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Abstract: This study is based on the research results of frazil ice evolution in recent years and proposes
an improved frazil ice evolution mathematical model. Based on the NSGA-II genetic algorithm, seven
key parameters were used as optimization design variables, the minimum average difference between
the number of frazil ice, the mean and the standard deviation of particle diameter of the simulation
results, and the observed data were used as the optimization objective, the Pareto optimal solution
set was optimized, and the importance of each objective function was analyzed and discussed. The
results show that compared to previous models, the improved model has better agreement between
simulation results and experimental results. The optimal parameters obtained by the optimization
model reduces the difference rate of water temperature process by 5.75%, the difference rate of
quantity process by 39.13%, the difference rate of mean particle size process by 47.64%, and the
difference rate of standard deviation process by 56.84% during the period of intense evolution
corresponding to the initial parameter group. The results prove the validity of the optimization
model of frazil ice evolution parameters.
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1. Introduction

The formation and evolution of frazil ice is a natural phenomenon in rivers and
channels in cold regions and is the basis for all ice problems. It is of great significance to
study and simulate the evolution and development process of frazil ice in order to ensure
the safe operation of water conservancy projects and give full play to the benefits of water
conservancy projects.

A few mathematical models have been developed to simulate frazil ice evolution [1].
Omstedt and Svensson [2] formulated and explored a mathematical model for studying
supercooling and ice formation in turbulent waters based on the conservation equations
in their one-dimensional form. This model is an extension of the model presented by
Osterkamp and Gosink [3]. Svensson and Omstedt [4] developed a mathematical model
based on the physical processes available at the time, including initial seeding, secondary
nucleation, gravity removal, thermal growth, and flocculation/breakup. This model was
subsequently refined by Wang and Doering [5]. Hammar and Shen [6] developed a model
for the formation and evolution of frazil in open channels that examined the effects of
surface heat exchange, seeding rates, rate of secondary nucleation, and flow conditions
on the evolution. Doering [7,8] developed a model to simulate the principal supercooling
process and evolution of frazil ice particles in a counter-rotating flume flow, in which
only the overall heat balance was considered for the entire process. Although the model
mentioned above includes a relatively complete process of frazil ice evolution, several
differences remain between the calculated and actual observational results. Taking the

Water 2024, 16, 1232. https://doi.org/10.3390/w16091232 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w16091232
https://doi.org/10.3390/w16091232
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://doi.org/10.3390/w16091232
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w16091232?type=check_update&version=2


Water 2024, 16, 1232 2 of 22

frazil ice evolution model proposed by Wang and Doering [5] as an example, the calculated
amount of frazil ice showed a continuous increase during the evolution process; however,
in actual observations, the amount initially increased and then decreased (Figure 1).
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Figure 1. Comparison between time variations of calculated quantity of frazil ice and actual observa-
tion results [5].

The authors analyzed and summarized the latest experimental observation results in
recent years, proposing an improved frazil ice evolution mathematical model. Some new
parameters are proposed in this model, and the changes in them significantly affect the
calculation results; for example, the water-outside heat exchange coefficient hwa and the
ice nucleation formation coefficient k affect the change process of water temperature, the
thickness-to-width ratio Std affects the change process of mean and standard deviation of
the frazil ice particle size, and the stable particle size range and the collision calibration
coefficient affect the change process of the quantity, etc. Compared with the previous model,
the agreement between the calculated results and the experimental observation results
is greatly improved. However, it is difficult to determine some key parameter values in
order to better match the model calculation results with the experimental results, as the
simulation results are influenced by two or even more parameters taken together. Therefore,
this study requires collaborative optimization of the model parameters. In recent years,
researchers have used various methods to optimize observed, collected, or simulated data
for better results [9–13], including but not limited to machine-learning, deep-learning, and
multi-objective optimization algorithms. The problem of this study focuses on how the
parameters should be valued so that the results of the model calculations of the evolution
of frazil ice best fit the experimental observations. The parameters include hwa, k, and other
parameters mentioned above, and the results of the numerical modeling are the water
temperature, the number of frazil ice particles, and the mean and standard deviation of
particle diameter. Therefore, this study is a multi-objective optimization problem. Multi-
objective optimization genetic algorithms are widely developed and applied for such
problems. The non-dominated sorting genetic algorithm (NSGA) proposed by Srinivas and
Deb [14] is one of the earliest such evolutionary algorithms. However, this algorithm has
been criticized by scholars for its high computational complexity, lack of elitism, and the
need to specify the shared radius artificially. Therefore, Deb et al. [15] proposed the NSGA-
II algorithm in 2000. The main improvements are in terms of computational efficiency, the
use of an elite strategy, and the use of a crowding comparison operator to retain the best
individuals and a uniform distribution. The NSGA-II algorithm has been improved over
the NSGA algorithm both in terms of optimization effect and computing time, which is
an excellent multi-objective optimization algorithm and is now widely used in various
fields [16–20]. However, it has been shown empirically that NSGA-II does not scale well
with an increasing number of objectives [21–24]. Lücken et al. [25] and Li et al. [26] also
pointed out the limitations of the crowded comparison operator used by NSGA-II when
solving multi-objective optimization problems with more objectives. Further, Deb and
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Jain [27] proposed an evolutionary multi-target, called NSGA-III, which uses a reference-
point-based selection method to select individuals into the next generation. However,
Ishibuchi et al. [28] showed that NSGA-III does not always perform better than NSGA-II by
comparing various multi-objective test problems. Given that there are not more than four
objectives in this study, taking into account the optimization efficiency and reliability, the
NSGA-II genetic algorithm is used in this study to optimize the parameters of the in-water
ice evolution model.

Based on this, this study first presents an improved mathematical model for the
evolution of frazil ice based on the results of recent laboratory experiments and field
observations. Then, the authors take the observation data of ice in a turbulent glass tank in
a low temperature room conducted by Mcfarlane [29] as reference and seven parameters
including ice nucleation formation coefficient k, upper limit DB-max and lower limit DB-min of
stable particle size interval, thickness-to-width ratio Std, initial value of collision frequency
calibration coefficient sequences M1, collision fragmentation calibration coefficient KB,
and KC as optimization variables. Taking the average difference rate of the simulation
results of the number of frazil ice and the mean particle size and standard deviation
compared with the observed data as the optimization objective, the NSGA-II genetic
algorithm was used to establish a multi-objective optimization model to quickly determine
the parameters of the evolution model of frazil ice, and the Pareto optimal solution set was
optimized. The simulation results corresponding to the optimal parameters in the solution
set were compared with the corresponding results of the initial parameter set to verify the
effectiveness of the optimization model.

2. Model Formulation

A box cell with well-mixed water and frazil ice was calculated in the model. The
frazil ice particles were divided into N equally varying particle size groups, assuming that
each group was of equal size. Frazil ice nuclei were assumed to be in the smallest size
group. The number of particles ni in each group is a function of nucleation, thermal growth,
collision flocculation and breakup, and gravitational removal and can be described by the
number continuity equation as follows:

dni
dt

(1 ≤ i ≤ N)
=

dnini
dt

(i = 1)
+

dni−gro
dt

(1 ≤ i ≤ N)
−

dni−col
dt

(1 ≤ i ≤ N)
+

dni− f lo
dt

(1 ≤ i ≤ N)
+

dni−bre
dt

(1 ≤ i ≤ N)
−

dni−gra
dt

(1 ≤ i ≤ N)
(1)

where i is the particle size group number and i = 1 represents the ice nuclei group; ni is the
number of particles in the i-th particle size group. The subscript ini represents the change
in the quantity of the first group due to nucleation and the subscripts i − gro, i − col, i − f lo,
i − bre, and i − gra represent the changes in the quantity of the i-th group due to thermal
growth, collision, flocculation, breakup and gravitational removal, respectively.

2.1. Heat Exchanges and Water Temperature

The water temperature was obtained using the following heat balance equation:

d
dt
[ρwCw(1 − M)Tw] =

d
dt

[
−Qwa +

N−1

∑
i=1

Qwi

]
(2)

Qwa = Awahwa(Ta − Tw)dt (3)

Qwi = hwi(Ti − Tw)nidt (4)

where ρw is water density; Cw is the water specific heat capacity; M is the volume concen-
tration of frazil ice; Tw is water temperature; Qwa is the heat exchange flux between water
and air; Qwi is heat exchange flux between water and ice; and i is frazil grouping number
(1, 2, . . ., N); Awa is the area of heat exchange between the water and air; hwa is the heat
transfer coefficient between the water and air, which is determined by specific conditions;
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Ta is the air temperature; hwi is heat transfer coefficient between water and ice, and can be
expressed by the Nusselt number, which can be found in Holland [30].

2.2. Initial Seeding

The initial seeding is the trigger condition for the operation of a frazil ice evolution
model. In previous models, this process was treated in a simplified manner [5], which
cannot be applied in practical situations. The past studies show that frazil ice production in
nature involves heterogeneous nucleation [31–34], and the rate of ice nucleation is closely
related to weather conditions (rainfall, snowfall, and high winds) and water temperature.
An equation for the rate of ice nucleation based on the power function form is proposed:

dnini
dt

= |Tw| × 10k|Tw | (5)

where nini is the amount of ice core generation and k is the coefficient, which is obtained by
calibrating weather conditions, such as clear and windless, rainfall, and snowfall.

2.3. Ice Particle Growth

The change in the volume of ice produced by crystal growth per unit time in the i-th
radius interval is [5]

dVi
dt

=
Nu

kw
l (Ti − Tw)Aini

(ρiL)
(6)

Ai = 2π

(
Di
2

)2
+ πDiti =

1
2

π
(

Di
2 + Std

)
(7)

where Vi is the amount of change in volume of ice in the i-th radius interval; ρi is ice
density; L is latent heat of ice fusion; and Ai is active area per ice particle, i.e., the area of
frazil ice. According to existing studies, frazil ice is of the thin-disc type, and the observed
thickness-to-width ratio, Std = ti/D, ranges from 1/10 to 1/100. ti is the thickness of an ice
particle, and Di is the diameter.

2.4. Ice Particle Collision Frequency

Collisions between particles are another important component in the evolution of
frazil ice. The process of flocculation and breakup caused by collisions is an important
component of the evolution of frazil ice. This study proposed a method to calculate the
occurrence of ice collision events for each particle size group, which draws on the theory
of random collisions of solid particles in gas–solid two-phase flows. Before the collision
began, colliding particle group i was selected, the particle size and velocity of motion were
determined, and the number of collisions in the group could be determined by the average
collision frequency. The distance traveled by particle group i in time dt is uidt, and the
corresponding cylinder volume is πr2

i uidt. The collision frequency of particle group i with
other particles in time dt can be obtained by

pi =
nπr2

i uidt
V

(8)

The particles in the above equation move along the direction normal to the bottom of
the thin disk from the beginning to the end (Figure 2a), and the resulting volume of motion
is a cylinder; however, in practice, this motion of ice in water cannot exist because frazil
ice is affected by the flow of water rotational motion (Figure 2b). Therefore, a calibration
factor, Mi ≤ 1, is introduced in the frazil ice collision frequency, where M1 is the calibration
coefficient of the smallest particle-size group particle collision frequency. The large frazil
ice is mostly flocculated; therefore, the larger the size of the body is closer to the sphere, the
larger is Mi. MN = 1, and N is the group of particles with the largest size.
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Therefore, the total collision frequency of group i ice particles at time dt is

dni−col
dt

= ni·pi = ni·
nπr2

i udt
V

·Mi (9)

After determining that the colliding particles collided with other particles, the group
of collided particles (particle size, velocity, etc.) was selected using the following steps:

(1) The particle size and number of ice particles was identified in the current computa-
tional body. For example, the total number of particles in computational cell C is nt, and ni
particles with particle size Di exist in the i-th group.

(2) The ratio of the number of each particle size group to the total number in the
calculation cell C is

ki =
ni
nt

, i = 1, 2, ···, m (10)

(3) A random number rn between [0, 1] was selected, and the virtual particle size was
selected as follows:

m−1

∑
i=1

ki ≤ rn <
m

∑
i=1

ki, Dj = Dm (11)

where j is the number of collided particle groups and Dj is the particle diameter of the
j-th group.

From this, the particle size and velocity of the particles involved in the collision can be
determined, and the result of the collision, flocculation or breakup (secondary nucleation)
can be determined.

2.5. Flocculation/Breakup

It is indeed challenging to ascertain the flocculation or breakup process of frazil ice
particles after collision [6], with previous models often undergoing simplification [2,4,5]. In
recent years, scholars have simulated the evolution process of frazil ice through physical
models, and obtained intuitive observation results and the time history changes and of
water temperature, particles quantity, mean particle size, and standard deviation. Drawing
upon these experimental findings, this article conducts an analysis of the flocculation and
breakup processes of frazil ice.

Taking the 2015 MacFarlane’s experiment as an example, Figure 3 shows the water
temperature, frazil ice quantity, and mean and standard deviation of particle diameter
collected under turbulent dissipation rate conditions of 335.6 cm2/s3. Based on the change
points of these curves, the evolution process is divided into four stages:

(1) At the first stage, the amount and size of frazil ice is small, and the probability of
collision is extremely low. At this time, thermal growth is the main factor.
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(2) The rate of increase in the amount of frazil ice increased significantly in second
stage, and it entered the “explosive” growth stage, which means that the role of secondary
nucleation begins to appear. Based on published images of frazil ice, flocs are formed by
the flocculation of particles with large size differences, and small particles have a high
probability of flocculation after collision with other-sized particles. Particles of similar
sizes have a high probability of breaking when they collide with each other because
of their similar strength and motion, that is, secondary nucleation processes. Further
analysis suggests that large particles are mostly generated by flocculation and have a sparse
structure; therefore, the breakup process most likely occurs between large particles.

(3) The number of frazil ice particles in the third stage was larger, leading to an increase
in the collision frequency, and secondary nucleation and flocculation effects were evident.
Secondary nucleation led to a continued increase in the amount of frazil ice; flocculation
promoted the production of large flocs.

(4) At the fourth stage, the amount of frazil ice began to decrease, and the mean
and standard deviation of the particle diameters gradually approached a steady state.
During this period, the large particles continued to float and be removed in the region,
reducing their number; thus, the frequency of large particle collisions was reduced, and the
secondary nucleation effect was weakened.
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The above process also shows a similar trend in Clark’s experimental results [35,36].
Based on laboratory observations, the size distribution of ice particles maintained a normal
distribution during the evolution of frazil ice [29], which indicated that there were many
particles within a certain size range, and the probability of particles colliding with each
other within this range was also high. If flocculation of breakup occurred, it easily affected
the stable state of the mean value and standard deviation at the end of the evolution.
Therefore, we assume that there is a certain particle size range, and it is likely that no
flocculation and breakup occurs between the ice particles within this range, but rather they
bounce apart after colliding like “elastic bodies”.

Based on the above analysis, it is presumed that the development of frazil ice after
collision is primarily controlled by the particle size under flow conditions such as turbulence
intensity. The frazil ice was divided into three particle size ranges: A, B, and C, ranging
from small to large (Figure 4). Group B is called the stable particle size group. Based on the
above analysis, collision between particles in the B interval and B interval (referred to as
the “BB” interval particles collision, the same below) likely does not cause flocculation or
breakup, The frazil ice within the same particle size range collision, i.e., “AA” collisions
with “CC” collisions, where secondary nucleation occurs, and collisions of small grains
with larger grains, i.e., “AB” collisions, “AC” and “AB” collisions, and “AC” and “BC”
collisions, result in flocculation. The key variables, the upper and lower limit of the stable
particle size range, are denoted as Da and Db, respectively. However, the judgment of each
of the above results is not absolute, as collision results are a complex process influenced
by many factors. The breakup calibration coefficients KB (KB ≤ 1) and KC (KC ≤ 1) are
introduced into the calculation of the number of particles generated in the BB and CC
interval particle collisions.
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Figure 4. Schematic diagram of frazil ice concept group based on diameter.

2.6. Gravitational Removal

Gravitational removal means that the frazil ice is buoyantly brought to the surface and
no longer enters the computational domain, assuming that the water–air heat exchange
is not affected. The rising speed of ice was based on the rise velocities measured by
Matoušek [37]:

V = 1.31 × 10−5 Di
0.29ti

0.61

ϑ
(12)

3. NSGA-II Non-Dominated Sorting Genetic Algorithm
3.1. Optimization Parameters and Objective Function Equation

The above model contains parameters that cannot be accurately determined, including
ice nucleation formation coefficient k, upper limit DB-max, and lower limit DB-min of stable
particle size interval, thickness-to-width ratio Std, initial value of collision frequency cali-
bration coefficient sequences M1, and collision fragmentation calibration coefficients KB
and KC. The thickness-to-width ratio is related to the volume and diameter of particles,
which in turn affects the variation of particle size. Therefore, it is also a parameter that
needs to be considered. Before optimizing the parameters, we conducted preliminary
calculations during the model establishment and improvement stage, and thus determined
the appropriate range of values for these parameters. These parameters were taken as
optimization variables, among which the parameters and constraint interval are shown in
Table 1 as follows:

Table 1. Optimizing the constraint range of variables.

Parameter
Range k

Lower Limit
Value of
Stable

Particle Size
Range
DB-min

Upper Limit
Value of
Stable

Particle Size
Range
DB-max

Thickness-
to-Width

Ratio
Std

Initial Value of
Collision

Frequency
Calibration
Coefficient

Sequences M1

Collision
Fragmentation

Calibration
Coefficient

KB

Collision
Fragmentation

Calibration
Coefficient

KC

Minimum value
xi-min

50 0.1 0.6 0.1 0.1 0 0.3

Maximum values
xi-max

60 0.6 1.2 0.01 1 0.3 1

Specifically, the objective of the optimization of the model in this study is to minimize
the average difference value between the amount of frazil ice, the average particle diameter,
and the standard deviation of diameter calculated by the model compared with the experi-
mental observation results through reasonable values of seven variables, so the objective
function is as follows:
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P(X) = P( fi(X)) =



fnum = 1
T

T
∑

t=1
num(k, DB−min, DB−max, Std, M1, KB, KC)sim(t)− numlab(t)

fdave =
1
T

T
∑

t=1
dave(k, DB−min, DB−max, Std, M1, KB, KC)sim(t)− davelab(t)

fdstd = 1
T

T
∑

t=1
dstd(k, DB−min, DB−max, Std, M1, KB, KC)sim(t)− dstdlab(t)

(13)

where X represents seven optimization design parameters, X = [hwa, k, DB−min, DB−max,
Std, M1, KB, KC]; i = num, dave, dstd; numsim(t), davesim(t), dstdsim(t) are the number of
frazil ice, average particle diameter and standard deviation of diameter calculated by the
model in the evolution process; numlab(t), davelab(t), dstdlab(t) are frazil ice data from
experimental observations; t is the time; and T is the total time.

3.2. A Fast Non-Dominated Sorting Approach

A fast non-dominated sorting approach is a concept proposed on the basis of Pareto
domination. For the optimal design parameter X in this paper, if there exists fi(X1) < fi(X2)
for individuals X1 and X2 for any objective function, then individual X1 dominates X2; X1
is said to weakly dominate X2 if there exists fi(X1) ≤ fi(X2) for any objective function
and at least one objective function such that f j(X1) < f j(X2) holds.; individuals X1 and
X2 are said to be mutually nondominant if there exists both an objective function such
that fi(X1) ≤ fi(X2) holds and an objective function that satisfies f j(X1) > (X2). The
non-dominating level is also called Pareto level, in which the individual with Pareto level
1 is called the non-dominating solution, also called the Pareto optimal solution, and the
curve formed by the solution set is called the Pareto frontier.

The steps of fast non-dominated ranking are as follows [15]:
(1) For each individual P(X) in the solution set, calculate its two variable values: the

dominated number np and the dominated set Sp;
(2) Find all the individuals np = 0 in the solution set, assign their non-dominant rank

prank = 1, and store these individuals in the non-dominant set F(1);
(3) For each individual in the set F(1), the dominant number ni of each individual p in

the set Sp is subtracted by 1. If ni − 1 = 0, the individual p is placed in the set F(2), and the
individual p in the set is assigned the non-dominant rank prank = 2;

(4) Then repeat the above operation for each individual in the set F(2) until all individ-
uals have been assigned a non-dominant rank.

3.3. Density Estimation

NSGA-II uses the crowding distance operator to replace the previous sharing function
method, which ensures the criteria for selecting excellent individuals in the same non-
dominant rank, ensures the diversity of individuals in the population, and is conducive to
the selection, crossover, and variation of individuals in the entire interval. For the concept
of crowding distance defined by NSGA-II, the double objective function is taken as an
example to explain, as the Pareto rank set of the double objective function is shown as a
curve (Figure 5) in the graph. As shown in the figure, for the bi-objective problem, for
the current solution p (black dot p in the figure), the crowding distance is defined as the
perimeter of the quadrangle formed by its adjacent solutions p − 1 and p + 1. Note that
when drawing, this quadrangle should not contain other solutions other than p. For the
boundary solution (the black points pmax and pmin in the graph), we count the crowding
distance as infinite. It can be seen that for a solution, the farther the crowding distance,
the more sparse it is around this solution, and choosing such a solution is beneficial to
maintaining the diversity of the population.
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Similarly, for the three-objective function optimization problem involved in this paper,
the obtained Pareto level set is shown as a concave surface in the three-dimensional graph;
then for one of the solutions p, its crowding degree pdis is defined as

pdis =
3

∑
i=1

fi(X + 1)− fi(X − 1)
fi(Xmax)− fi(Xmin)

(14)

3.4. Crowded Comparison Operator

After non-dominant sorting and density estimation, each individual in the group
has two attributes: (1) non- dominant rank prank; (2) crowding degree pdis, where the non-
dominant grade pran = 1 is the highest. For crowding degree, to a certain extent, the smaller
the crowding distance of a solution, the more crowded the solution is by other solutions.
For two solutions with different non-dominant ranks, the solution with the lower rank
value tends to be chosen. When two solutions have the same rank, they tend to choose the
solution with the larger crowding distance or the smaller crowding degree. The crowding
comparison operator is used to select solutions to achieve a wider Pareto optimal solution
distribution.

3.5. Selection, Crossover, and Mutation

(1) Selection

Inspired by “survival of the fittest” in nature, individuals with higher fitness have a
greater chance of being passed on to the next generation, while those with lower fitness
have a lower chance. Various selection methods exist, including roulette selection, ranking
selection, best individual preservation, and random league selection, among others. In this
study, the “best individual preservation” method is employed for selection.

(2) Crossover

The crossover operation simulates the cross transposition of chromosomes in nature
and is used to generate new individuals, which determines the global search ability of the
algorithm. The standard NSGA-II algorithm uses the analog binary crossover operator, and
the formula for the k + 1 generation of individuals is as follows [15]:

X1,k+1 =
1
2
[(

1 − βqi
)
X1,k +

(
1 + βqi

)
X2,k

]
(15)

X2,k+1 =
1
2
[(

1 + βqi
)
X1,k +

(
1 − βqi

)
X2,k

]
(16)
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where X1,k+1 and X2,k+1 is the k + 1 generation individual generated after the crossover;
X1,k and X2,k is the selected k-th generation individual; βqi is the evenly distributed factor,
which is calculated as follows:

βqi = (2ui)
1

η+1 ui ≤ 0.5 (17)

βqi =
1

[2(1 − ui)]
1

η+1
ui ≥ 0.5 (18)

where ui is a random number belonging to [0, 1); η is the cross-distribution index, generally
defined as 20~30. The value of η will affect the distance between the generated individual
and the parent individual.

(3) Mutation

Mutation is a genetic mutation that simulates an organism and is used to produce
a new individual, just like crossover. The mutation operator of the standard NSGA-II
algorithm is a polynomial mutation operator, and the calculation formula of the k + 1
generation individual is as follows [15]:

Xk+1 = Xk +
(

Xmax
k − Xmin

k

)
δk (19)

where Xk is the selected individual of the k-th generation; Xk+1 is the k + 1 generation
individual obtained by the mutation operation of pk; Xmax

k and Xmin
k are the upper and lower

bounds of the decision variables, respectively; δk is calculated by the following formula:

δk =

{
(2rk)

1
ηm+1 − 1 rk < 0.5

1 − [2(1 − rk)]
1

ηm+1 rk > 0.5
(20)

where rk is the uniformly distributed random number in [0, 1]; ηm is the exponent of
variation distribution.

3.6. Elite Strategy

The NSGA-II algorithm introduces elite strategy to achieve the purpose of retaining
excellent individuals and eliminating inferior individuals. By mixing parent and child
individuals to form a new group, the elite strategy expands the selection range when
producing the next generation of individuals. Representing the parent population as P,
where the number of individuals is n, and the child population as Q, the steps are as follows:

(1) Merge the parent population and the child population to form a new population.
Then, the new population can be divided into M Pareto levels by non-dominant sorting.

(2) To generate new parents, first put the non-dominant individuals of Pareto level
1 into the new parent population, then put the individuals of Pareto level 2 into the new
parent population, and so on.

(3) If all the individuals of grade k are put into the new parent set, the number of
individuals in the set is less than n; and if all the individuals of grade k + 1 are put into the
new parent set, the number of individuals in the set is greater than n. Then the crowding
degree is calculated for all the individuals of grade k + 1, and all the individuals are
arranged in descending order according to the crowding degree. Then all the individuals
with rank greater than k + 1 could be eliminated.

(4) Place the individuals in rank k + 1 into the new parent set one by one in the order
arranged in step 3 until the number of individuals in the parent set is equal to n, and then
eliminate the remaining individuals in rank k + 1.

3.7. Algorithm Implementation Steps

The above algorithm is calculated through written code, and the calculation process
and steps are shown in Figure 6.



Water 2024, 16, 1232 11 of 22

Water 2024, 16, x FOR PEER REVIEW 11 of 22 
 

 

arranged in descending order according to the crowding degree. Then all the individuals 
with rank greater than k + 1 could be eliminated. 

(4) Place the individuals in rank k + 1 into the new parent set one by one in the order 
arranged in step 3 until the number of individuals in the parent set is equal to n, and then 
eliminate the remaining individuals in rank k + 1. 

3.7. Algorithm Implementation Steps 
The above algorithm is calculated through written code, and the calculation process 

and steps are shown in Figure 6. 

 
Figure 6. Parameter optimization calculation steps of frazil ice evolution model. 

4. Optimization of Calculation Results 
The authors attempted to seek suitable parameter values during the model 

establishment and debugging stage, but manually adjusting the parameters, waiting for 
simulation results, and comparing experimental data were cumbersome and labor-
intensive steps, and there was a high probability that the optimal parameter value could 
not be found. This is also an important reason for parameter optimization in this study. 
The author selected a set of manually adjusted parameter groups with good agreement 
between the results and experimental data as the initial parameter group (Table 2) to 
compare the matching effect of the optimized parameter group and verify the 
effectiveness of the parameter optimization model. 

Figure 7 is a Pareto front curve of the three objective functions with the minimum 
average difference between the calculation results of the ice evolution model and the 
experimental observation results. The Pareto frontier curve obtained by optimizing the 
model in this study is an L-shaped spatial curve, which shrinks near the (0,0,0) coordinates 
and expands away from the (0,0,0) coordinates. Therefore, there are obviously a series of 
optimization parameter groups, and the average difference in frazil ice number, mean 
particle diameter, and the standard deviation of diameter are small; that is, the calculated 

Figure 6. Parameter optimization calculation steps of frazil ice evolution model.

4. Optimization of Calculation Results

The authors attempted to seek suitable parameter values during the model establish-
ment and debugging stage, but manually adjusting the parameters, waiting for simulation
results, and comparing experimental data were cumbersome and labor-intensive steps, and
there was a high probability that the optimal parameter value could not be found. This
is also an important reason for parameter optimization in this study. The author selected
a set of manually adjusted parameter groups with good agreement between the results
and experimental data as the initial parameter group (Table 2) to compare the matching
effect of the optimized parameter group and verify the effectiveness of the parameter
optimization model.

Figure 7 is a Pareto front curve of the three objective functions with the minimum
average difference between the calculation results of the ice evolution model and the
experimental observation results. The Pareto frontier curve obtained by optimizing the
model in this study is an L-shaped spatial curve, which shrinks near the (0,0,0) coordinates
and expands away from the (0,0,0) coordinates. Therefore, there are obviously a series
of optimization parameter groups, and the average difference in frazil ice number, mean
particle diameter, and the standard deviation of diameter are small; that is, the calculated
results of the model are in good agreement with the experimental observation results.
The optimization parameter values of each group are shown in Table 2. Figure 8 shows
the comparison of water temperature, the number of frazil ice particles, average particle
diameter, and standard deviation of diameter from experimental observation, calculated by
initial parameter values and optimization parameter group 2.
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Figure 7. Pareto frontier (black dots) of three-objective function (average difference in number, mean
and standard deviation of particle diameter) for parameter optimization of frazil ice evolution model.
The red, blue, and green dots represent the projections of the Pareto front on the XY, YZ, and XZ
plane, respectively.
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Figure 8. Comparison diagram of (a) water temperature, (b) number of frazil ice particles, (c) mean
and (d) standard deviation of particle diameter calculated from experimental observation, initial
parameter group, and optimization parameter group 2.

Table 2. Parameter values in the initial parameter group and the optimization parameter group.

Group k DB-min DB-max Std M1 KB KC

Initial group 53 0.4 0.8 0.1 0.9 0.32 0.7
Optimization group 1 58 0.28 0.66 0.1 0.68 0.29 0.52
Optimization group 2 60 0.28 0.64 0.1 0.66 0.3 0.4
Optimization group 3 58 0.34 0.66 0.1 0.6 0.27 0.5
Optimization group 4 58 0.16 0.7 0.1 0.86 0.26 0.62

Figure 8 shows the comparison curves between the simulation results and experimen-
tal results of frazil ice evolution corresponding to two parameter groups. It can be clearly
seen that the improved frazil ice evolution model in this study is in good agreement with
the experimental results and superior to previous models, especially in the evolution of ice
quantity (Figure 1). This proves the accuracy and effectiveness of the frazil ice evolution
model established in this study. Figure 8 also qualitatively shows the difference between
the evolution process of frazil ice corresponding to the two groups of parameters and the
experimental observation results. Intuitively, it seems difficult to see the specific difference
between the three. Therefore, the differences among the three groups were further quan-
titatively calculated, and the average difference rate MAPE between the corresponding
results of the initial and optimization parameters and the experimental observation results
was obtained:

MAPE =
1
T

T

∑
t=1

| fsim(t)− flab(t)|
flab(t)

(21)

where fsim is the calculated value of the objective function; flab is the experimental observa-
tion value. The average difference rate between the corresponding results corresponding to
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the initial value of the parameter and the optimized value and the experimental observation
results is shown in Table 3. It should be explained that the author separately listed the
average difference rate in the 600–1000 s period in Table 3 because during this period, the
amount of frazil ice changes the most, and water temperature, number of particles, and
the mean value and standard deviation of particle diameter are all in the stage of drastic
evolution. Before 600 s, the number of frazil ice is very small, whether it is experimental
observation or the simulation calculation result. The number of frazil ice shown in Mac-
Farlane’s paper is on the order of 10 quadratic, and then according to the experimental
conditions, the number in the whole calculation domain is expanded to seven times 10.
Then, the error of the data obtained by manual extraction under this operation will also
increase, so the experimental data obtained by the author may be inaccurate when there is
very little frazil ice in the first 600 s. Therefore, taking them as the control data will affect
the accuracy of the results.

Table 3. The average difference rate between the frazil ice evolution results corresponding to the
initial parameter group and the optimization group and the experimental observation results.

Water Temperature Number of Frazil Ice Particles Mean Particle Diameter Standard Deviation of
Diameter

Average
Difference

Rate (%)

Average
Difference

Rate for
600–1000 s (%)

Average
Difference

Rate (%)

Average
Difference

Rate for
600–1000 s (%)

Average
Difference

Rate (%)

Average
Difference

Rate for
600–1000 s (%)

Average
Difference

Rate (%)

Average
Difference

Rate for
600–1000 s (%)

Initial parameter group 14.68 35.10 140.06 29.29 7.64 8.46 44.94 61.01

Optimization group 1 15.49 33.64 127.83 19.74 5.53 6.16 33.75 37.90
Optimization range (%) −5.52 4.16 8.73 32.60 27.62 27.19 24.90 37.88

Optimization group 2 16.69 33.08 126.62 17.83 4.37 4.43 30.39 26.33
Optimization range (%) −13.69 5.75 9.60 39.13 42.80 47.64 32.38 56.84

Optimization group 3 15.12 34.50 128.81 18.93 6.54 7.60 33.68 37.63
Optimization range (%) −3.00 1.71 8.03 35.37 14.40 10.17 25.06 38.32

Optimization group 4 15.05 35.54 138.89 17.88 3.87 3.48 33.45 38.41
Optimization range (%) −2.52 −1.25 0.84 38.96 49.35 58.87 25.57 37.04

According to the comparison curves shown in Figure 8, the curves of mean and
standard deviation of frazil ice particle diameter corresponding to the optimization param-
eter values seem to be more consistent with the experimental observation results, but the
curves of water temperature and number of particles cannot directly show whether the
optimization parameter values are better than the initial parameter values. The average
difference rate shown in Table 3 clearly compares the degree of agreement between the
corresponding results of the two groups of parameters compared with the experimental
results. Compared with the initial parameters, the optimization parameters of group 2
increase the difference rate of water temperature by 3.81%, decrease the difference rate of
quantity by 4.21%, mean particle diameter by 35.73%, and standard deviation of diameter
by 31.46%. For the period of 600–1000 s, the optimization process is more obvious, and the
difference rate of water temperature is reduced by 0.68%, the difference rate of number
of particles is reduced by 36.87%, the mean particle diameter by 35.34%, and standard
deviation of the particle diameter by 57.14%. Compared to the other optimization groups,
the results corresponding to the optimized parameters of group 2 are in the best agreement
with the measured results. In addition to the corresponding water temperature process,
the optimization value is slightly worse than the initial parameter values, the coincidence
degree of the corresponding number of particles, mean particle diameter, and the standard
deviation of diameter of the optimization value is better than that for the initial parameters,
and the optimization degree is more obvious.
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5. Discussion
5.1. The Improvement of the Frazil Ice Evolution Model

Compared to previous models, the improved frazil ice evolution model proposed in
this article improves the initial seeding part, the ice particles collision, and the floccula-
tion/breakup part. The following will further discuss these parts.

(1) Initial Seeding

As described in Section 2.2, previous models simplified the initial seeding process
of frazil ice. Wang and Doering [5] assumed that a certain number of ice nuclei were
uniformly distributed in water at the beginning of the evolution process. Hammar and
Shen [6] determined initial seeding as a fixed generation rate. However, there are still
doubts about how these methods for determining the number of ice nuclei can be applied
in actual situations, as the natural conditions of rivers and channels are complex. In the ice
nucleation rate formula (Formula (5)) proposed in this article, parameter k is considered
as a meteorological factor, and its value affects the maximum supercooling of the water
temperature (Figure 9), thereby impacting the point at which frazil ice quantity starts to
increase. The range of k values in Table 1 from 50 to 60 can be considered under ideal
meteorological conditions (no wind, no rain or snow). For other meteorological conditions,
such as rain, snow, strong winds, etc., more measured data will be needed in future research
to determine the k value.
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(2) Ice Particles Collision Frequency and Flocculation/Breakup

In the Hammar and Shen [6] model, the particle collision frequency and result is
related to volumetric sizes of the colliding particles, the turbulent dissipation rate, and
velocity of the colliding particles. Svensson and Omstedt [4] also calculated the number
of second nuclei from collision by the ice particle collision frequency, but it was assumed
that one collision between particles would produce only one nucleus. This processing
method differs from the actual physical process. Therefore, the author further improves the
judgment of collision results (flocculation or breakup), including no repetition of particle
collision count statistics, volume conservation before and after collision, and no uniqueness
of collision results. The parameters introduced in this section include the stable particle
size interval, the calibration coefficient of particle collision frequency, and the breakup
calibration coefficient. From the calculation results of the evolution process, it can be seen
that the upper limit of the stable particle size interval and the breakup calibration coefficient
KC have a significant impact on the change in frazil ice quantity (Figures 10 and 11), as these
two parameters directly affect the process of ice particle collision and breakup, thereby
affecting the change in frazil ice quantity.



Water 2024, 16, 1232 16 of 22Water 2024, 16, x FOR PEER REVIEW 16 of 22 
 

 

 
Figure 10. The influence of the upper limit of the stable particle size interval on the calculation 
results for number of ice particles. 

 
Figure 11. The influence of the breakup calibration coefficient KC on the calculation results for 
number of ice particles. 

5.2. Selection of Optimization Parameters and Objective Functions 
The optimization parameters in this paper are determined according to the specific 

analysis of the influence on the evolution process of frazil ice, which mainly include air–
water heat exchange coefficient hwa, ice nucleation coefficient k, stable particle size range, 
frazil ice thickness-to-width ratio Std, initial value of collision frequency calibration 
coefficient sequences M1, and collision fragmentation calibration coefficients KB and KC. 
Among them, the air–water heat exchange coefficient hwa has a positive correlation with 
the rate of water temperature reduction, the coefficient of ice nucleation coefficient rate k 
has a negative correlation with the maximum subcooling degree of water temperature, 
and the upper and lower limits of the stable particle size interval have a negative 
correlation with the maximum value and the stable value in the final period of the change 
process of the number of frazil ice, but the lower limit has a small impact. The initial value 
of the collision frequency calibration coefficient series M1 is negatively correlated with the 
number of frazil ice. The collision fragmentation calibration coefficients KB and KC are 
positively correlated with the number of frazil ice, of which KB has little influence. 

Among these parameters, the air–water heat exchange coefficient hwa and ice 
nucleation coefficient k both affect the process of water temperature changes. The 
influence of k value on water temperature has been explained in Section 5.1. The influence 
of the air–water heat exchange coefficient hwa on water temperature is shown in Figure 12. 
The coefficient hwa mainly affects the supercooling rate of water temperature, and the 
larger the heat transfer coefficient, the faster the supercooling rate of water temperature. 
However, the air–water heat exchange coefficient hwa is determined according to specific 

0 200 400 600 800 1000 1200
0

1

2

3

4

5

6

7

N
um

be
r o

f  
pa

rti
cl

es
 (×

10
7 )

Time (s)

 Dmax=0.6
 Dmax=0.8
 Dmax=1.0
 Dmax=1.2

0 200 400 600 800 1000 1200
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Fr
az

il 
pa

rti
cl

es
 n

um
be

r (
×1

07 )

Time (s)

  KC=0.3
  KC=0.6
  KC=0.9

Figure 10. The influence of the upper limit of the stable particle size interval on the calculation results
for number of ice particles.
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Figure 11. The influence of the breakup calibration coefficient KC on the calculation results for number
of ice particles.

5.2. Selection of Optimization Parameters and Objective Functions

The optimization parameters in this paper are determined according to the specific
analysis of the influence on the evolution process of frazil ice, which mainly include
air–water heat exchange coefficient hwa, ice nucleation coefficient k, stable particle size
range, frazil ice thickness-to-width ratio Std, initial value of collision frequency calibration
coefficient sequences M1, and collision fragmentation calibration coefficients KB and KC.
Among them, the air–water heat exchange coefficient hwa has a positive correlation with the
rate of water temperature reduction, the coefficient of ice nucleation coefficient rate k has a
negative correlation with the maximum subcooling degree of water temperature, and the
upper and lower limits of the stable particle size interval have a negative correlation with
the maximum value and the stable value in the final period of the change process of the
number of frazil ice, but the lower limit has a small impact. The initial value of the collision
frequency calibration coefficient series M1 is negatively correlated with the number of frazil
ice. The collision fragmentation calibration coefficients KB and KC are positively correlated
with the number of frazil ice, of which KB has little influence.

Among these parameters, the air–water heat exchange coefficient hwa and ice nucle-
ation coefficient k both affect the process of water temperature changes. The influence
of k value on water temperature has been explained in Section 5.1. The influence of the
air–water heat exchange coefficient hwa on water temperature is shown in Figure 12. The
coefficient hwa mainly affects the supercooling rate of water temperature, and the larger the
heat transfer coefficient, the faster the supercooling rate of water temperature. However,
the air–water heat exchange coefficient hwa is determined according to specific conditions.



Water 2024, 16, 1232 17 of 22

Figure 13 shows the process curve of water temperature and number of particles obtained
by MacFarlane’s laboratory experiments of frazil ice evolution. In the period when the
number of frazil ice is small (the first 600 s in this working condition), the water temper-
ature drops linearly, and the linear slope is approximately φ. At this time, due to the
small number of frazil ice during this period, M, Qwi can be approximated as 0, and ρw,
Cw, Awa, Ta are constant in the formula for calculating the time-course change of water
temperature obtained by heat balance (Formulas (2) and (3)). Therefore, it can be deduced
that the water temperature Tw is positively correlated with the heat exchange coefficient
hwa (Formula (22)), and the time-course change of water temperature is the linear slope
of water temperature cooling rate φ shown in Figure 13. Therefore, when the cooling rate
of water temperature under the current working condition is obtained, the heat exchange
coefficient hwa of water and gas can be determined. So, hwa is not considered within the
scope of optimization parameters. Finally, seven parameters except hwa are selected as
optimization parameters.

dTw/dt ∝ hwa ∝ φ (22)

where φ is the slope of the water temperature decline process line.
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The water temperature, the number of frazil ice particles, and the mean and standard
deviation of particle diameter are the main observation objects of the evolution of frazil ice
in order to achieve the best agreement between the simulation results and the observation
results, that is, to quantify the minimum difference between the above four time-course
results and the experimental observation results at each moment. At the same time, NASG-
II has a good effect in solving low-dimensional optimization problems [24] because with
the increase in the objective dimension of the optimization problem, the number of non-
dominated individuals in the population increases exponentially, making it difficult to
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distinguish between good and bad individuals in the Pareto domination relationship, so
three objectives need to be selected for optimization. From the physical process point of
view, when the external temperature and the water-external heat exchange rate are constant,
the water temperature change is affected by the water–ice heat exchange, so when the frazil
ice characteristics data (quantity, mean and standard deviation of particle diameter) are
well fitted, the difference in the water temperature process will be small. Moreover, the
range of water temperature variation is in the order of 10−2, which makes the difference
between the simulated results and the test results smaller. Therefore, this study selected the
average difference between the number of frazil ice particles, the mean particle diameter,
and the standard deviation of diameter of the simulation results and the experimental
observation results as the optimization objective function.

5.3. The Water Temperature Difference of Each Optimization Parameter Group on the Pareto Front

When discussing the selection of optimization objective function in the previous
section, it is considered that the difference in water temperature under different parameter
groups is small, so the average difference in water temperature is not taken as the objective
function. Figure 14 and Table 4 respectively show the degree of agreement between the
simulation water temperature process corresponding to each parameter group in the Pareto
front under this optimization condition and the experimental results. According to the data,
the average difference value of the water temperature process obtained by each parameter
group is between 0.005 ◦C and 0.008 ◦C, and the difference is small, which validates the
authors’ decision to discard the average difference value of water temperature as the
objective function before. However, the maximum difference value of water temperature
shows that the maximum difference in water temperature corresponding to the four optimal
parameter groups reached 0.04–0.05 ◦C (Table 4). The maximum difference occurred at
t = 760 s, which was at the stage of “explosive” growth of the number of frazil ice and
recovery of water temperature. From the perspective of the physical process of the evolution
of frazil ice, as analyzed above, when the change process of the number of frazil ice is
similar, the water temperature process will not produce much difference. Therefore, the
analysis shows that even if the total amount of frazil ice in the calculation domain is similar,
the amount of different particle size groups may be different, and the water–ice heat
exchange rate of frazil ice with different particle size will eventually lead to the difference in
water temperature process. It can be seen that the simulation results of the evolution model
of frazil ice should not only be compared with the total number but also pay attention to
the quantity distribution of each particle size group in the process.
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Table 4. The degree of agreement between the water temperature process corresponding to the four
groups of optimization parameters and the experimental results.

Optimization Parameter
Group

Average Difference Rate of
Water Temperature (%)

Average Difference in Water
Temperature (◦C)

Maximum Difference Value
of Water Temperature (◦C)

1 15.49 0.0057 0.044
2 16.69 0.0062 0.042
3 15.12 0.0057 0.043
4 15.05 0.0060 0.048

5.4. Discussion of the Optimal Parameters Obtained from the Optimization Model

The optimization results show that the agreement between the optimization parameter
corresponding results and the observation results is better than that for the initial parameter
values. The further comparison between the initial parameter group and the optimized
parameter group shows that the ice nucleation rate coefficient k in the optimized parameter
group is higher than that in the initial parameter group, so the water temperature reaches
the maximum supercooling degree in advance, and the maximum supercooling degree
decreases. However, with the increase in k, the time of rapid growth of number of particles
corresponding to the optimal parameter group is advanced, which is in better agreement
with the experimental observation results. However, the increase in k value will lead to
the increase in explosive growth rate and peak value of particles number, which is also the
reason for the decrease in DB-max, KB and KC in the optimal parameter group, belonging to
the result of automatic selection of the optimization model.

The above analysis also determined the coupling effect of other parameters on the
process of the number of frazil ice particles. Figure 15 shows the distribution of the upper
limit DB-max, lower limit DB-min, and collision fragmentation calibration coefficients KB
and KC of the stable particle size interval that have a significant impact on the evolution
of the number of particles in the four optimization parameter groups, where the stable
particle size interval B is the stable particle size interval, the partition particle diameter
of the intervals B and A is the lower limit DB-min, and the partition particle diameter of
the intervals B and C is the upper limit DB-max. The average difference rate between the
change process of the number of frazil ice particles corresponding to the four groups of
optimization parameters and the test results during the period of drastic change is 17~20%
(Table 3), so it can be considered that the number process calculated by the four groups of
parameters is basically the same. However, under this condition, the values of each group
of parameters shown in Figure 15 are not the same, wherein the coefficient KC has the
same trend with the upper limit value DB-max. It is analyzed that the change in the upper
limit value DB-max causes the change in the number of frazil ice in the interval C, so the
optimization model is bound to adjust the collision fragmentation calibration coefficient
KC (in the model of the evolution of frazil ice, collision fragmentation happened between
the ice in the interval C colliding with each other) to meet the objective function of the
number of ice particles. There is little difference in the size of coefficient KB in the four
parameter groups, and the value of KB in Group 4 is slightly smaller than that in the other
three groups. The analysis suggests that the range of interval B in Group 4 is large, that is,
there is a large amount of frazil ice in interval B, and the model optimization finds a small
value of KB to meet the quantity objective function.
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6. Conclusions

(1) The improved frazil ice evolution model established in this study is in good
agreement with the experimental results and superior to previous models, especially in
the evolution of ice quantity. This proves the accuracy of the improved frazil ice evolu-
tion model.

(2) In this paper, a multi-objective optimization model of frazil ice evolution parameters
based on NSGA-II is established. Compared with the experimental observation results,
the corresponding results of the optimization parameters reduce the water temperature
difference rate by 5.75%, the quantity difference rate by 39.13%, the mean particle diameter
difference rate by 47.64%, and the standard deviation of particles diameter difference rate
by 56.84% in the intense evolution stage of frazil ice evolution, which proves that the multi-
objective optimization design model in this paper is effective and feasible for determining
the parameters of the frazil ice evolution process.

(3) The initial values of parameters obtained are a set of optimal parameters, which
has taken a lot of time and energy. The optimization model can greatly improve the
efficiency of parameter optimization and avoid artificial parameter adjustment to obtain
local optimal parameters.

(4) By comparing the differences in calculation results corresponding to optimization
parameters, it is considered that there is still room for improvement in the frazil ice evo-
lution model. Due to the limited observation data of frazil ice evolution experiments, it
is impossible to simulate and compare the evolution process of multi-flow conditions at
present. In the future, when the data are sufficient enough, the optimal parameters will be
determined by optimizing the model, and then the frazil ice’s evolution process theory will
be improved through the reverse analysis of the optimal parameters.
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