gaps on the subject.

3. Results
3.1. The Wastewater-Based Epidemiology Concept

WBE has been used for various applications, including tracking illicit drug use and
virus surveillance, with the first practical implementation of WBE occurring in 2008 [20].
The application of WBE increased considerably in 2020, with the emergence of the COVID-
19 pandemic. A list of 1706 publications was identified and screened, focusing on the
“Engineering” subarea, resulting in 162 documents published from 2015 to 2023. The
greatest share of publications was published in 2022 (52) and in 2021 (39), followed by 2023,
with 36 publications (Figure 1). The analysis of the scientific documents demonstrated that
almost half of the publications were authored by individuals from Europe (143), followed
by Asia (59) and North America (59), with significant contributions from authors in the
United States of America (46), the United Kingdom (31), Australia (30), and China (25)
(Figure 2).
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The observed increase in publications indicates rapidly growing interest and research
activity on WBE. Peaks in publication volumes correspond with the outbreak of COVID-19,
which stimulated research across various disciplines. This increase in scholarly output
demonstrates the scientific community’s rapid response to emerging public health crises,
illustrating the agility of research entities when addressing societal challenges. The analysis
confirms that WBE inherently represents an interdisciplinary domain, receiving substantial
contributions from many nations. The considerable involvement of multiple countries
underscores the global importance of WBE for public health surveillance, a fact sharply
recognized during the recent pandemic.
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3.2. SARS-CoV-2 RNA Detection: Risks and Data Interpretation

Emerging as a critical tool in public health surveillance during the COVID-19 pan-
demic, WBE offers a novel approach to monitoring virus transmission in communities [4].
Recent advances in detecting SARS-CoV-2 RNA in wastewater have underscored the
potential of WBE in estimating infection prevalence, capturing asymptomatic and pre-
symptomatic cases that conventional clinical testing may miss [21]. This field of study
integrates virological, epidemiological, and environmental engineering insights to interpret
viral load data in municipal wastewater, presenting a unique vantage point for public
health officials [21]. We reviewed major methodologies employed in WBE, along with the
inherent uncertainties associated with these techniques and the implications for accurately
assessing COVID-19 transmission dynamics. X. Li et al. [22] highlighted that two primary
methodologies have been utilized to detect SARS-CoV-2 RNA, thereby assisting in the
surveillance of COVID-19. Firstly, there is the method of back-calculating prevalence from
the concentration of SARS-CoV-2 RNA found in wastewater samples (CRNA), which takes
into account the inflow rate of wastewater treatment plants (WWTPs) and the popula-
tion served or by using average water consumption figures, with feces considered the
main source. Secondly, there is the process of tracking infection trends via the association
between disease occurrence rates (e.g., the number of new daily or weekly cases) and CRNA.

The idea of employing WBE to estimate the number of COVID-19 cases is captivating
since it operates under the premise that whether individuals with the infection show
symptoms or not, and regardless of whether they have been clinically tested, as long as they
excrete the virus, they can be accounted for in the aggregate infected subgroup discerned
via WBE [21]. Nevertheless, the specifics regarding the origins of virus shedding and the
quantity of the virus shed by patients remain ambiguous, particularly when considering
various stages of infection across a broad population [23,24]. Therefore, it is impossible
to estimate the number of SARS-CoV-2-shedding individuals (patients) solely based on
the concentration of SARS-CoV-2 RNA in wastewater (CRNA). However, variations in
CRNA are anticipated to mirror fluctuations in the shedding patient count within the
serviced area [25]. Therefore, the effectiveness of WBE can be evaluated by examining the
correlation between the concentration of SARS-CoV-2 RNA in wastewater (CRNA) and the
number of clinically verified cases [22]. In order to accurately link the viral levels found in
wastewater samples to the overall illness load and effectively correlate the concentrations
of viruses detected in wastewater samples with the actual disease burden, it is imperative
to gather specific data. This includes understanding the rate and mass of viral RNA
shedding in feces across various stages of COVID-19 infection, examining virus survival
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and persistence within sewer networks, and considering the impact of sewer-specific factors
such as runoff or groundwater infiltration [16]. Additional factors, like the proximity of
hospitals or other institutions housing patients with COVID-19 within the catchment area,
population estimates, and back-calculation methods, also play a critical role [16,22]. The
precision of this association also depends significantly on the choice of sampling points
and methods, the techniques used within laboratories, and the impact that the process of
handling samples has on the estimations of virus concentration [16]. X. Li et al. (2021) [9]
conducted a thorough investigation into uncertainties at each stage of a WBE analysis. These
findings suggest that uncertainties in WBE are approximately 20–40%, particularly notable
at higher infection levels when employing high-frequency flow-proportional sampling and
leveraging actual water usage data for estimating population prevalence [9]. The analytical
uncertainty inherent in laboratory methods emerged as a predominant factor impacting the
WBE process. Furthermore, Mac Mahon et al. [16] posit that the uncertainties in the initial
phases of WBE can be mitigated to a certain extent by applying engineering knowledge
specific to sewer networks. This is notably the case when there has been a sustained effort
toward creating a well-calibrated and validated hydraulic model of the system [16].

Although there has been a significant volume of research focused on identifying SARS-
CoV-2 RNA in wastewater, determining the lowest number of COVID-19 cases within a
population needed to produce a detectable viral RNA signal remains largely uncertain.
Although several studies [22,26–28] have noted a correlation between the COVID-19 burden
and WBE SARS-CoV-2 RNA levels—pinpointing a detection threshold for SARS-CoV-2
RNA in wastewater that would enable the projection of a population-based COVID-19
rate—it is currently unfeasible [29]. Nonetheless, Q. Li et al. [29] pointed out a major benefit
of using WBE to monitor SARS-CoV-2 RNA compared to clinical diagnostic tests: WBE
can more thoroughly detect all phases of COVID-19 within a community, encompassing
asymptomatic, pre-symptomatic, and symptomatic cases [29]. Thus, WBE, as an integral
element of epidemiological response strategies, stands out as a holistic tool for assessing
community health and guiding interventions during a pandemic.

3.3. Wastewater Surveillance and Early Warning Systems in Communities

Beyond its fundamental concept, WBE has been harnessed in several derived ap-
proaches, including wastewater surveillance (WWS), near-source tracking (NST), and early
warning systems (EWSs) [30–32]. These approaches represent a synergetic effort to leverage
the information concealed within our sewage systems, offering a strategic advantage in
identifying and keeping attention on curbing the spread of infectious diseases [30,33].
Studies implemented by Keshaviah et al. and Lazarus et al. [34,35] emphasize that sus-
tainable wastewater surveillance necessitates effective coordination between health and
safety authorities, utility services, laboratories, and researchers. Adjusting the frequency,
method, and places of sampling to align with the risk levels, susceptibility of the commu-
nity, characteristics of biomarkers, and particular insights informed by wastewater data
can significantly increase its utility in real-world applications. By standardizing the metrics
used in reporting results and combining wastewater data with health resource information,
it is possible to gain a deeper understanding of community vulnerabilities, thus assisting
in formulating plans to prevent healthcare systems from reaching their limits [36]. NST,
according to Hassard et al. [37], is a procedure utilized within WWS that involves work
within sewer drains and manholes connected to single buildings or clusters of buildings. It
enables the detection of relatively small numbers of infected individuals contributing to
the wastewater stream. Compared to sampling larger catchment areas within the sewer
system, such as wastewater treatment plant influents, NST exhibits a higher sensitivity in
identifying newly infected individuals. This heightened sensitivity can be attributed to
various factors, including the size of the contributing population, dilution of the signal,
and time it takes for sewage to travel from toilets to the collection points, with associated
viral degradation [30]. NST has been effectively applied in educational settings such as
school and university campuses, including the specific monitoring of college dormitories
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by gathering samples from sewer lines that exit individual buildings prior to their merging
with the larger sewage systems [30,38,39]. Kapoor et al. [30] emphasized that data obtained
through wastewater surveillance (WWS) for tackling COVID-19 are important and have
three primary uses. Firstly, these data aid in community-level monitoring by enabling
the observation of changes in SARS-CoV-2 infection rates, thereby assisting public health
authorities in deciding whether adjustments to current mitigation efforts are necessary. Sec-
ondly, in environments such as specific institutions where populations are confined, WWS
enables the detection of SARS-CoV-2, aiding in the decision-making process regarding
the need for clinical testing and the discovery of previously unidentified COVID-19 cases
within these groups. Lastly, the data from WWS play a critical role in the identification and
tracking of different SARS-CoV-2 variants, which is vital for public health officials to re-
spond appropriately by adapting mitigation strategies promptly in both open communities
and closed settings [30]. This information is crucial for public health authorities to make
timely decisions about adjusting mitigation efforts accordingly.

Studies have reported varying lead times in WBE, ranging from 0 to 2 days [40,41] to
up to 3 weeks [28,42–45]. The lead time depends on multiple factors, including the study’s
methodology and the time required for the virus to become detectable in wastewater. The
multifaceted capabilities of WBE are evident in its derived approaches, which serve as
critical tools in the detection and management of infectious diseases, particularly COVID-
19. The integration of WWS, NST, and EWS has demonstrated an adaptive, targeted,
and forward-looking capacity to gauge viral prevalence within communities and closed
populations efficiently [30,34,35,37]. Collaboration among public health authorities, utility
services, laboratories, and researchers is paramount, as is the fine-tuning of sampling
modalities to maximize relevance and actionability. WBE’s contribution to community
monitoring, closed population analyses, and variable surveillance has been underscored,
proving invaluable in informing public health decisions. WBE reliably provides early
insights into public health threats from viruses despite variations in detection lead times
due to different factors [28,40–42,44,45]. As the need for better surveillance continues, WBE
is a key innovation in public health, critical for early detection and protection against new
infectious diseases.

3.4. Shedding Sources and Rates

WBE relies on the human body to extract various bodily fluids, including feces, urine,
mucus, sputum, and sweat, each with different viral shedding rates, leading to detectable
viral RNA loads in wastewater systems [16,46]. Understanding these shedding patterns
is vital for accurate infection tracking and public health responses [16]. Each excreta
has distinct shedding rates of SARS-CoV-2, leading to a considerable variation in viral
loads present in wastewater [16]. For instance, urine samples typically exhibit viral loads
ranging from 105 to 108 genome copies per L, whereas fecal samples can vary from 106 to
1011 genome copies per L. However, saliva and sputum samples have been found to range
from 104 to 1014 genome copies per L (Figure 3) [46].

During the peak of a COVID-19 infection, an individual may excrete genomic copies
of SARS-CoV-2 into the wastewater [46]. The RNA of SARS-CoV-2 can persist in wastewa-
ter systems and be detectable in samples collected from sewers or wastewater treatment
plants [47]. These concentrations fluctuate based on the characteristics of the upstream
sewer network, with global wastewater samples showing viral genome concentrations
ranging from 101 to 107 genome copies per L. Typically, concentrations between 103 to
106 genome copies per L are reported [16,47]. Saawarn and Hait [48] corroborate these
findings, indicating that viral RNA concentrations in sewage typically range from 102 to
106.5 genome copies per L, considering standard dilution rates. Furthermore, Riediker
et al. [49] emphasize that the Delta and Omicron variants of SARS-CoV-2 require smaller
doses to infect individuals than the original virus strain. Although the Omicron variant
tends to have lower viral loads and shorter periods of respiratory shedding, it is consid-
ered two to three times more transmissible than the Delta variant [50]. This underscores
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the necessity of accounting for variant-specific waste-shedding rates and adapting public
health strategies to evolving pandemic conditions. Prasek et al. [50] further elaborate on
the influence of prevalent variants on waste-shedding rates. The Delta variant displayed
the highest mean shedding rates, aligning with more severe disease symptoms observed in
clinical settings. Conversely, the Omicron variant, typically linked with milder symptoms,
showed the lowest mean shedding rates. Notably, shedding rates were more consistent
during the predominance of the Omicron variant despite its lower viral loads. This under-
lines the variant-specific nature of waste-shedding rates and the importance of adjusting
public health models to reflect these variations [50–53].
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Accurate assessments of the infected population within a sewer catchment rely on
estimates of SARS-CoV-2 RNA gene copies per unit weight of feces at various disease
stages [27]. These estimates are based on reported values for SARS-CoV-2 in feces, with a
median of 4.7 log RNA genome copies per mL [27,54]. Ali et al. [54] observed persistent
shedding of virus RNA in 27% to 89% of patients, with concentrations ranging from 0.8 to
7.5 log10 genome copies per g of feces. To effectively utilize these fecal shedding concen-
trations, it is crucial to understand the average fecal output of individuals. Rose et al. [55]
determined that the median wet mass production of feces is approximately 128 g per capita
per day, with a median dry mass of 29 g per capita per day. Typically, healthy individuals
defecate about 1.20 times per a 24 h period. Fiber intake was identified as a significant
factor influencing fecal mass. Additionally, the study found median urine generation rates
to be 1.42 L per capita per day, with a dry solids content of 59 g per capita per day. A
notable component of urinary excretion is nitrogen, primarily urea, constituting over 50%
of the total organic solids.

A whole-genome sequencing (WGS) analysis of wastewater samples offers another di-
mension of insight. Vo et al. [56] demonstrated that wastewater surveillance in a dormitory
with at least three infected students among 311 residents could achieve over 95% coverage
of viral genomes. A concentration of 1.1 × 106 genome copies per L in wastewater was
deemed sufficient for WGS. This is consistent with other studies suggesting that successful
genome sequencing requires a minimum concentration of 2.8 × 105 genome copies per L of
wastewater [56].

The examination of SARS-CoV-2 in wastewater highlights its complexity, driven
by variable shedding rates and the daunting task of detecting newly emergent strains.
Embracing advanced analytical methods and incorporating detailed virological data remain
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crucial as we adapt our public health strategies to the dynamic nature of the pandemic,
underscoring WBE’s role as a sentinel in safeguarding community health.

3.5. Infectivity of the Detected RNA

The possible existence and persistence of the SARS-CoV-2 virus in aquatic environ-
ments, especially in wastewater, have emerged as significant issues during the COVID-19
crisis [46,48,57]. There are conflicting views on whether the detection of viral RNA in
wastewater implies a genuine risk of infection to humans. For instance, Bivins et al. [57]
drew attention to the troubling issue of potentially infectious SARS-CoV-2 in wastewater.
Additionally, Buonerba et al. [49] elaborated that finding the virus in wastewater is not
directly indicative of its ability to cause infection. Despite the high concentrations of SARS-
CoV-2 RNA found globally in wastewater, research indicates a scarce persistence of the
virus in these aquatic environments. RNA fragments or molecules might be detected even
from viral particles that are no longer active or intact; however, there is currently no estab-
lished method used to estimate the count of infectious particles [58]. Giacobbo et al. [46],
in their critical review, asserted that up to the time of their research, there had been no
reported instances of transmission through interaction with sewage or water contaminated
with the virus. A few studies [48,49,54] conducted in these aqueous matrices did not detect
infectious viruses. However, Giacobbo et al. [46] indicated that SARS-CoV-2 can maintain
its viability, meaning it remains infectious, for durations of up to 4.3 days in sewage and
up to 6 days in water. Additionally, they mentioned that other coronavirus strains may
remain viable in these environments for over a year, depending on the sample conditions.
This finding is corroborated by Rimoldi et al. [59], who investigated influent and effluent
samples from wastewater treatment plants and river samples in the Milano Metropolitan
area. While SARS-CoV-2 RNA was detectable, its infectivity was null, indicating a natural
decay of viral pathogenicity over time post-emission. Giacobbo et al. [46] suggested that
the possibility of contamination mediated by contact with sewage or contaminated water
cannot be completely discounted, especially considering the potential emergence of more
resistant and infectious mutations of SARS-CoV-2. In addition, Tran et al. [17] echoed
this sentiment, emphasizing that wastewater and sewage workers should adhere to safety
precautions against SARS-CoV-2 exposure. Although SARS-CoV-2 RNA is detectable in
wastewater, its presence does not confirm infectivity. Presently, detection techniques like
RT-qPCR cannot differentiate between infectious viral particles and those that are not [58].
Consequently, additional studies are essential for ascertaining the survival period and pos-
sible infectiousness of the virus in these contexts and developing more precise techniques
for its detection and monitoring [58].

The scientific community continues to stress the urgent need for conclusive research
to ascertain the virological risks associated with SARS-CoV-2 in aqueous environments
and to develop detection techniques capable of identifying infectious particles [17]. Until
these uncertainties are resolved, precautionary approaches must prevail, necessitating that
wastewater and sewage management include robust protocols to protect against possible
SARS-CoV-2 contamination.

3.6. Wastewater Sampling

The methodology of sampling wastewater is influential in the accuracy and representa-
tiveness of the data collected for the target human population’s viral load and in detecting
SARS-CoV-2 RNA in wastewater [60]. The timing and method of collecting wastewater
samples are crucial due to the changes occurring across different locations and times [13].
Polo et al. [10] highlight the necessity of considering the distinct characteristics of urban and
rural wastewater systems when designing surveillance programs. This study emphasizes
that sampling timing is pivotal, aligning with the critical pathways where the virus will
most likely be transported and detected. In comparatively large urban areas (with the
longest sewer spans of about 70 km or more [61]), for instance, a 24 h delay in wastewater
transit from households to centralized treatment plants can be typical. The concentration
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of SARS-CoV-2 RNA in influent wastewater is subject to diurnal variation, influenced
by factors such as defecation frequency, timing, sampling technique, and frequency. In
addition, Heaton et al. [62] suggest that defecation is most frequent in the early morning.
Therefore, wastewater collected during these peak fecal loading times might contain higher
levels of SARS-CoV-2 RNA. In the absence of an autosampler, it is recommended to per-
form targeted grab sampling during these times to enhance the probability of detecting
SARS-CoV-2 RNA. Identifying peak times for fecal loadings in local areas before initiating
a grab sampling campaign is vital. However, these peak times might vary between wastew-
ater treatment facilities due to differences in sewer infrastructure [10]. Total influent flow
can be used to indicate morning anthropogenic activity and fecal shedding. For effective
sampling programs, Ahmed et al. [60] recommend conducting two or more 24 h composite
samplings per week or a single 48 h or 72 h composite sampling per week, which aims to
capture the most shedding events within a community. A minimum of weekly sampling
is advised, with twice-weekly sampling on weekends for higher-resolution data. Further-
more, X. Li et al. [22] observe that while the influence of the sampling method on results
is minimal, elevating the sampling frequency notably improves the correlation between
SARS-CoV-2 RNA levels in wastewater and various clinically verified case numbers, such
as prevalence and incidence rates.

The methodologies involved in the sampling of wastewater play a crucial role in WBE,
as the decisions made regarding when, where, and how often sampling occurs substantially
influence the representativeness of the viral load data obtained. Experts across studies such
as Polo et al. [10], Ahmed et al. [60], Heaton et al. [62], and X. Li et al. [22] emphasize the
strategic importance of customized sampling plans reflecting the geographical, infrastruc-
tural, and demographic intricacies of target populations. These recommendations outline
the critical factors for consideration in constructing efficient and insightful WBE programs
that aim to provide an accurate reflection of the presence of viruses in communities.

3.7. Wastewater Sample Preparation and Analysis

The effectiveness of the WBE method depends significantly on proper sample col-
lection and storage protocol, owing to the sensitivity of virus stability [10]. With the
concentration of SARS-CoV-2 in wastewater fluctuating, especially at the start and end
of an epidemic, the sensitivity of detection techniques is paramount in providing timely
data on the epidemic’s progress for policymakers and health professionals [60]. Sample
collection and storage conditions significantly impact the detection of SARS-CoV-2 RNA
signals in wastewater due to stability concerns [10]. Samples are typically transported
on ice from the collection point to the laboratory and stored at 4 ◦C upon arrival, with
concentration processes initiated within 48–72 h. The levels of SARS-CoV-2 in wastewater,
anticipated to be low at the outset or during the concluding phase of an epidemic, demand
detection techniques with high sensitivity. Such methods must successfully identify mini-
mal concentrations of the virus, serving as an efficient early warning mechanism or guiding
safe decisions on relaxing restrictions [60,63].

The preparation of the samples, i.e., concentration, is also crucial. Common con-
centration methods can include precipitation with salt or polyethylene glycol, electro-
statically charged membrane filtration, and ultrafiltration [64–68]. Ahmed, Bertsch, and
Bivins et al. [64–66] found that electronegative membrane filtration, particularly with the
addition of MgCl2, yielded the highest mean recovery rate. Ongoing modifications aim to
enhance the efficiency of these methods, such as employing ultrafiltration membranes [67].

When it comes to sample analyses, a polymerase chain reaction (PCR), particularly
reverse transcription (RT-)PCR and real-time PCR, is the most commonly used method
for virus detection and quantification in wastewater [64]. These PCR variations are highly
sensitive and allow for the exponential amplification of genomic DNA or RNA templates.
However, PCR’s enzymatic nature makes it susceptible to inhibitors found in complex
samples, including stool, fecal, and environmental water samples [69]. Removing PCR
inhibitors, such as humic and fulvic acids, is crucial [69]. Methods like dialysis, liquid–
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liquid extraction, flocculation, column-based methods, and ultrafiltration are employed,
with the latter being the most effective [67]. Electropositive filters can also be used to bind
microorganisms and avoid the co-purification of inhibitory substances [68].

Qiu et al. [70] published an optimized laboratory protocol for processing wastewater
samples, where they identified three key factors affecting the threshold for SARS-CoV-2
RNA detection in wastewater: variability in clinical testing approaches, the impact of
wastewater matrix characteristics on RT-qPCR detection, and study design considerations.
The sensitivity of the method discussed shows varying results with regard to its onset, as
illustrated in Figure 4. According to Mac Mahon et al. [16], the method’s sensitivity can
detect as few as one infected individual per 1000 in the UK and a minimum of 10 infections
per 100,000 in Japan. Ahmed and colleagues [42] estimate that detecting the virus requires
between 253 and 409 positive cases per 10,000 individuals, influenced by various factors
such as the targeted gene, frequency of sampling, and environmental conditions. Hart
and Halden [4] put forward that the range of possible detections can vary significantly,
from 1 in 114 individuals to 1 in approximately 2 million, influenced by the uniformity
in wastewater, among other variables. Ali et al. [54] expressed skepticism about these
optimistic figures due to uncertainties in certain influencing factors. Meanwhile, Greenwald
and co-authors [71] assessed the limit for detecting cases using this method to be around
2.4 new daily cases per 100,000 individuals.
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In addition, Black et al. [72] demonstrated that the likelihood of detecting the virus
rose with higher numbers of confirmed infected individuals. However, this probability
diminished with greater distances from the source of infection and a longer duration since
the onset of the disease.

Black et al. [72] observed that detecting the virus was most probable when infected
individuals were identified within the initial two weeks of their illness. This timeframe
aligns with when these individuals were most likely to experience increased viral shedding
and their proximity to the sampling location was within 5 km. However, Q. Li et al. [29]
concluded that detecting SARS-CoV-2 RNA in wastewater with 50%, 80%, and 99% proba-
bility requires one new COVID-19 case per 9091, 4762, and 2564 individuals in a community,
respectively. Thus, researchers agree on the need for systematic and standardized proce-
dures for sample collection, storage, and processing to maintain the integrity of results.
Current research efforts focus on developing methods to concentrate SARS-CoV-2 RNA,
mitigate PCR inhibition, and gauge detection likelihood based on the prevalence of cases,
which are central to advancing this field. While optimistic about the potential of WBE as a
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surveillance tool, the scientific community remains aware of the inherent uncertainties and
strives to develop robust, reliable practices with proper validation and calibration.

3.8. Sample Normalization

Traditional measures using concentrations face challenges due to variations in flow
rates and population sizes [73,74]. Consequently, the normalization of WBE data is a critical
step in ensuring reliable comparisons between different locations and time points [74]. Data
normalization is essential not only for evaluating pharmaceuticals but also for monitoring
pathogens like SARS-CoV-2, which causes the COVID-19 pandemic, where it serves a
critical function in surveillance efforts [75]. Due to these factors, it is essential to adjust
the measured concentration values to account for differences in population sizes and
flow rates. This normalization process enables dependable comparisons across different
locations [20,74]. This is also widely used in WBE SARS-CoV-2 surveillance [16,76,77].

According to Maal-Bared et al. [76], normalizing WBE data involves correcting an-
alyte measurements to counteract the variability caused by the dilution of fecal matter
due to the introduction of non-sanitary sewage, stormwater, or groundwater infiltration.
There is currently no agreement on which normalization parameters for WBE yield the
strongest correlations and provide the earliest indication between SARS-CoV-2 WBE data
and COVID-19 case trends [76]. Overall, Maal-Bared et al. [76], based on their findings,
deduced that normalizing data has a minor effect on enhancing the correlations between
WBE data and clinical data. In addition, additional biomarkers were identified related
to the population, including creatinine, cholesterol, coprostanol, nicotine, cortisol, an-
drostenedione, and the serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA) [78–81].
Nonetheless, analyzing all these biomarkers necessitates expertise in analytical chemistry.
Concerns persist regarding applying these markers across diverse catchment areas because
variable consumption or disposal practices, stability, and sorption to particulate matter
introduce a high level of uncertainty [82,83]. Maal-Bared et al. [76] conducted research to
assess whether normalization using the Pepper Mild Mottle virus (PMMoV) offers any
benefits over other normalization parameters, such as the flow rate, reported and dynamic
population sizes, biological oxygen demand (BOD), total suspended solids (TSSs), ammo-
nia (NH3), and total phosphorus (TP). In the study, Mall-Bared et al. [76] concluded that
under most conditions, either using raw concentration data or data normalized by simpler,
quicker, and more cost-effective wastewater strength parameters (e.g., Total Kjeldahl Nitro-
gen (TKN), TP, NH3) could offer benefits comparable to those provided by normalization
with PMMoV data. This conclusion aligns with the results reported by Saingam et al.
and Sakarovitch et al. [81,84]. According to Maal-Bared et al. [76], widespread practice
involves normalizing SARS-CoV-2 RNA concentrations using endogenous human fecal
markers. This is achieved by detecting organisms or compounds unique to human feces
in wastewater to gauge its human fecal content or fecal strength. Various biomarkers
are employed for this purpose, including PMMoV; Bacteroides HF183, F-specific RNA
bacteriophages, human 18S rRNA, crAssphage, fecal coliforms, and β-2-macroglobulin;
and the neurotransmitter metabolite 5-hydroxyindole acetic acid (5-HIAA) [16,85,86]. The
latter, according to Mac Mahon et al. [20,83], may be more appropriate for international
comparisons since others could serve as an internal reference to manage variability between
samples due to differences in wastewater dilution or processing.

Ahmed et al. [87] suggested that the prevalence of SARS-CoV-2 infection within a
specific catchment area can be assessed by performing a mass balance analysis. This
involves comparing the total daily count of viral RNA copies found in wastewater, as
detected by RT-qPCR, with the daily amount of SARS-CoV-2 RNA copies excreted in the
stool by an infected person (Equation (1)) [87].

Persons in f ected =

(
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)
·
(
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day

)
(
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person per day
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Weidhaas et al. [27], in their study, evaluated wastewater from three plants to deter-
mine the degradation of RNA during storage at temperatures of 4 ◦C and −80 ◦C and
throughout its transport in a sewer system at 10 ◦C and 35 ◦C. In these decay studies, the
initial viral RNA concentrations in the wastewater ranged from 135 to 953 gene copies
per mL. The findings reveal that the viral RNA exhibited a first-order decay rate between
0.09 and 0.12 per hour for 22 to 24 h at temperatures of 4, 10, and 35 ◦C. The RNA became
undetectable after 6 h at a temperature of 35 ◦C, yet it remained detectable after 22 h of
incubation at 4 and 10 ◦C, and even after 1 week at −80 ◦C [27].

Furthermore, X. Li et al. [9] evaluated the existing research, indicating that the decay
of SARS-CoV-2 RNA in wastewater adheres to a first-order decay model over time, which
can be represented by the formula shown in Equation (2) [9] below:

Ct = C0 · e−kt (2)

where Ct and C0 denote the concentrations of SARS-CoV-2 RNA in wastewater at time t and
the initial time, respectively, and k represents the rate constant of decay. As the temperature
of the wastewater rose from 4 ◦C to 37 ◦C, the k values shifted from 0.084 ± 0.013 per day
to 0.286 ± 0.008 per day, which demonstrates that an increase in wastewater temperature
significantly decreases the stability of SARS-CoV-2 RNA in wastewater (p < 0.0001) [9]. For
wastewater maintained at 20 ◦C, similar decay rates (k value) ranging between 0.067 per
day and 0.09 per day were reported by X. Li et al. [9].

The time required to achieve a 90% (one log) reduction (T90), according to Ahmed,
Bertsch, and Bibby et al. [64], is shown below (Equation (3)):

T90 =
−Ln(0.1)

k
(3)

To derive dynamic population estimates, as outlined by Maal-Bared et al. [76] and
Wade et al. [77], specific concentrations of wastewater physicochemical properties, pub-
lished per capita excretion rates for the chosen biomarker, and flow rates should be con-
sidered. The dynamic population size is determined by taking the product of the daily
measured concentrations of the parameter (Xd) and the daily wastewater flow rates (QD),
then dividing this by the per capita excretion rate of the biomarker reported in the literature
(x mg per capita per day), as given in Equation (4) [76] below.

Dynamic population size =
Xd · QD

xm per capita per day
(4)

Maal-Bared et al. [76] outlined daily discharge rates per capita from the literature,
which can be summarized as follows: TP at 1.8 g per person per day; BOD ranging from 50
to 118 g per person per day, with an average of 84 g of BOD per person per day; NH3 at
8.1 g per person per day; TSSs between 59 and 150 g per person per day, with an average of
105 g of TSSs per person per day; and TKN from 9.1 to 22.7 g per person per day, averaging
at 15.9 g of TKN per person per day (Figure 5).

In the study of human nutrient emissions performed by Drecht et al. [88], a key finding
is that these emissions correlate with income levels, notably via the more accurate metric
of purchasing power parity (PPP) rather than market exchange rates. This relationship
indicates that individuals in wealthier nations tend to have higher nitrogen (N) emissions
due to dietary habits. Researchers have developed new formulae to estimate human N
and phosphorus (P) emissions. The estimates suggest a significant disparity in protein N
intake between low-income (<8.4 g of N/person/day) and industrialized countries (~16 g
of N/person/day), with the latter being well aligned with observed data from European
wastewater studies [88]. This indicates that economic status correlates with higher dietary
protein intake and, consequently, higher N and P emissions.
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The findings from the study by Maal-Bared et al. [76] demonstrated that normalizing
with ammonia, TKN, and TP yielded the most significant differences in correlation coeffi-
cients (p-values) when performing Spearman’s rho value estimations, as outlined by von
Sperling et al. [26]. This approach was followed in effectiveness by normalization using
PMMoV and dynamic population estimates calculated with the same parameters. On the
other hand, dynamic population estimates derived from BOD and TSSs, flow rates, and
combinations of flow and population metrics resulted in weaker correlations [76].

According to Maal-Bared et al. [76], in areas with considerable tourism activity or a
significant number of part-time residents, employing dynamic population size calculations
could be particularly beneficial. Furthermore, the expense associated with conducting a
PMMoV analysis annually for two years is roughly equal to the cost of acquiring a flowme-
ter, which can offer higher-quality WWTP data useful not only for WBE but also for other
aspects of WWTP management [76]. According to Gudra et al. [14], the above-mentioned
factors, as well as the movement of individuals, complicate the process of estimating
disease prevalence via WBE, which is vital for effective crisis management. Thus, the
movement of populations can significantly affect the results of WBE measurements, poten-
tially leading to outcomes that do not accurately represent the epidemiological condition
of the area in question. Gudra et al. [14] demonstrated that an accurate portrayal of the
COVID-19 epidemiological status in small- and medium-sized towns could be achieved
by integrating data on the detected numbers of SARS-CoV-2 RNA copies, analyses of
5-HIAA in wastewater, and mobile call detail records. This study represented the initial
demonstration of using WBE for tracking COVID-19 outbreaks in Latvia, showing that
integrating measurements for estimating population size, such as 5-HIAA levels and call
detail record data, enhances the precision of the WBE methodology [14]. Results from the
study of Holm et al. [89] over four months, which analyzed unmodified wastewater data,
found that the concentration of the fecal indicator human ribonuclease P (RNase P) varied
from 5.1 × 101 to 1.15 × 106 copies per milliliter. The counts for PMMoV were within the
range of 7.23 × 103 to 3.53 × 107 copies per milliliter, while the crAssphage ranged from
9.69 × 103 to 1.85 × 108 copies per milliliter. These findings highlighted both regional and
temporal differences in the data. Holm et al. [89] concluded that when fecal indicators are
employed for normalization purposes, understanding the daily flow of the sewer system at
the sample location might be more crucial than accounting for rainfall.
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Studies have revealed that the use of certain population biomarkers and normalization
parameters may yield varying degrees of correlation with clinical data, impacting the
reliability and comparability of results [5,73,75,90–93]. Moreover, environmental variables
such as temperature can significantly affect the decay rate of viral RNA in wastewater,
thus further influencing the normalization process and subsequent interpretation of the
data [73,90,93]. The dynamic nature of population estimates also poses challenges for
WBE, especially in regions with fluctuating populations due to tourism or part-time resi-
dency [14].

3.9. Wastewater Matrix and Environmental Factors

The accuracy and reliability of WBE are affected by various uncertainties [10]. In-
frastructure characteristics, such as the layout and age of the sewage network, influence
the dilution and residence time of pathogens like SARS-CoV-2 [16]. Numerous factors,
including the physical and chemical properties of wastewater, demographic parameters,
and environmental conditions, impact the detection rate and persistence of viral loads in
sewage, ultimately affecting disease detection and the robustness of the WBE approach [10].

The primary area of uncertainty concerning the use of WBE for disease detection
involves the configuration, age, geographic layout, and capacity of the sewage network,
which can significantly influence the dilution, residence time, and persistence of the virus
within the sewer system [16]. Older sewage systems often exhibit considerable leakage
and infiltration issues, and in systems where sewage and stormwater are combined, heavy
rainfall can lead to overflow events, resulting in the loss of viruses and significant dilution
of the wastewater, which could affect the concentration of viral loads [16]. The adsorption
or desorption of viruses between the liquid phase and the sewage sludge can also alter
the viral content found in wastewater samples [16]. In addition to dilution, a further
diminution in the viral RNA load is anticipated when feces and other human excreta enter
the sewer system due to the inactivation of viruses influenced by the current environmental
conditions (temperature, pH, solids content, and dissolved oxygen), as well as the presence
of antagonist microorganisms (Escherichia coli, Enterococcus spp., Bacillus spp., Clostridium
spp., etc.) and chemicals (i.e., detergents, disinfectants) in the sewage [16,46]. For instance,
Haak et al. [13], in their study, identified various demographic factors that exhibit sig-
nificant differences across these regions, including population density, levels of poverty,
household income, and age distribution. Their findings offer a more tactical method for
detecting disease outbreaks at the neighborhood level, demonstrating how the selection
of sampling sites could be tailored according to the spatial and demographic features
of different neighborhoods [13]. Furthermore, the study performed by Haak et al. [13]
identified the following: (1) statistically significant hotspots appeared in suburban neigh-
borhoods around two weeks after the emergence of significant hotspots in urban center
neighborhoods; (2) locations experiencing the highest peaks in viral concentrations were
typically characterized by a younger median age, higher poverty rates, lower household
incomes, and greater population densities; (3) the influents of WWTPs had the strongest
correlation with sampling sites situated in areas that were the most urbanized and generally
nearest to the WWTPs.

According to a study performed by Domokos et al. [12], factors such as industrial
discharges and rainfall events can influence virus detection. Studying physicochemical pa-
rameters, including temperature, chemical oxygen demand (COD), chloride concentrations,
and electrical conductivity, can offer deeper insights into the extent of dilution. COD, in
particular, is highlighted as being especially indicative of dilution levels, both in scenarios
of heavy rainfall leading to high dilution and in the presence of pollutants found in indus-
trial effluents, as noted by Lastra et al. [94]. In addition, Lastra et al. [94] identified rainfall
events’ data as the primary factor responsible for dispersion together with physicochemical
parameters [12]. However, Wang et al. [95] demonstrated that SARS-CoV remained viable
for 14 days when kept at a temperature of 4 ◦C but was deactivated after just 2 days at
a temperature of 20 ◦C. Nevertheless, at a temperature of 4 ◦C, SARS-CoV survived for
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14 days in wastewater and at least 17 days in feces or urine. SARS-CoV is more vulnerable
to disinfectants compared to Escherichia coli and f2 phage. Free chlorine is more effective in
deactivating SARS-CoV than chlorine dioxide. Maintaining free residual chlorine levels
above 0.5 mg/L for chlorine or 2.19 mg/L for chlorine dioxide in wastewater guarantees
the total inactivation of SARS-CoV. In contrast, it does not completely inactivate E. coli and
f2 phage [95].

Bivins et al. [57] mentioned that the RNA signal from SARS-CoV-2 shows greater persis-
tence than the infectious form of SARS-CoV-2 with T90 values (time required for 1−log10 re-
duction) of 3.3 days versus 1.6 days in wastewater at high concentrations (105 TCID50 mL−1)
and 26.2 days versus 2.1 days at low concentrations (103 TCID50 mL−1) at 20 ◦C. In ad-
dition, Tiwari et al.’s study [96] appears to bear some correlation with the detection rate
of SARS-CoV-2, as indicated by the TSS values observed in samples where SARS-CoV-2
RNA was not detected at 305.3 ± 18.1 mg/L while the TSS value from samples with the
detection of SARS-CoV-2 RNA was 393.1 ± 10.1 mg/L. The detection rate of SARS-CoV-2
RNA in wastewater did not show a significant relationship with the values of biological
oxygen demand, chemical oxygen demand, total nitrogen, total phosphorus, and ammo-
nium nitrate, according to the analysis conducted using the Mann–Whitney U test [96].
Tiwari et al., in their study [96], concluded that during events where influent flow peaks
and contains runoff water, the composition of the influent might alter in such a manner
that the quantities of SARS-CoV-2 are diluted within the samples. This poses a problem,
particularly when the presence of SARS-CoV-2 is barely detectable, as runoff waters can
lead to false-negative results in WBE studies of SARS-CoV-2 owing to the impact of dilution.
The ability to detect and quantify SARS-CoV-2 RNA across different wastewater samples
and within various WWTPs can be influenced by changes in the physical and chemical
properties of the wastewater. For instance, the varying levels of substances that inhibit PCR
among different sampling events can lead to discrepancies in the results [96].

In research performed by Petala et al. [97], a physicochemical model was developed
to mimic the dynamic adsorption of SARS-CoV-2 RNA onto suspended solids, which
also enabled the detection of measurable SARS-CoV-2 concentrations in wastewater by
considering various factors, including the inlet flow rate, concentration of TSSs, dissolved
oxygen (DO), 5-day biochemical oxygen demand (BOD5), COD, UV absorbance at 254 nm
(UV254), dissolved organic carbon (DOC), ammonium, nitrates, total organic nitrogen,
TP, and ortho-phosphates. By aligning the model with data obtained from actual sewer
systems and COVID-19 prevalence rates in the catchment area, Petala and colleagues [97]
discovered that the ratio of UV254 to DOC and DO levels exhibited the strongest correlation
with changes in viral concentration in wastewater, which indicates the significant influence
of humic-like substances in conjunction with DO on the adsorption and degradation of the
virus within sewage systems [97].

When fitting the model with the data from real sewers and the COVID-19 prevalence in
the catchment area, UV254/DOC and DO showed the highest correlation with the variation
of viral concentration in wastewater, suggesting the strong impact on viral adsorption and
decay in sewage caused by the presence of humic-like substances combined with DO [97].

In a study by X. Li et al. [22], the effects of environmental factors, WBE sampling
design, and epidemiological circumstances on the correlation were evaluated using the
same datasets. This scoping review compiled 133 correlation coefficients, which varied
from −0.38 to 0.99. The relationship between COVID-19 RNA concentrations and new
cases (whether daily, weekly, or future cases) was stronger than the correlation with active
or cumulative cases. These correlations were likely influenced by the environmental and
epidemiological conditions and the design of the WBE sampling [22].

Normalization methods are indeed paramount to enhancing the accuracy of WBE data,
but no consensus has been reached regarding the most influential parameters. Research
indicates that while normalization may improve data comparability, the choice of the
normalization parameter can greatly affect the correlation strength with clinical datasets.
Studies suggest that simpler normalization parameters could be as effective as more com-
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plex ones. Additionally, the robustness of WBE as a monitoring tool is not only limited to
the chosen biomarkers but is also influenced by factors such as temperature, population
mobility, and data from additional sources such as mobile call records. Moving forward,
a deeper understanding of these diverse normalization methods and external factors is
crucial in optimizing WBE for disease surveillance and population health management.

4. Discussion

Though many studies have detected and quantified SARS-CoV-2 RNA concentrations
in wastewater (CRNA), correlation coefficients estimated within the reviewed published
studies have a considerably wide range, which correspondingly leads to high uncertainty
levels for estimating the actual number of infected persons within the sewerage catch-
ment [22,27].

Thus, considering the facts collected and described in the reviewed papers, many
aspects impact the results of detection and quantification of CRNA in wastewater and the
interpretation of acquired results compared to the actual number of infected persons in the
particular area served by the sewerage collection system, including virological, epidemio-
logical, analytical, geographical, environmental, socio-economical, and engineering factors.

Several factors influence the study of viruses in sewer systems, including the variant
of the virus, which covers aspects like shedding and infectivity rates along with the virus’s
vitality and persistence within the sewer environment [12,49,50,52,98,99]. The methodology
of selecting points for sampling and its procedure, which can involve choosing between
flow-based and time-based sampling methods, also plays a critical role [10,12,30,60,99].
Additionally, the processes for preserving, preparing, and testing samples are crucial
components of the research [64–68]. Methods for normalizing samples to ensure accurate
results are necessary as well [16,73–76,78–81]. Socio-economic aspects within the study
area, such as the median age of inhabitants, poverty rates, income levels, and population
densities, can significantly affect the outcomes of such studies [16]. Lastly, the wastewater
matrix and environmental elements constitute an extensive category that encompasses the
sewage network’s layout, condition, and age, as well as geographical factors like climate
and water temperatures, the sewer system’s capacity, dilution factors (including stormwater
and infiltration), residence time in the sewer system, and the physicochemical composition
of the wastewater, which may be notably affected by the presence of specific industrial
wastewater [16,22,96].

The further evaluation of these factors’ impact on the precision of the results could
increase the accuracy of infected person estimates using WBE and better interpretation
of acquired data. However, understanding of the influence of various engineering as-
pects remains incomplete, necessitating further research to bridge the existing knowledge
gaps [17,100,101]. Therefore, further studies are needed to address engineering issues in
developing new WBE methodologies, including the following aspects:

• Appropriate normalization methods to determine the most efficient process, especially
using wastewater parameters and measurements, which are used in the usual moni-
toring performance of most WWTPs. These include the specific wastewater amount
per person, TSSs, BOD, COD, N and its forms, P and its forms, temperature, pH,
conductivity, or a combination.

• Appropriate factor identification in the latter, which has a higher impact on the virus
detection, quantification, and estimation of the actual number of infected persons
using WBE during virus RNA transport within the sewer system.

• The transposition and interpretation of the socio-economic aspects of the wastewater
composition parameters.

• Development of mathematical models for virus, bacteria, or chemical transport within
sewerage systems.

Nevertheless, this scoping review also has some limitations, as not all engineering
aspects can be precisely defined and described due to the multi-disciplinary context of the
subject, limiting more precise searches in scientific databases. The outcomes of prospective
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investigations in this domain can offer novel sampling design and data analysis method-
ologies, along with potential tools for managing the spread of infections and pandemics.
Existing available studies primarily focus on scientific findings from Europe, North Amer-
ica, and Asia, leaving a gap in understanding in Africa and South America [21]. Expanding
the scope of these studies to include these areas would provide a more comprehensive
overview of the topic across different regions.

Applying WBE may prove more cost-effective than extensive direct testing of individu-
als. Moreover, the knowledge garnered from these future studies could extend beyond viral
detection, quantification, analyses, and interpretation, encompassing other viruses, such as
the polio virus, and diverse chemicals or drugs. These findings could revolutionize public
health and surveillance strategies, shaping a more comprehensive understanding of disease
dynamics and facilitating more efficient interventions. However, new methodologies using
routine analyses are needed for WBE to become a widely used surveillance method by
water companies. For instance, wastewater matrix data (e.g., flow rate, TSSs, BOD, COD,
N, and P) collected at the wastewater treatment plant for treatment process control could
improve and facilitate the WBE data-normalization process.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w16091220/s1, PRISMA-ScR checklist and flow diagram.

Author Contributions: Conceptualization, J.L. and T.J.; methodology, J.L. and T.J.; validation, B.D.
and S.D.; formal analysis, B.D., S.D. and T.J.; investigation, J.L.; resources, B.D., S.D. and T.J.; data
curation, J.L.; writing—original draft preparation, J.L.; writing—review and editing, J.L., B.D., S.D.
and T.J.; visualization, J.L.; supervision, T.J.; project administration, B.D., S.D. and T.J.; funding
acquisition, T.J. All authors have read and agreed to the published version of the manuscript.

Funding: The work was supported by the project “Platform for the COVID-19 safe work environment”
(ID. 1.1.1.1/21/A/011), which is founded by European Regional Development Fund specific objective
1.1.1 “Improve research and innovation capacity and the ability of Latvian research institutions to
attract external funding, by investing in human capital and infrastructure”. The project is co-financed
by REACT-EU funding for mitigating the consequences of the pandemic crisis.

Data Availability Statement: Data are contained within the Supplementary Materials.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Galani, A.; Aalizadeh, R.; Kostakis, M.; Markou, A.; Alygizakis, N.; Lytras, T.; Adamopoulos, P.G.; Peccia, J.; Thompson, D.C.;

Kontou, A.; et al. SARS-CoV-2 wastewater surveillance data can predict hospitalizations and ICU admissions. Sci. Total Environ.
2022, 804, 150151. [CrossRef] [PubMed]

2. Gao, Z.; Gao, M.; Chen, C.H.; Zhou, Y.; Zhan, Z.H.; Ren, Y. Knowledge graph of wastewater-based epidemiology development: A
data-driven analysis based on research topics and trends. Environ. Sci. Pollut. Res. 2023, 30, 28373–28382. [CrossRef] [PubMed]

3. Faraway, J.; Boxall-Clasby, J.; Feil, E.J.; Gibbon, M.J.; Hatfield, O.; Kasprzyk-Hordern, B.; Smith, T. Challenges in realising the
potential of wastewater-based epidemiology to quantitatively monitor and predict the spread of disease. J. Water Health 2022, 20,
1038–1050. [CrossRef] [PubMed]

4. Hart, O.E.; Halden, R.U. Computational analysis of SARS-CoV-2/COVID-19 surveillance by wastewater-based epidemiology
locally and globally: Feasibility, economy, opportunities and challenges. Sci. Total Environ. 2020, 730, 138875. [CrossRef]

5. Hou, C.; Chu, T.; Chen, M.; Hua, Z.; Xu, P.; Xu, H.; Wang, Y.; Liao, J.; Di, B. Application of multi-parameter population model
based on endogenous population biomarkers and flow volume in wastewater epidemiology. Sci. Total Environ. 2021, 759, 143480.
[CrossRef] [PubMed]

6. Berzina, Z.; Pavlenko, R.; Jansons, M.; Bartkiene, E.; Neilands, R.; Pugajeva, I.; Bartkevics, V. Application of Wastewater-Based
Epidemiology for Tracking Human Exposure to Deoxynivalenol and Enniatins. Toxins 2022, 14, 91. [CrossRef] [PubMed]

7. Tomsone, L.E.; Perkons, I.; Sukajeva, V.; Neilands, R.; Kokina, K.; Bartkevics, V.; Pugajeva, I. Consumption trends of pharma-
ceuticals and psychoactive drugs in Latvia determined by the analysis of wastewater. Water Res. 2022, 221, 118800. [CrossRef]
[PubMed]

8. Wang, H.; Xu, B.; Yang, L.; Huo, T.; Bai, D.; An, Q.; Li, X. Consumption of common illicit drugs in twenty-one cities in southwest
China through wastewater analysis. Sci. Total Environ. 2022, 851, 158105. [CrossRef]

9. Li, X.; Zhang, S.; Shi, J.; Luby, S.P.; Jiang, G. Uncertainties in estimating SARS-CoV-2 prevalence by wastewater-based epidemiology.
Chem. Eng. J. 2021, 415, 129039. [CrossRef]

https://www.mdpi.com/article/10.3390/w16091220/s1
https://www.mdpi.com/article/10.3390/w16091220/s1
https://doi.org/10.1016/j.scitotenv.2021.150151
https://www.ncbi.nlm.nih.gov/pubmed/34623953
https://doi.org/10.1007/s11356-023-25237-9
https://www.ncbi.nlm.nih.gov/pubmed/36662433
https://doi.org/10.2166/wh.2022.020
https://www.ncbi.nlm.nih.gov/pubmed/35902986
https://doi.org/10.1016/j.scitotenv.2020.138875
https://doi.org/10.1016/j.scitotenv.2020.143480
https://www.ncbi.nlm.nih.gov/pubmed/33213920
https://doi.org/10.3390/toxins14020091
https://www.ncbi.nlm.nih.gov/pubmed/35202119
https://doi.org/10.1016/j.watres.2022.118800
https://www.ncbi.nlm.nih.gov/pubmed/35810631
https://doi.org/10.1016/j.scitotenv.2022.158105
https://doi.org/10.1016/j.cej.2021.129039


Water 2024, 16, 1220 18 of 22

10. Polo, D.; Quintela-Baluja, M.; Corbishley, A.; Jones, D.L.; Singer, A.C.; Graham, D.W.; Romalde, J.L. Making waves: Wastewater-
based epidemiology for COVID-19—Approaches and challenges for surveillance and prediction. Water Res. 2020, 186, 116404.
[CrossRef]

11. Zhang, D.; Duran, S.S.F.; Lim, W.Y.S.; Tan, C.K.I.; Cheong, W.C.D.; Suwardi, A.; Loh, X.J. SARS-CoV-2 in wastewater: From
detection to evaluation. Mater. Today Adv. 2022, 13, 100211. [CrossRef] [PubMed]

12. Domokos, E.; Sebestyén, V.; Somogyi, V.; Trájer, A.J.; Gerencsér-Berta, R.; Oláhné Horváth, B.; Tóth, E.G.; Jakab, F.; Kemenesi,
G.; Abonyi, J. Identification of sampling points for the detection of SARS-CoV-2 in the sewage system. Sustain. Cities Soc. 2022,
76, 103422. [CrossRef] [PubMed]

13. Haak, L.; Delic, B.; Li, L.; Guarin, T.; Mazurowski, L.; Dastjerdi, N.G.; Dewan, A.; Pagilla, K. Spatial and temporal variability and
data bias in wastewater surveillance of SARS-CoV-2 in a sewer system. Sci. Total Environ. 2022, 805, 150390. [CrossRef] [PubMed]

14. Gudra, D.; Dejus, S.; Bartkevics, V.; Roga, A.; Kalnina, I.; Strods, M.; Rayan, A.; Kokina, K.; Zajakina, A.; Dumpis, U.; et al.
Detection of SARS-CoV-2 RNA in wastewater and importance of population size assessment in smaller cities: An exploratory
case study from two municipalities in Latvia. Sci. Total Environ. 2022, 823, 153775. [CrossRef] [PubMed]

15. Cervantes-Avilés, P.; Moreno-Andrade, I.; Carrillo-Reyes, J. Approaches applied to detect SARS-CoV-2 in wastewater and
perspectives post-COVID-19. J. Water Process Eng. 2021, 40, 101947. [CrossRef] [PubMed]

16. Mahon, J.M.; Monleon, A.J.C.; Gill, L.W.; O’Sullivan, J.J.; Meijer, W.G. Wastewater-based epidemiology (WBE) for SARS-CoV-2—A
review focussing on the significance of the sewer network using a Dublin city catchment case study. Water Sci. Technol. 2022, 86,
1402–1425. [CrossRef] [PubMed]

17. Tran, H.N.; Le, G.T.; Nguyen, D.T.; Juang, R.S.; Rinklebe, J.; Bhatnagar, A.; Lima, E.C.; Iqbal, H.M.N.; Sarmah, A.K.; Chao, H.P.
SARS-CoV-2 coronavirus in water and wastewater: A critical review about presence and concern. Environ. Res. 2021, 193, 110265.
[CrossRef] [PubMed]

18. Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Guidelines and Guidance Preferred Reporting Items for Systematic Reviews and
Meta-Analyses: The PRISMA Statement. Ann. Intern. Med. 2009, 151, 264–269. [CrossRef] [PubMed]

19. Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L. PRISMA
extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann. Intern. Med. 2018, 169, 467–473. [CrossRef]

20. Boogaerts, T.; Ahmed, F.; Choi, P.M.; Tscharke, B.; O’Brien, J.; De Loof, H.; Gao, J.; Thai, P.; Thomas, K.; Mueller, J.F.; et al. Current
and future perspectives for wastewater-based epidemiology as a monitoring tool for pharmaceutical use. Sci. Total Environ. 2021,
789, 148047. [CrossRef]

21. Elsevier. Scopus Data Base. Available online: www.scopus.com (accessed on 26 November 2023).
22. Li, X.; Zhang, S.; Sherchan, S.; Orive, G.; Lertxundi, U.; Haramoto, E.; Honda, R.; Kumar, M.; Arora, S.; Kitajima, M. Correlation

between SARS-CoV-2 RNA concentration in wastewater and COVID-19 cases in community: A systematic review and meta-
analysis. J. Hazard. Mater. 2023, 441, 129848. [CrossRef] [PubMed]

23. Li, X.; Kulandaivelu, J.; Guo, Y.; Zhang, S.; Shi, J.; O’Brien, J.; Arora, S.; Kumar, M.; Sherchan, S.P.; Honda, R.; et al. SARS-CoV-2
shedding sources in wastewater and implications for wastewater-based epidemiology. J. Hazard. Mater. 2022, 432, 128667.
[CrossRef] [PubMed]

24. Jones, D.L.; Baluja, M.Q.; Graham, D.W.; Corbishley, A.; McDonald, J.E.; Malham, S.K.; Hillary, L.S.; Connor, T.R.; Gaze, W.H.;
Moura, I.B.; et al. Shedding of SARS-CoV-2 in feces and urine and its potential role in person-to-person transmission and the
environment-based spread of COVID-19. Sci. Total Environ. 2020, 749, 141364. [CrossRef] [PubMed]

25. Wu, F.; Xiao, A.; Zhang, J.; Moniz, K.; Endo, N.; Armas, F.; Bonneau, R.; Brown, M.A.; Bushman, M.; Chai, P.R.; et al. SARS-CoV-2
RNA concentrations in wastewater foreshadow dynamics and clinical presentation of new COVID-19 cases. Sci. Total Environ.
2022, 805, 150121. [CrossRef] [PubMed]

26. Von Sperling, M.; Verbyla, M.E.; Oliveira, S.M.A.C. Relationship between monitoring variables. Correlation and regression
analysis. In Assessment of Treatment Plant Performance and Water Quality Data: A Guide for Students, Researchers and Practitioners;
IWA Publishing: London, UK, 2020; pp. 397–477. [CrossRef]

27. Weidhaas, J.; Aanderud, Z.T.; Roper, D.K.; VanDerslice, J.; Gaddis, E.B.; Ostermiller, J.; Hoffman, K.; Jamal, R.; Heck, P.; Zhang, Y.;
et al. Correlation of SARS-CoV-2 RNA in wastewater with COVID-19 disease burden in sewersheds. Sci. Total Environ. 2021,
775, 145790. [CrossRef] [PubMed]

28. Medema, G.; Heijnen, L.; Elsinga, G.; Italiaander, R.; Brouwer, A. Presence of SARS-Coronavirus-2 RNA in Sewage and Correlation
with Reported COVID-19 Prevalence in the Early Stage of the Epidemic in the Netherlands. Environ. Sci. Technol. Lett. 2020, 7,
511–516. [CrossRef] [PubMed]

29. Li, Q.; Lee, B.E.; Gao, T.; Qiu, Y.; Ellehoj, E.; Yu, J.; Diggle, M.; Tipples, G.; Maal-Bared, R.; Hinshaw, D.; et al. Number of
COVID-19 cases required in a population to detect SARS-CoV-2 RNA in wastewater in the province of Alberta, Canada: Sensitivity
assessment. J. Environ. Sci. 2023, 125, 843–850. [CrossRef] [PubMed]

30. Kapoor, V.; Al-Duroobi, H.; Phan, D.C.; Palekar, R.S.; Blount, B.; Rambhia, K.J. Wastewater surveillance for SARS-CoV-2 to
support return to campus: Methodological considerations and data interpretation. Curr. Opin. Environ. Sci. Health 2022, 27,
100362. [CrossRef] [PubMed]

31. Adeel, M.; Farooq, T.; Shakoor, N.; Ahmar, S.; Fiaz, S.; White, J.C.; Gardea-Torresdey, J.L.; Mora-Poblete, F.; Rui, Y. COVID-19 and
nanoscience in the developing world: Rapid detection and remediation in wastewater. Nanomaterials 2021, 11, 991. [CrossRef]

https://doi.org/10.1016/j.watres.2020.116404
https://doi.org/10.1016/j.mtadv.2022.100211
https://www.ncbi.nlm.nih.gov/pubmed/35098102
https://doi.org/10.1016/j.scs.2021.103422
https://www.ncbi.nlm.nih.gov/pubmed/34729296
https://doi.org/10.1016/j.scitotenv.2021.150390
https://www.ncbi.nlm.nih.gov/pubmed/34818797
https://doi.org/10.1016/j.scitotenv.2022.153775
https://www.ncbi.nlm.nih.gov/pubmed/35151738
https://doi.org/10.1016/j.jwpe.2021.101947
https://www.ncbi.nlm.nih.gov/pubmed/35592728
https://doi.org/10.2166/wst.2022.278
https://www.ncbi.nlm.nih.gov/pubmed/36178814
https://doi.org/10.1016/j.envres.2020.110265
https://www.ncbi.nlm.nih.gov/pubmed/33011225
https://doi.org/10.7326/0003-4819-151-4-200908180-00135
https://www.ncbi.nlm.nih.gov/pubmed/19622511
https://doi.org/10.7326/M18-0850
https://doi.org/10.1016/j.scitotenv.2021.148047
www.scopus.com
https://doi.org/10.1016/j.jhazmat.2022.129848
https://www.ncbi.nlm.nih.gov/pubmed/36067562
https://doi.org/10.1016/j.jhazmat.2022.128667
https://www.ncbi.nlm.nih.gov/pubmed/35339834
https://doi.org/10.1016/j.scitotenv.2020.141364
https://www.ncbi.nlm.nih.gov/pubmed/32836117
https://doi.org/10.1016/j.scitotenv.2021.150121
https://www.ncbi.nlm.nih.gov/pubmed/34534872
https://doi.org/10.2166/9781780409320_0397
https://doi.org/10.1016/j.scitotenv.2021.145790
https://www.ncbi.nlm.nih.gov/pubmed/33618308
https://doi.org/10.1021/acs.estlett.0c00357
https://www.ncbi.nlm.nih.gov/pubmed/37566285
https://doi.org/10.1016/J.JES.2022.04.047
https://www.ncbi.nlm.nih.gov/pubmed/36375966
https://doi.org/10.1016/j.coesh.2022.100362
https://www.ncbi.nlm.nih.gov/pubmed/35402756
https://doi.org/10.3390/nano11040991


Water 2024, 16, 1220 19 of 22

32. Assoum, M.; Lau, C.L.; Thai, P.K.; Ahmed, W.; Mueller, J.F.; Thomas, K.V.; Choi, P.M.; Jackson, G.; Selvey, L.A. Wastewater
Surveillance Can Function as an Early Warning System for COVID-19 in Low-Incidence Settings. Trop. Med. Infect. Dis. 2023,
8, 211. [CrossRef]

33. Murni, I.K.; Oktaria, V.; Handley, A.; McCarthy, D.T.; Donato, C.M.; Nuryastuti, T.; Supriyati, E.; Putri, D.A.D.; Sari, H.M.;
Laksono, I.S.; et al. The feasibility of SARS-CoV-2 surveillance using wastewater and environmental sampling in Indonesia. PLoS
ONE 2022, 17, e274793. [CrossRef]

34. Keshaviah, A.; Hu, X.C.; Henry, M. Developing a flexible national wastewater surveillance system for COVID-19 and beyond.
Environ. Health Perspect. 2021, 129, 045002. [CrossRef] [PubMed]

35. Lazarus, J.V.; Romero, D.; Kopka, C.J.; Karim, S.A.; Abu-Raddad, L.J.; Almeida, G.; Baptista-Leite, R.; Barocas, J.A.; Barreto,
M.L.; Bar-Yam, Y.; et al. A multinational Delphi consensus to end the COVID-19 public health threat. Nature 2022, 611, 332–345.
[CrossRef] [PubMed]

36. Vadde, K.K.; Al-Duroobi, H.; Phan, D.C.; Jafarzadeh, A.; Moghadam, S.V.; Matta, A.; Kapoor, V. Assessment of Concentration,
Recovery, and Normalization of SARS-CoV-2 RNA from Two Wastewater Treatment Plants in Texas and Correlation with
COVID-19 Cases in the Community. ACS EST Water 2022, 2, 2060–2069. [CrossRef] [PubMed]

37. Hassard, F.; Lundy, L.; Singer, A.C.; Grimsley, J.; Di Cesare, M. Innovation in wastewater near-source tracking for rapid
identification of COVID-19 in schools. Lancet Microbe 2021, 2, e4–e5. [CrossRef] [PubMed]

38. Conway, M.J.; Kado, S.; Kooienga, B.K.; Sarette, J.S.; Kirby, M.H.; Marten, A.D.; Ward, A.S.; Abel, J.D.; King, S.; Billette, J.; et al.
SARS-CoV-2 wastewater monitoring in rural and small metropolitan communities in Central Michigan. Sci. Total Environ. 2023,
894, 165013. [CrossRef] [PubMed]

39. Lee, L.; Valmond, L.; Thomas, J.; Kim, A.; Austin, P.; Foster, M.; Matthews, J.; Kim, P.; Newman, J. Wastewater surveillance in
smaller college communities may aid future public health initiatives. PLoS ONE 2022, 17, e270385. [CrossRef] [PubMed]

40. Peccia, J.; Coleman, C.K.; LaMontagne, C.D.; Miller, M.E.; Kothegal, N.P.; Holcomb, D.A.; Blackwood, A.D.; Clerkin, T.J.; Serre,
M.L. Measurement of SARS-CoV-2 RNA in wastewater tracks community infection dynamics. Nat. Biotechnol. 2020, 38, 1164–1167.
[CrossRef] [PubMed]

41. Dejus, B.; Cacivkins, P.; Gudra, D.; Dejus, S.; Ustinova, M.; Roga, A.; Strods, M.; Kibilds, J.; Boikmanis, G.; Ortlova, K.; et al.
Wastewater-based prediction of COVID-19 cases using a random forest algorithm with strain prevalence data: A case study of
five municipalities in Latvia. Sci. Total Environ. 2023, 891, 164519. [CrossRef]

42. Ahmed, W.; Tscharke, B.; Bertsch, P.M.; Bibby, K.; Bivins, A.; Choi, P.; Clarke, L.; Dwyer, J.; Edson, J.; Nguyen, T.M.H.; et al.
SARS-CoV-2 RNA monitoring in wastewater as a potential early warning system for COVID-19 transmission in the community:
A temporal case study. Sci. Total Environ. 2021, 761, 144216. [CrossRef]

43. Bibby, K.; Bivins, A.; Wu, Z.; North, D. Making waves: Plausible lead time for wastewater based epidemiology as an early
warning system for COVID-19. Water Res. 2021, 202, 117438. [CrossRef] [PubMed]

44. D’Aoust, P.M.; Graber, T.E.; Mercier, E.; Montpetit, D.; Alexandrov, I.; Neault, N.; Baig, A.T.; Mayne, J.; Zhang, X.; Alain, T.; et al.
Catching a resurgence: Increase in SARS-CoV-2 viral RNA identified in wastewater 48 h before COVID-19 clinical tests and 96 h
before hospitalizations. Sci. Total Environ. 2021, 770, 145319. [CrossRef] [PubMed]

45. Krivoňáková, N.; Šoltýsov, A.; Tamáš, M. Mathematical modeling based on RT-qPCR analysis of SARS-CoV-2 in wastewater as a
tool for epidemiology. Sci. Rep. 2021, 11, 19456. [CrossRef]

46. Giacobbo, A.; Rodrigues, M.A.S.; Ferreira, J.Z.; Bernardes, A.M.; de Pinho, M.N. A critical review on SARS-CoV-2 infectivity in
water and wastewater. What do we know? Sci. Total Environ. 2021, 774, 145721. [CrossRef]

47. Kumar, M.; Jiang, G.; Kumar Thakur, A.; Chatterjee, S.; Bhattacharya, T.; Mohapatra, S.; Chaminda, T.; Kumar Tyagi, V.; Vithanage,
M.; Bhattacharya, P.; et al. Lead time of early warning by wastewater surveillance for COVID-19: Geographical variations and
impacting factors. Chem. Eng. J. 2022, 441, 135936. [CrossRef] [PubMed]

48. Saawarn, B.; Hait, S. Occurrence, fate and removal of SARS-CoV-2 in wastewater: Current knowledge and future perspectives.
J. Environ. Chem. Eng. 2021, 9, 104870. [CrossRef] [PubMed]

49. Riediker, M.; Briceno-Ayala, L.; Ichihara, G.; Albani, D.; Poffet, D.; Tsai, D.H.; Iff, S.; Monn, C. Higher viral load and infectivity
increase risk of aerosol transmission for Delta and Omicron variants of SARS-CoV-2. Swiss Med. Wkly. 2022, 152, 1–6. [CrossRef]
[PubMed]

50. Prasek, S.M.; Pepper, I.L.; Innes, G.K.; Slinski, S.; Betancourt, W.Q.; Foster, A.R.; Yaglom, H.D.; Porter, W.T.; Engelthaler, D.M.;
Schmitz, B.W. Variant-specific SARS-CoV-2 shedding rates in wastewater. Sci. Total Environ. 2023, 857, 159165. [CrossRef]
[PubMed]

51. Sun, Y.; Wang, M.; Wei, F.; Huang, S.; Xu, J. COVID’s future: Viral multi-lineage evolution and the dynamics of small epidemic
waves without seasonality in COVID-19. J. Biosaf. Biosecur. 2023, 5, 96–99. [CrossRef]

52. Madewell, Z.J.; Yang, Y.; Longini, I.M.; Halloran, M.E.; Vespignani, A.; Dean, N.E. Rapid review and meta-analysis of serial
intervals for SARS-CoV-2 Delta and Omicron variants. BMC Infect. Dis. 2023, 23, 429. [CrossRef]

53. Ward, T.; Glaser, A.; Overton, C.E.; Carpenter, B.; Gent, N.; Seale, A.C. Replacement dynamics and the pathogenesis of the Alpha,
Delta and Omicron variants of SARS-CoV-2. Epidemiol. Infect. 2023, 151, e32. [CrossRef] [PubMed]

54. Ali, W.; Zhang, H.; Wang, Z.; Chang, C.; Javed, A.; Ali, K.; Du, W.; Niazi, N.K.; Mao, K.; Yang, Z. Occurrence of various viruses
and recent evidence of SARS-CoV-2 in wastewater systems. J. Hazard. Mater. 2021, 414, 125439. [CrossRef] [PubMed]

https://doi.org/10.3390/tropicalmed8040211
https://doi.org/10.1371/journal.pone.0274793
https://doi.org/10.1289/EHP8572
https://www.ncbi.nlm.nih.gov/pubmed/33877858
https://doi.org/10.1038/s41586-022-05398-2
https://www.ncbi.nlm.nih.gov/pubmed/36329272
https://doi.org/10.1021/acsestwater.2c00054
https://www.ncbi.nlm.nih.gov/pubmed/37552728
https://doi.org/10.1016/S2666-5247(20)30193-2
https://www.ncbi.nlm.nih.gov/pubmed/33521733
https://doi.org/10.1016/j.scitotenv.2023.165013
https://www.ncbi.nlm.nih.gov/pubmed/37353028
https://doi.org/10.1371/journal.pone.0270385
https://www.ncbi.nlm.nih.gov/pubmed/36112629
https://doi.org/10.1038/s41587-020-0684-z
https://www.ncbi.nlm.nih.gov/pubmed/32948856
https://doi.org/10.1016/j.scitotenv.2023.164519
https://doi.org/10.1016/j.scitotenv.2020.144216
https://doi.org/10.1016/j.watres.2021.117438
https://www.ncbi.nlm.nih.gov/pubmed/34333296
https://doi.org/10.1016/j.scitotenv.2021.145319
https://www.ncbi.nlm.nih.gov/pubmed/33508669
https://doi.org/10.1038/s41598-021-98653-x
https://doi.org/10.1016/j.scitotenv.2021.145721
https://doi.org/10.1016/j.cej.2022.135936
https://www.ncbi.nlm.nih.gov/pubmed/35345777
https://doi.org/10.1016/j.jece.2020.104870
https://www.ncbi.nlm.nih.gov/pubmed/33282675
https://doi.org/10.4414/smw.2022.w30133
https://www.ncbi.nlm.nih.gov/pubmed/35019196
https://doi.org/10.1016/j.scitotenv.2022.159165
https://www.ncbi.nlm.nih.gov/pubmed/36195153
https://doi.org/10.1016/j.jobb.2023.07.003
https://doi.org/10.1186/s12879-023-08407-5
https://doi.org/10.1017/S0950268822001935
https://www.ncbi.nlm.nih.gov/pubmed/36535802
https://doi.org/10.1016/j.jhazmat.2021.125439
https://www.ncbi.nlm.nih.gov/pubmed/33684818


Water 2024, 16, 1220 20 of 22

55. Rose, C.; Parker, A.; Jefferson, B.; Cartmell, E. The characterization of feces and urine: A review of the literature to inform
advanced treatment technology. Crit. Rev. Environ. Sci. Technol. 2015, 45, 1827–1879. [CrossRef] [PubMed]

56. Vo, V.; Tillett, R.L.; Chang, C.L.; Gerrity, D.; Betancourt, W.Q.; Oh, E.C. SARS-CoV-2 variant detection at a university dormitory
using wastewater genomic tools. Sci. Total Environ. 2022, 805, 149930. [CrossRef] [PubMed]

57. Bivins, A.; Greaves, J.; Fischer, R.; Yinda, K.C.; Ahmed, W.; Kitajima, M.; Munster, V.J.; Bibby, K. Persistence of SARS-CoV-2 in
Water and Wastewater. Environ. Sci. Technol. Lett. 2020, 7, 937–942. [CrossRef] [PubMed]

58. Tiwari, A.; Phan, N.; Tandukar, S.; Ashoori, R.; Thakali, O.; Mousazadesh, M.; Dehghani, M.H.; Sherchan, S.P. Persistence and
occurrence of SARS-CoV-2 in water and wastewater environments: A review of the current literature. Environ. Sci. Pollut. Res.
2022, 29, 85658–85668. [CrossRef] [PubMed]

59. Rimoldi, S.G.; Stefani, F.; Gigantiello, A.; Polesello, S.; Comandatore, F.; Mileto, D.; Maresca, M.; Longobardi, C.; Mancon, A.;
Romeri, F.; et al. Presence and infectivity of SARS-CoV-2 virus in wastewaters and rivers. Sci. Total Environ. 2020, 744, 140911.
[CrossRef] [PubMed]

60. Ahmed, W.; Bivins, A.; Bertsch, P.M.; Bibby, K.; Choi, P.M.; Farkas, K.; Gyawali, P.; Hamilton, K.A.; Haramoto, E.; Kitajima, M.;
et al. Surveillance of SARS-CoV-2 RNA in wastewater: Methods optimization and quality control are crucial for generating
reliable public health information. Curr. Opin. Environ. Sci. Health 2020, 17, 82–93. [CrossRef]

61. Qasim, S.R. Wastewater Treatment Plants Planning, Design, and Operation, 2nd ed.; Technomic Publishing Company: Boca Raton, FL,
USA, 1998.

62. Heaton, K.W.; Radvan, J.; Cripps, H.; Mountford, R.A.; Braddon, F.E.M.; Hughes, A.O. Defecation frequency and timing, and
stool form in the general population: A prospective study. Gut 1992, 33, 818–824. [CrossRef]

63. Ahmed, W.; Bertsch, P.M.; Bivins, A.; Bibby, K.; Farkas, K.; Gathercole, A.; Haramoto, E.; Gyawali, P.; Korajkic, A.; McMinn, B.R.;
et al. Comparison of virus concentration methods for the RT-qPCR-based recovery of murine hepatitis virus, a surrogate for
SARS-CoV-2 from untreated wastewater. Sci. Total Environ. 2020, 739, 139960. [CrossRef]

64. Ahmed, W.; Bertsch, P.M.; Bibby, K.; Haramoto, E.; Hewitt, J.; Huygens, F.; Gyawali, P.; Korajkic, A.; Riddell, S.; Sherchan,
S.P.; et al. Decay of SARS-CoV-2 and surrogate murine hepatitis virus RNA in untreated wastewater to inform application in
wastewater-based epidemiology. Environ. Res. 2020, 191, 110092. [CrossRef]

65. Jafferali, M.H.; Khatami, K.; Atasoy, M.; Birgersson, M.; Williams, C.; Cetecioglu, Z. Benchmarking virus concentration methods
for quantification of SARS-CoV-2 in raw wastewater. Sci. Total Environ. 2021, 755, 142939. [CrossRef] [PubMed]

66. Karim, M.R.; Rhodes, E.R.; Brinkman, N.; Wymer, L.; Fout, G.S. New electropositive filter for concentrating enteroviruses and
noroviruses from large volumes of water. Appl. Environ. Microbiol. 2009, 75, 2393–2399. [CrossRef]

67. Dejus, B.; Ozols, R.; Strods, M.; Laicans, J.; Zajakina, A.; Roga, A.; Fridmanis, D.; Juhna, T. Performance Evaluation of Wastewater
Concentration Device: Analysis of Recovery Rate for Implementing SARS-CoV-2 Wastewater-Based Epidemiology. Chem. Eng.
Trans. 2023, 98, 273–278. [CrossRef]

68. Kitajima, M.; Ahmed, W.; Bibby, K.; Carducci, A.; Gerba, C.P.; Hamilton, K.A.; Haramoto, E.; Rose, J.B. SARS-CoV-2 in wastewater:
State of the knowledge and research needs. Sci. Total Environ. 2020, 739, 139076. [CrossRef]

69. Schrader, C.; Schielke, A.; Ellerbroek, L.; Johne, R. PCR inhibitors-occurrence, properties and removal. J. Appl. Microbiol. 2012, 113,
1014–1026. [CrossRef]

70. Qiu, Y.; Yu, J.; Pabbaraju, K.; Lee, B.E.; Gao, T.; Ashbolt, N.J.; Hrudey, S.E.; Diggle, M.; Tipples, G.; Maal-Bared, R.; et al. Validating
and optimizing the method for molecular detection and quantification of SARS-CoV-2 in wastewater. Sci. Total Environ. 2022,
812, 151434. [CrossRef] [PubMed]

71. Greenwald, H.D.; Kennedy, L.C.; Hinkle, A.; Whitney, O.N.; Fan, V.B.; Crits-Christoph, A.; Harris-Lovett, S.; Flamholz, A.I.;
Al-Shayeb, B.; Liao, L.D.; et al. Tools for interpretation of wastewater SARS-CoV-2 temporal and spatial trends demonstrated
with data collected in the San Francisco Bay Area. Water Res. X 2021, 12, 100111. [CrossRef] [PubMed]

72. Black, J.; Aung, P.; Nolan, M.; Roney, E.; Poon, R.; Hennessy, D.; Crosbie, N.D.; Deere, D.; Jex, A.R.; John, N.; et al. Epidemiological
evaluation of sewage surveillance as a tool to detect the presence of COVID-19 cases in a low case load setting. Sci. Total Environ.
2021, 786, 147469. [CrossRef]

73. Hsu, S.Y.; Bayati, M.B.; Li, C.; Hsieh, H.Y.; Belenchia, A.; Klutts, J.; Zemmer, S.A.; Reynolds, M.; Semkiw, E.; Johnson, H.Y.; et al.
Biomarkers selection for population normalization in SARS-CoV-2 wastewater-based epidemiology. Water Res. 2022, 223, 118985.
[CrossRef]

74. Rainey, A.L.; Liang, S.; Bisesi, J.H.; Sabo-Attwood, T.; Maurelli, A.T. A multistate assessment of population normalization factors
for wastewater-based epidemiology of COVID-19. PLoS ONE 2023, 18, e0284370. [CrossRef] [PubMed]

75. Oloye, F.F.; Xie, Y.; Challis, J.K.; Femi-Oloye, O.P.; Brinkmann, M.; McPhedran, K.N.; Jones, P.D.; Servos, M.R.; Giesy, J.P.
Understanding common population markers for SARS-CoV-2 RNA normalization in wastewater—A review. Chemosphere 2023,
333, 138682. [CrossRef] [PubMed]

76. Maal-Bared, R.; Qiu, Y.; Li, Q.; Gao, T.; Hrudey, S.E.; Bhavanam, S.; Ruecker, N.J.; Ellehoj, E.; Lee, B.E.; Pang, X. Does normalization
of SARS-CoV-2 concentrations by Pepper Mild Mottle Virus improve correlations and lead time between wastewater surveillance
and clinical data in Alberta (Canada) comparing twelve SARS-CoV-2 normalization approaches. Sci. Total Environ. 2022,
856, 158964. [CrossRef] [PubMed]

https://doi.org/10.1080/10643389.2014.1000761
https://www.ncbi.nlm.nih.gov/pubmed/26246784
https://doi.org/10.1016/j.scitotenv.2021.149930
https://www.ncbi.nlm.nih.gov/pubmed/34536875
https://doi.org/10.1021/acs.estlett.0c00730
https://www.ncbi.nlm.nih.gov/pubmed/37566354
https://doi.org/10.1007/s11356-021-16919-3
https://www.ncbi.nlm.nih.gov/pubmed/34652622
https://doi.org/10.1016/J.SCITOTENV.2020.140911
https://www.ncbi.nlm.nih.gov/pubmed/32693284
https://doi.org/10.1016/j.coesh.2020.09.003
https://doi.org/10.1136/gut.33.6.818
https://doi.org/10.1016/j.scitotenv.2020.139960
https://doi.org/10.1016/j.envres.2020.110092
https://doi.org/10.1016/j.scitotenv.2020.142939
https://www.ncbi.nlm.nih.gov/pubmed/33121776
https://doi.org/10.1128/AEM.00922-08
https://doi.org/10.3303/CET2398046
https://doi.org/10.1016/j.scitotenv.2020.139076
https://doi.org/10.1111/j.1365-2672.2012.05384.x
https://doi.org/10.1016/j.scitotenv.2021.151434
https://www.ncbi.nlm.nih.gov/pubmed/34742974
https://doi.org/10.1016/j.wroa.2021.100111
https://www.ncbi.nlm.nih.gov/pubmed/34373850
https://doi.org/10.1016/j.scitotenv.2021.147469
https://doi.org/10.1016/j.watres.2022.118985
https://doi.org/10.1371/journal.pone.0284370
https://www.ncbi.nlm.nih.gov/pubmed/37043469
https://doi.org/10.1016/j.chemosphere.2023.138682
https://www.ncbi.nlm.nih.gov/pubmed/37201600
https://doi.org/10.1016/j.scitotenv.2022.158964
https://www.ncbi.nlm.nih.gov/pubmed/36167131


Water 2024, 16, 1220 21 of 22

77. Wade, M.J.; Lo Jacomo, A.; Armenise, E.; Brown, M.R.; Bunce, J.T.; Cameron, G.J.; Fang, Z.; Farkas, K.; Gilpin, D.F.; Graham,
D.W.; et al. Understanding and managing uncertainty and variability for wastewater monitoring beyond the pandemic: Lessons
learned from the United Kingdom national COVID-19 surveillance programmes. J. Hazard. Mater. 2022, 424, 127456. [CrossRef]
[PubMed]

78. Chen, C.; Kostakis, C.; Gerber, J.P.; Tscharke, B.J.; Irvine, R.J.; White, J.M. Towards finding a population biomarker for wastewater
epidemiology studies. Sci. Total Environ. 2014, 487, 621–628. [CrossRef] [PubMed]

79. Gracia-Lor, E. Measuring biomarkers in wastewater as a new source of epidemiological information: Current state and future
perspectives. Environ. Int. 2017, 99, 131–150. [CrossRef] [PubMed]

80. Choi, P.M.; Rodríguez-Mozaz, S.; Corominas, L.; Petrovic, M. Wastewater-based epidemiology biomarkers: Past, present and
future. TrAC-Trends Anal. Chem. 2018, 105, 453–469. [CrossRef]

81. Saingam, P.; Li, B.; Quoc, B.N.; Jain, T.; Bryan, A.; Winkler, M.K.H. Wastewater surveillance of SARS-CoV-2 at intra-city level
demonstrated high resolution in tracking COVID-19 and calibration using chemical indicators. Sci. Total Environ. 2023, 866, 161467.
[CrossRef] [PubMed]

82. Rico, M.; Andrés-Costa, M.J.; Picó, Y. Estimating population size in wastewater-based epidemiology. Valencia metropolitan area
as a case study. J. Hazard. Mater. 2017, 323, 156–165. [CrossRef]

83. Kasprzyk-Hordern, B.; Sims, N.; Farkas, K.; Jagadeesan, K.; Proctor, K.; Wade, M.J.; Jones, D.L. Wastewater-based epidemiology
for comprehensive community health diagnostics in a national surveillance study: Mining biochemical markers in wastewater.
J. Hazard. Mater. 2023, 450, 130989. [CrossRef]

84. Sakarovitch, C.; Schlosser, O.; Courtois, S.; Proust-Lima, C.; Couallier, J.; Pétrau, A.; Litrico, X.; Loret, J.F. Monitoring of SARS-
CoV-2 in wastewater: What normalization for improved understanding of epidemic trends? J. Water Health 2022, 20, 712–726.
[CrossRef] [PubMed]

85. Wilder, M.L.; Middleton, F.; Larsen, D.A.; Du, Q.; Fenty, A.; Zeng, T.; Insaf, T.; Kilaru, P.; Collins, M.; Kmush, B.; et al. Co-
quantification of crAssphage increases confidence in wastewater-based epidemiology for SARS-CoV-2 in low prevalence areas.
Water Res. X 2021, 11, 100100. [CrossRef] [PubMed]

86. Bivins, A.; Crank, K.; Greaves, J.; North, D.; Wu, Z.; Bibby, K. Cross-assembly phage and pepper mild mottle virus as viral water
quality monitoring tools—Potential, research gaps, and way forward. Curr. Opin. Environ. Sci. Health 2020, 16, 54–61. [CrossRef]

87. Ahme, W.; Angel, N.; Edson, J.; Bibby, K.; Bivins, A.; O’Brien, J.W.; Choi, P.M.; Kitajima, M.; Simpson, S.L.; Li, J.; et al. First
confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of
COVID-19 in the community. Sci. Total Environ. 2020, 728, 138764. [CrossRef] [PubMed]

88. Van Drecht, G.; Bouwman, A.F.; Harrison, J.; Knoop, J.M. Global nitrogen and phosphate in urban wastewater for the period 1970
to 2050. Glob. Biogeochem. Cycles 2009, 23, 1–19. [CrossRef]

89. Holm, R.H.; Nagarkar, M.; Yeager, R.A.; Talley, D.; Chaney, A.C.; Rai, J.P.; Mukherjee, A.; Rai, S.N.; Bhatnagar, A.; Smith, T.
Surveillance of RNase P, PMMoV, and CrAssphage in wastewater as indicators of human fecal concentration across urban sewer
neighborhoods, Kentucky. FEMS Microbes 2022, 3, xtac003. [CrossRef] [PubMed]

90. Thai, P.K.; O’Brien, J.W.; Banks, A.P.W.; Jiang, G.; Gao, J.; Choi, P.M.; Yuan, Z.; Mueller, J.F. Evaluating the in-sewer stability of
three potential population biomarkers for application in wastewater-based epidemiology. Sci. Total Environ. 2019, 671, 248–253.
[CrossRef] [PubMed]

91. O’Brien, J.W.; Banks, A.P.; Novic, A.J.; Mueller, J.F.; Jiang, G.; Ort, C.; Eaglesham, G.; Yuan, Z.; Thai, P.K. Impact of in-Sewer
Degradation of Pharmaceutical and Personal Care Products (PPCPs) Population Markers on a Population Model. Environ. Sci.
Technol. 2017, 51, 3816–3823. [CrossRef] [PubMed]

92. Pandopulos, A.J.; Bade, R.; Tscharke, B.J.; O’Brien, J.W.; Simpson, B.S.; White, J.M.; Gerber, C. Application of catecholamine
metabolites as endogenous population biomarkers for wastewater-based epidemiology. Sci. Total Environ. 2021, 763, 142992.
[CrossRef]

93. Li, Y.; Miyani, B.; Zhao, L.; Spooner, M.; Gentry, Z.; Zou, Y.; Rhodes, G.; Li, H.; Kaye, A.; Norton, J.; et al. Surveillance of
SARS-CoV-2 in nine neighborhood sewersheds in Detroit Tri-County area, United States: Assessing per capita SARS-CoV-2
estimations and COVID-19 incidence. Sci. Total Environ. 2022, 851, 158350. [CrossRef]

94. Lastra, A.; Botello, J.; Pinilla, A.; Urrutia, J.I.; Canora, J.; Sánchez, J.; Fernández, P.; Candel, F.J.; Zapatero, A.; Ortega, M.; et al.
SARS-CoV-2 detection in wastewater as an early warning indicator for COVID-19 pandemic. Madrid region case study. Environ.
Res. 2022, 203, 111852. [CrossRef] [PubMed]

95. Wang, X.W.; Li, J.S.; Jin, M.; Zhen, B.; Kong, Q.X.; Song, N.; Xiao, W.J.; Yin, J.; Wei, W.; Wang, G.J.; et al. Study on the resistance of
severe acute respiratory syndrome-associated coronavirus. J. Virol. Methods 2005, 126, 171–177. [CrossRef] [PubMed]

96. Tiwari, A.; Lipponen, A.; Hokajärvi, A.M.; Luomala, O.; Sarekoski, A.; Rytkönen, A.; Österlund, P.; Al-Hello, H.; Juutinen, A.;
Miettinen, I.T.; et al. Detection and quantification of SARS-CoV-2 RNA in wastewater influent in relation to reported COVID-19
incidence in Finland. Water Res. 2022, 215, 118220. [CrossRef] [PubMed]

97. Petala, M.; Dafou, D.; Kostoglou, M.; Karapantsios, T.; Kanata, E.; Chatziefstathiou, A.; Sakaveli, F.; Kotoulas, K.; Arsenakis, M.;
Roilides, E.; et al. A physicochemical model for rationalizing SARS-CoV-2 concentration in sewage. Case study: The city of
Thessaloniki in Greece. Sci. Total Environ. 2021, 755, 142855. [CrossRef]

98. Champredon, D.; Becker, D.; Peterson, S.W. Emergence and spread of SARS-CoV-2 variants of concern in Canada: A retrospective
analysis from clinical and wastewater data. BMC Infect. Dis. 2024, 24, 139. [CrossRef] [PubMed]

https://doi.org/10.1016/j.jhazmat.2021.127456
https://www.ncbi.nlm.nih.gov/pubmed/34655869
https://doi.org/10.1016/j.scitotenv.2013.11.075
https://www.ncbi.nlm.nih.gov/pubmed/24300482
https://doi.org/10.1016/j.envint.2016.12.016
https://www.ncbi.nlm.nih.gov/pubmed/28038971
https://doi.org/10.1016/j.trac.2018.06.004
https://doi.org/10.1016/j.scitotenv.2023.161467
https://www.ncbi.nlm.nih.gov/pubmed/36626989
https://doi.org/10.1016/j.jhazmat.2016.05.079
https://doi.org/10.1016/j.jhazmat.2023.130989
https://doi.org/10.2166/wh.2022.012
https://www.ncbi.nlm.nih.gov/pubmed/35482387
https://doi.org/10.1016/j.wroa.2021.100100
https://www.ncbi.nlm.nih.gov/pubmed/33842875
https://doi.org/10.1016/j.coesh.2020.02.001
https://doi.org/10.1016/j.scitotenv.2020.138764
https://www.ncbi.nlm.nih.gov/pubmed/32387778
https://doi.org/10.1029/2009GB003458
https://doi.org/10.1093/femsmc/xtac003
https://www.ncbi.nlm.nih.gov/pubmed/37228897
https://doi.org/10.1016/j.scitotenv.2019.03.231
https://www.ncbi.nlm.nih.gov/pubmed/30928753
https://doi.org/10.1021/acs.est.6b02755
https://www.ncbi.nlm.nih.gov/pubmed/28244310
https://doi.org/10.1016/j.scitotenv.2020.142992
https://doi.org/10.1016/j.scitotenv.2022.158350
https://doi.org/10.1016/j.envres.2021.111852
https://www.ncbi.nlm.nih.gov/pubmed/34364862
https://doi.org/10.1016/j.jviromet.2005.02.005
https://www.ncbi.nlm.nih.gov/pubmed/15847934
https://doi.org/10.1016/j.watres.2022.118220
https://www.ncbi.nlm.nih.gov/pubmed/35248908
https://doi.org/10.1016/j.scitotenv.2020.142855
https://doi.org/10.1186/s12879-024-08997-8
https://www.ncbi.nlm.nih.gov/pubmed/38287244


Water 2024, 16, 1220 22 of 22

99. Bertels, X.; Demeyer, P.; Van den Bogaert, S.; Boogaerts, T.; van Nuijs, A.L.N.; Delputte, P.; Lahousse, L. Factors influencing SARS-
CoV-2 RNA concentrations in wastewater up to the sampling stage: A systematic review. Sci. Total Environ. 2022, 820, 153290.
[CrossRef] [PubMed]

100. Kostoglou, M.; Petala, M.; Karapantsios, T.; Dovas, C.; Roilides, E.; Metallidis, S.; Papa, A.; Stylianidis, E.; Papadopoulos, A.;
Papaioannou, N. SARS-CoV-2 adsorption on suspended solids along a sewerage network: Mathematical model formulation,
sensitivity analysis, and parametric study. Environ. Sci. Pollut. Res. 2021, 29, 11304–11319. [CrossRef]

101. Jiang, G.; Liu, Y.; Tang, S.; Kitajima, M.; Haramoto, E.; Arora, S.; Choi, P.M.; Jackson, G.; D’Aoust, P.M.; Delatolla, R.; et al. Moving
forward with COVID-19: Future research prospects of wastewater-based epidemiology methodologies and applications. Curr.
Opin. Environ. Sci. Health 2023, 33, 100458. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.scitotenv.2022.153290
https://www.ncbi.nlm.nih.gov/pubmed/35066048
https://doi.org/10.1007/s11356-021-16528-0
https://doi.org/10.1016/j.coesh.2023.100458

	Introduction 
	Materials and Methods 
	Results 
	The Wastewater-Based Epidemiology Concept 
	SARS-CoV-2 RNA Detection: Risks and Data Interpretation 
	Wastewater Surveillance and Early Warning Systems in Communities 
	Shedding Sources and Rates 
	Infectivity of the Detected RNA 
	Wastewater Sampling 
	Wastewater Sample Preparation and Analysis 
	Sample Normalization 
	Wastewater Matrix and Environmental Factors 

	Discussion 
	References

