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Abstract: An artificial wetland is used to treat gray, waste, storm or industrial water. This is an
engineering system that uses natural functions of vegetation, soil and organisms to provide secondary
treatment to gray water. In the physical design of each artificial wetland, there are various action
factors that must meet certain characteristics so that the level of gray-water pollution is reduced. In
this sense, several design methodologies have been developed and reported in the literature, but
some are customized designs and often do not meet the required decontamination objectives. This
challenge increases as the complexity of the task in its structure also increases. Particularly in this
work, a multi-objective evolutionary algorithm is used to optimize the physical design of a horizontal
flow subsurface wetland (HFSW) for gray-water treatment. The study aims to achieve two objectives:
first, to minimize the physical volume, and second, to maximize the contaminant removal efficiency.
The defined objective functions depend on six design variables called hydraulic retention time, width,
length, water depth inside the wetland, substrate depth and slope. Three constraint functions are
also defined: removal efficiency greater than 95%, physical volume below 500 m3 and compliance
with a length–width ratio is 3:1, varying the population size and number of generations equal to
200, 400, and 600. The set of solutions according to the number of generations as well as the Pareto
front corresponds to the best solution that complies with the constraints of the problem of oversizing
the HFSW, and the Pareto front shows the interaction between the objectives and their behavior,
reflecting the problem’s nature as minimization–maximization.

Keywords: multi-objective optimization; wetland; water quality; nature-based solutions

1. Introduction

Pollution aggravates various environmental problems such as water scarcity, soil ero-
sion and atmospheric drought. The treatment of water resources is increasingly important,
and wastewater treatment processes are sought to be efficient and effective [1]. On the
one hand, green technologies are still developing to provide sustainable solutions to the
problems of pollution. On the other hand, constructed wetlands technology is an estab-
lished green multi-purpose option for water management and wastewater treatment, with
numerous effectively proven applications worldwide and with multiple environmental
and economic advantages. These systems can operate as water treatment plants, habi-
tat creation sites, urban wildlife refuges, recreational or educational facilities, landscape
engineering and ecological art areas [1–3]. Note that conventional wastewater treatment
systems are less efficient in removing recalcitrant compounds and color. In response to this
problem, constructed wetlands could be one option for domestic and industrial wastewater
treatment [4,5] since these systems are simple and have proved to be sustainable and green
technology to improve wastewater quality [2]. However, despite its simplicity, this is a
multi-objective optimization problem [3,6,7]. In this way, Ikenberry et al. [8] addressed
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the problem of groundwater wastewater in Murdoc, Nebraska, by implementing a surface
flow constructed wetland (SFW). The main target of this paper was to optimize the carbon
tetrachloride remediation process, while safeguarding adjacent properties from potential
flooding and channel instability. However, in order to increase the biodiversity of the SFW,
deeper excavations were carried out, resulting in the configuration of a bottom with undu-
lating characteristics. This last particularity caused an increase in the hydraulic retention
time and, therefore, in the sizing of the SFW. Huang et al. [9] used the SubWet 2.0 numerical
model to model and analyze the treatment efficiency of vertical flow constructed wetlands.
The SubWet 2.0 model uses, as design input values, the width, length, depth, precipitation
factor, slope, average percentage of wetland particles, hydraulic conductivity and flow, in
addition to specifying the type of natural or artificial wetland. Once the parameters are
established, the model computes the area, volume, hydraulic head, recommended horizon-
tal flow, recommended flow, flow width and number of channels. Further, it is capable of
simulating the elimination of biochemical oxygen demand (BOD5), ammonium nitrogen,
nitrate nitrogen and total phosphorus (TP). To evaluate the modeling performance, in
terms of these pollutants, use the correlation coefficient and the Nash–Sutcliffe efficiency
coefficient. However, it only provides one design for each simulated wetland without
applying optimization techniques for area reduction. Furthermore, the simulation start
parameters are fixed, which does not allow exploring other designs. As a consequence, the
simulation time is conditioned by the input data, which can cause very fast or very slow
simulations. Andreo et al. [10], examines the removal efficiency of five pollutants: BOD5,
TP, chemical oxygen demand, total suspended solids and total nitrogen in a horizontal
flow subsurface wetland (HFSW). Since the HFSW experiences bed drying problems due
to oversizing and high evapotranspiration in the area, a theoretical resizing of the HFSW
is proposed using the Reed model. However, although the input data for optimization
are obtained in the field, which increases the reliability, the Reed model only provides a
single design, which must be adjusted only to the initial operating conditions of the HFSW,
limiting thus the exploration of new design proposals. Liao et al. [11] reported the study of
one of the main drainage channels of Beijing, which is the Beiyun River in China, where
76% of the city’s total wastewater is discharged into this river. To improve the ecological
environment and water quality of the river, an artificial wetland was designed and built
in the lower part of the river. In the evaluation and optimization process, the MIKE 21
modeling system was used to simulate the water distribution system. Furthermore, a back-
propagation neural network was trained to quantify the relationship between hydrological
parameters and the overall performance of the constructed wetland based on its water
distribution characteristics and their corresponding scores. A genetic algorithm was used
for optimizing the water control, which determines an optimal strategy that combines the
flow and water level parameters of the artificial wetland. Water quality was simulated
by applying chemical oxygen demand as a pollutant index to reflect the water quality of
the surface flow zone with an estimated initial concentration of 25.6 mg/L. Despite the
complexity of the simulation and optimization process, which involved the use of three
different software’s, the study lacked the graphical presentation of the generations carried
out to visualize all the solutions. Likewise, an approximate simulation time of 24 h was
reported, which highlights the need to consider temporal aspects in this type of analysis.

As can be seen in the papers reported to date [4,5,8–12], all artificial wetlands, designed
and some already built, use different design methodologies, but none of them address the
problem from a multi-objective optimization approach. This is a serious drawback since the
structure of said artificial wetland differs substantially from reality. For these reasons, some
artificial wetlands not only consume many financial resources during their construction
and maintenance but also do not ensure that wastewater treatment is the most effective. In
fact, several artificial wetlands are inoperative when their capacities are exceeded, and this
is due to incorrect design planning. As a consequence, its repair is more expensive than the
construction of a new artificial wetland but now considering the new challenges. Note that
this process follows a trial-and-error design methodology, increasing construction costs,
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which is not viable from an economic point of view. With this in mind, this paper presents
the use of the NSGA-II algorithm to optimize the design of an HFSW for gray-water
treatment. In particular, two objectives are optimized: the minimization of the physical
volume (VF) and the maximization of the contaminant removal efficiency (µ). Hence, the
design of the HFSW is formulated as a multi-objective optimization problem. The Pareto
front generated by the two targets is very similar to that reported in the literature, showing
the effectiveness of the optimizer. As an example, a Pareto front solution is selected, and as
a consequence, the numerical value of the HFSW design variables is obtained. The NSGA-II
algorithm can play a crucial role in the built wetland, providing tools for data-driven
decision making and implementing sustainable management practices and strategy to the
peculiarities of the HFSW. The manuscript is organized as follows: Section 2 describes the
behavior equations of the HFSW. The objective functions, constraints and the search space
are also defined. A flowchart of the operation of NSGA-II algorithm is briefly described in
Section 3. Numerical results are discussed in Section 4, showing the generated Pareto front
by the two objectives defined above. By selecting a point on the generated Pareto front,
the design variables can be automatically obtained with the target of building the HFSW a
posteriori. Section 5 presents a brief discussion about the multi-objective optimization of
the HFSW. Finally, the conclusions are summarized in Section 6.

2. HFSW Behavior Model

A detailed description of the method used for optimizing a HFSW, from mathematical
modeling, is here described. The design of the HFSW is optimized using the NSGA-II
algorithm, based on the adequate selection of equations that describe the behavior of the
HFSW to subsequently define the objectives, constraints and design variables. Thus, the
goal is to minimize VF and maximize µ simultaneously.

2.1. Behavior Equations

The design of artificial HFSW involves two stages. The first stage entails kinetic design,
and a first-order model is given by [12,13]

Cs = Cee−KT t (1)

where KT is the first-order kinetic constant [d−1], Ce [mg/L] and Cs [mg/L] are the
input–output concentrations of the pollutant, respectively, and t is the hydraulic reten-
tion time [d]. The second stage involves hydraulic design, which takes into account the
superface area (As) [m2] given by

As =
Qln

(
Ce
Cs

)
KThmn

(2)

where Q is the flow rate [m3/d], hm is the substrate depth [m] and n is the porosity. The
width (W) [m] can be approximated as

W =
1
ha

(
QAs

sKs

)0.5
(3)

where ha is the water depth [m], s is the slope [%] and Ks is the hydraulic conductivity [m/d].
The length (L) [m] is approximated as

L =
As

W
(4)

2.2. Objective Functions

On the one hand, a drawback in the construction of artificial HFSW is that they
require large areas [4,5], consuming many financial resources during their construction
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and maintenance, and they do not ensure that the wastewater treatment is effective. On
the other hand, in the multi-objective optimization process, the objective functions to be
optimized must meet two main characteristics: firstly, the objectives depend on the design
variables and satisfy the design constraints; secondly, there is a trade-off between them [14].
With this in mind and from (1)–(4), the targets are defined as

VF = LW(ha + hm) (5)

µ = 1 − e−KT t (6)

Therefore , this study aims to minimize VF [m3] while maximizing µ [%] at the outlet
of the HFSW and satisfying all required constraints.

2.3. Design Variables and Constraints
2.3.1. Design Variables

In a multi-objective optimization problem, the design variables, also called decision
variables, have an impact on the solution of the optimization problem since during the
optimization process, one must find the best combination of design variables that optimizes
the designer’s preference and maintains certain requirements or constraints. In this sense,
Table 1 shows the design variables to be used during the optimization process along with
the range of values according to the literature [15–17]. Note that the behavior of the two
objective functions given by (5) and (6) depends on the design variables. However, to
improve the search for solutions, in this work, the search space is expanded, and this is
achieved by expanding the range of each design variable. The range of each design variable
is deduced by experimentation. It is worth mentioning that the value of n and Ks are
obtained from [13,16].

Table 1. Design variables.

Design Variable Literature This Work Units

t 4–15 1, 2–7 2,3 1–60 d
W 1–61 2 20–100 m
L 1–15 2 20–100 m

hm 0.46–0.76 1, 0.5–0.6 2 0.7–10 m
ha 0.061–0.3 1, 0.4–0.5 2 0.1–0.8 m
s 0.5–1 1 0–1 %

Note(s): 1 [15], 2 [16], 3 [17]. Here d means “days” and m means “meters”.

2.3.2. Constraints

An objective function cannot be optimized infinitely since its performance is often
limited by the presence of constraints. Thus, a constraint function is also expressed mathe-
matically in terms of design variables. Basically, a constraint function can be an inequality
or equality constraint. For this work, three constraints are defined: the first must ensure
the contaminant removal with 95% efficiency. The second refers to obtaining an optimized
physical volume less than 500 m3. The third constraint must satisfy the relation of 3:1
between L and W [13,16]. Thus, the constraint functions are defined as

µ ≥ 0.95 (equivalent to 95%) (7)

VF < 500 (8)

L
W

= 3 : 1 (9)
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3. Multi-Objective HFSW Design Methodology

On the one hand, a multi-objective optimization problem can mathematically be
formulated as

min./max. f(x) = [ f1(x), f2(x), . . . , fn(x)]

subject to c(x) = [c1(x), c2(x), . . . , ck(x)] ≥ 0

with x = (x1, x2, . . . , xq) ∈ X

xl
q ≤ xq ≤ xu

q

(10)

where f(x) is the vector with n objective functions, c(x) is the vector with k constraint
functions, and x is the vector with q design variables on the decision space X, limiting each
design variable between the lower (xl

q) and upper (xu
q ) limits. On the other hand, the NSGA-

II method is a powerful decision space exploration engine based on genetic algorithms
for solving multi-objective optimization problems as described by (10) in general and the
use of (5)–(9) and the design variables of Table 1 in particular. The NSGA-II operates
under four main principles: non-dominated sorting, elite preserving operator, crowding
distance and selection operator. Under these principles, the NSGA-II algorithm executes
the search for the best solutions of the HFSW design according to the design variables,
taking a population of parents. This population undergoes an operational cycle, where
individuals are adjusted within the problem’s constraints. Once the solutions are found,
they are appended according to the number of generations until forming an optimal set and
satisfying the problem’s solutions. The results of the design variables found by NSGA-II
are attached to the last computed generation, forming the non-dominated solutions. The
behavior of this set of solutions is verified by confronting the objectives and comparing the
maximization–minimization result to form the Pareto front [18]. Since NSGA-II is coded to
minimize objective functions, any objective function can easily be converted to a maximization
problem by multiplying the objective function by −1. Figure 1 shows a flowchart for the
execution of the algorithm. On this diagram, whereas the design variables are used to generate
the initial population and their descendants in the second and third step, respectively, in the
fourth step, the objective and constraints functions defined by (5)–(9) are evaluated.	

	
Figure 1. NSGA-II algorithm flowchart [19].
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4. Numerical Results

Numerical results for optimizing an HFSW are presented. The tests were conducted
by using a CPU with 1.6 GHz Intel core i5 and memory size 4 GB.

4.1. Found Solutions

The NSGA-II algorithm generates acceptable solutions based on population size (P),
the number of generations (G), defined constraints and the search space defined by the
design variables given in Table 1. Table 2 shows four solutions of the last generation for
different values of P and G.

Table 2. Set of solutions found for different P and G values.

Objectives Design Variables Constraints

P G µ VF t W L ha hm s (7) (8) (9)

200 200

0.986 497.249 16.371 57.690 85.842 0.121 1.983 0.205 0.036 2.751 87.228
0.960 445.689 12.249 58.355 91.402 0.125 1.993 0.241 0.010 54.311 83.664
0.952 365.519 11.551 57.281 89.345 0.125 1.972 0.209 0.002 134.481 82.499
0.954 415.011 11.715 58.005 84.922 0.128 1.939 0.208 0.004 84.989 89.092

400 400

0.964 420.480 12.671 75.585 91.314 0.102 1.999 0.258 0.013 79.520 135.442
0.983 484.063 15.568 70.908 86.127 0.101 1.998 0.249 0.033 15.937 126.599
0.952 399.941 11.602 71.475 87.568 0.103 1.925 0.266 0.002 100.059 126.857
0.958 401.298 12.125 73.624 89.531 0.101 2.000 0.265 0.008 98.702 131.339

600 600

0.970 448.090 13.357 30.290 78.446 0.100 2.000 0.574 0.020 51.911 12.423
0.957 489.734 12.036 35.909 77.218 0.100 1.998 0.582 0.007 10.266 30.508
0.968 401.445 13.122 27.446 74.869 0.100 2.000 0.556 0.018 98.555 7.468
0.970 422.962 13.384 26.367 74.646 0.101 2.000 0.589 0.020 77.038 4.455

From the third column of Table 2, µ > 0.95 (or as a percentage µ > 95%), ensuring not
only a value of 20 mg/L of BOD5 at the outlet of the HFSW but also complying with the
NOM-003-SEMARNAT-1997 standard in Mexico. Further, VF is less than 500 m3 for all
cases as shown in the fourth column, and all constraints are satisfied as can be seen in the
last three columns of Table 2.

4.2. Pareto Front

The Pareto front is generated by post-processing all data generated by the evolutionary
optimizer using Matlab Online [20], based on the confrontation of objectives with popula-
tion and generation values at 200, 400 and 600, respectively. In this sense, given a vector of
design variables, x is said to be dominated over by other vector of design variables y if

x dominates y ⇔ fn(x) < fn(y) ∀i ∈ {1, . . . , n} (11)

Otherwise, x is said to be a Pareto front if x is non-dominated by any other vector
of design variables z ∈ X such that f (x) < f (z) [14]. In this way, Figure 2a shows that
with a lower number of population and generation, there is greater dispersion of the
solutions. Increasing P and G, a higher population density is obtained and results in a
better observation of the behavior of the non-dominated solutions and the Pareto front as
illustrated in Figure 2b,c. Here, each blue point represents an acceptable design for HFSW
that satisfies the constraints.

Figure 3 shows the ideal Pareto front vs. the found Pareto front, where P = G = 600 are
used. Clearly, Figure 3 shows a min–max problem, and all individuals of the population
are in the search space with the constraints above defined. Therefore, all solutions are valid.
Additionally, any blue point in Figure 3 (right side) can be selected, and the numerical value
of each design variable can automatically be obtained. But also, all the found solutions can
be stored in a database in order to be used in a next process, saving CPU resources.
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Figure 3. Ideal Pareto front (left side) vs. found Pareto front (right side).

In this sense, and selecting a solution point on the Pareto front of Figure 3 (right side),
the design of the HFSW is represented in Figure 4. From this solution, we obtain µ = 0.968
(equivalent to µ > 96.8%), VF = 401.445 m3, where the numerical values of each design
variable for the construction of HFSW are t = 13.122 d, W = 27.446 m, L = 74.869 m,
ha = 0.1 m, hm = 2 m and s = 0.556% as given in the penultimate row of Table 2. The results
indicate that the NSGA-II algorithm, adapted to the specific characteristics of wetlands,
manages to generate solutions that optimize the efficiency of wastewater treatment, which
supports its viability and usefulness in wastewater management.

Moreover, we compare the results generated by the proposed methodology associated
with an individual of the Pareto front with those designs of HFSW reported in the literature
as described in Table 3. It is found that all works are fully custom designs and some of them
have small dimensions, limiting the volume capacity in gray-water treatment. Further,
all cited references not only do not report the numerical value of the design variable ha
used but also almost all them use a slope equal to 1, and µ is lower compared to the
result obtained with the proposed methodology. Furthermore, it can also be observed
that t tends to increase when VF also increases and, therefore, results in greater volume
capacity in gray-water treatment. It is important to mention that, whereas one fully custom
design is reported in [4,5,10,12], with the developed methodology, P acceptable designs
are generated. For instance, from Figure 2c, we have P = 600 acceptable artificial wetland
designs. As a consequence, any physical design represented by a blue point of Figure 3 can
be selected, and its design features are much better that those reported in Table 3.
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Figure 4. Scheme of the design of the HFSW.

Table 3. Comparison with other works.

[4] [5] [10] [12] This Work Units

VF 279.68 0.432 3.136 6.000 401.445 m3

µ - 96.00 93.00 90.30 96.80 %
t 7.000 7.000 4.370 3.000 13.122 d

W 16.000 0.600 1.320 2.000 27.446 m
L 23.000 1.200 3.960 4.000 74.869 m

hm 0.760 0.600 0.600 1.000 2.000 m
ha - - - - 0.100 m
s 1.000 1.00 1.000 0.800 0.556 %

5. Discussion

The use of the NSGA-II algorithm allows us to explore a wide range of solutions and
generate the Pareto front. This front not only represents the non-dominated solutions but
also offers a clear view of the balance between objective functions. By considering different
values of P and G during the optimization process, a better understanding of the behavior
of the solutions is provided. Therefore, with high values of P and G, the Pareto front is
better formed, providing a valuable tool for decision making since it allows different design
options to be evaluated based on specific design variables and constraints. Regarding
the established constraints, these can also be evident on the Pareto front since the multi-
objective optimization algorithm has identified solutions that exceed the 95% contaminant
removal threshold, maintaining the VF at below 500 m3. This finding demonstrates the
effectiveness and ability of the NSGA-II algorithm to optimize the HFSW design. A
disadvantage of the proposed HFSW design methodology is that if more objective functions
are used along with constraints, the multi-objective optimization process becomes more
complex and not only are more CPU resources required but the space of design must also be
expanded in order to search for a better combination of all the design variables that satisfy
all the objective and constraint functions. As a consequence, more CPU time is required
since P and G also must be increased in order to obtain greater diversity. Furthermore,
the evolutionary optimizer could also fail since it is limited to using a low number of
objective functions. This is another disadvantage since the real design of an HFSW consists
of several objective functions, both biological and physical, among others. In this sense,
the proposed design methodology can also be used for optimizing the biological part of an
HFSW and then merging both Pareto fronts, the one generated for the physical part and for
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the biological part. As a consequence, it is possible to obtain an acceptable final design of
the HFSW. Moreover, because the NSGA-II algorithm is based on genetic algorithms and
the crossover and mutation probability indices are usually kept constant throughout the
optimization process, it is possible to generate identical individuals between generations.
As a consequence, local optimal solutions are found. Note that this last behavior is also
due to the fact that NSGA-II is elitist, and the best individuals found in each generation are
always kept on the Pareto front. A possible solution to this problem is to randomly change
the mutation and crossover probability indices between generations or perhaps combine
other optimization algorithms with NSGA-II. These tasks are lines of future work.

6. Conclusions

This research demonstrates that using the NSGA-II algorithm for HFSW management
is a promising strategy to address the specific changes associated with these types of
ecosystems. It was possible to obtain the best solutions for the vector of design variables
and represent the Pareto front and, therefore, at a smaller population size P and fewer
generations G of greater dispersion, given that the solution of the design variables for HFSW
with the input data P and G has greater dispersion. The solution of design variables, found
by the NSGA-II algorithm, depends on the values of P and G, the constraint and objective
functions. These results suggest that optimization with the NSGA-II algorithm can play a
crucial role in the constructed wetland, providing tools for data-driven decision making
and implementing sustainable management practices and strategy to the peculiarities of
the HFSW. However, the evolutionary optimizer is limited to using few objective and
constraint functions since increasing their number not only increases the complexity of
the solution but also increases the use of CPU resources, and the optimizer cannot find
acceptable solutions. This is a serious disadvantage since the real design of artificial HSFWs
is composed of several physical and biological performance objectives that must be satisfied
simultaneously, and this is a conflict that exists among them.
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