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Abstract: The non-tectonic deformation caused by hydrological loads is an important influencing
factor in GNSS vertical displacement. Limited by the temporal and spatial resolution of global models
and model errors, the hydrological load results calculated by traditional methods are difficult to meet
the high temporal and spatial resolution requirements of small to medium-scale regions. This paper
introduces the idea of the remove–restore method, assimilates regional high-resolution hydrological
data, and obtains higher temporal and spatial-resolution hydrological load results. Subsequently,
utilizing data from 12 CORS observed in the western Yunnan region between January 2018 and
December 2020, the quantitative relationship and variation characteristics between GNSS vertical
displacement and hydrological load displacement were analyzed in detail. Furthermore, the annual
signals of both were extracted using the SSA method for comparative analysis. After removing the
effects of atmospheric load and non-tidal ocean load, the average correlation coefficient between
GNSS vertical displacement and hydrological load displacement is 0.84, with an average reduction
of WRMS (%) reaching 37.17%. The average correlation coefficient of the annual signals between
GNSS vertical displacement and hydrological load deformation is 0.94, with an average reduction
of WRMS (%) reaching 46.5%, indicating that the contribution of hydrological load to the GNSS
non-tectonic vertical displacement annual signal is close to 50%. The research results provide scientific
support and important references for studying surface tectonic deformation by removing non-tectonic
deformations such as hydrological loads from GNSS vertical displacement. Additionally, it helps to
explore the mechanisms of interaction between water storage migration and surface deformation.

Keywords: hydrological load; GNSS; vertical displacement; remove–restore method; SSA

1. Introduction

Surface mass changes can induce noticeable load responses, causing vertical surface
deformation and changes in the Earth’s gravity field [1]. Studying surface load deformation
can provide insights into changes in atmospheric, oceanic, and terrestrial water surface
mass and their interactions, which are of great significance for global climate change
and geodynamics research [2]. Analyzing methods for load-induced vertical deformation
caused by atmospheric, hydrological, and non-tidal oceanic surface mass loads mainly
include global surface load models and GRACE (Gravity Recovery and Climate Experiment)
models [3]. Both global surface load models and GRACE models, limited by their spatial
resolution, primarily represent information at spatial and long-wave scales and are unable
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to reveal the local characteristics of regional load-induced vertical deformation. Therefore,
the current research hotspot in the field of geodesy is how to integrate high-resolution
and high-precision regional models to enhance the applicability of load-induced vertical
deformation monitoring methods at small to medium scales [4–6].

GNSS (Global Navigation Satellite System) technology provides an effective means for
real-time continuous monitoring of surface deformation, allowing the reflection of vertical
surface deformation through the time series of coordinates obtained from continuous obser-
vations at monitoring sites [7]. Previous studies have shown that after subtracting long-term
changes caused by tectonic movements, the annual variations in the GNSS vertical displace-
ment time series are mainly caused by surface mass migration [8]. Therefore, to ensure the
reliability of load-induced vertical deformation monitoring results, most studies validate
them using GNSS displacements, primarily comparing the annual variation characteristics
of the two sets of results. Studies on atmospheric and non-tidal oceanic loads have shown
that non-tidal oceanic loads provide better correction effects on GNSS vertical displace-
ment in coastal areas [9,10] and studied the seasonal variations in vertical displacement
caused by atmospheric loads, which can reach 18–20 mm [11,12]. In studies on hydrological
loads, the deformation caused by hydrological load obtained from surface load models
has been found to have varying effects on GNSS vertical seasonal changes, ranging from
millimeters to centimeters [13–15]. Several scholars have conducted comparative studies
between hydrological load displacement obtained from GRACE model data and seasonal
changes in GNSS vertical displacement. The majority of the results indicate a good overall
correlation and consistency between the two [16–21]. The results show that the maximum
annual amplitudes of GNSS continuous stations induced by atmospheric, hydrological, and
non-tidal oceanic loads can reach approximately 4 mm, 7–8 mm, and 2–3 mm, respectively.
These loads can explain about 40% of GNSS vertical seasonal changes [22]. In summary,
it is evident that different surface mass loads (atmospheric, hydrological, and non-tidal
oceanic) have varying effects on GNSS vertical seasonal changes in different regions.

The western Yunnan region (23.5◦ N–27◦ N, 97.5◦ E–101.5◦ E), located on the south-
eastern side of the Qinghai–Tibet Plateau, is a significant geological research area composed
of multiple blocks. It contains several large and complex fault zones, making it one of the
most seismically active regions in mainland China [23]. Some scholars have studied the
relationship between GNSS vertical displacement and hydrological load deformation in
Yunnan Province using GRACE models and GNSS data, suggesting that hydrological loads
are one of the main factors causing seasonal changes in GNSS vertical motion in the Yunnan
region [24]. However, GRACE can effectively distinguish hydrological load changes within
a range of approximately 300 km, but it cannot effectively discern the impact of hydrologi-
cal loads on GNSS continuous station local small-scale ranges [25]. Therefore, this study
uses a remove–restore method combined with regional high-resolution models to calculate
the high resolution of hydrological load impacts in the western Yunnan region, aiming to
reveal the characteristics of hydrological load migration on crustal vertical deformation
at small to medium scales. This paper provides data processing methods for monitoring
surface vertical deformation using hydrological loads and GNSS. It mainly quantitatively
compares hydrological load displacement with GNSS-monitored vertical displacement and
analyzes the seasonal and annual variation characteristics of both, discussing the impact of
hydrological load on GNSS vertical displacement in western Yunnan.

2. Date
2.1. Data of CORS Network

The paper utilized data from 12 CORSs (Continuous Operating Reference Stations)
in western Yunnan from January 2018 to December 2020. The spatial distribution of each
station is indicated by the red circles in Figure 1 [26]. Additionally, to obtain high-precision
CORS coordinate change time series, 15 IGS stations were selected, and their data were pro-
cessed alongside CORS data. Data processing was performed using the GAMIT/GLOBK
software (version 10.75). For the issues of ambiguity, ionospheric delay, and tropospheric
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delay, the LAMBDA method, LC_AUTCLN, and ‘Saastamoinen+GPT2w+estimation’ pro-
cessing modes were respectively adopted [27]. Daily GNSS observation data errors for each
station were corrected, and the GAMIT software (version 10.75) was used to obtain single-
day regional loose solutions for the stations. Network adjustments were conducted using
GLOBK software (version 10.75) to obtain the station coordinate changes under the ITRF
(International Terrestrial Reference Frame) 2014 framework [28]. The GNSS calculations in
this paper have already removed the effects of solid tides, ocean tides, and atmospheric
tides. However, non-tidal loads caused by changes in surface mass, such as atmospheric,
hydrological, and non-tidal oceanic, have not been removed.
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Figure 1. General situation of the study region.

2.2. Atmospheric Pressure Data

The atmospheric pressure data used in this study were obtained from the reanalyzed
ERA-interim surface pressure product data from the ECMWF, with a spatial resolution of
0.25◦ × 0.25◦ [29]. The data were processed to obtain weekly values, covering the period
from 3 January 2018 to 30 December 2020. Using the date of each Wednesday to represent
the week, for example, 3 January 2018 represents the first week of 2018.

2.3. SLA Data

Daily global sea level anomalies data were sourced from AVISO, with a spatial res-
olution of 0.25◦ × 0.25◦. This dataset integrates altimetry measurements from multiple
satellites, such as TOPEX/Poseidon, Jason-1/2, and Envisat, and undergoes necessary
geophysical corrections [30,31]. The data were also processed to obtain weekly values,
covering the period from 3 January 2018 to 30 December 2020.

2.4. Hydrological Model

(1) The GLDAS Global Model

To obtain soil moisture variations, this study utilized the GLDAS V2.1 NOAH model
provided by NASA, with a spatial resolution of 0.25◦ × 0.25◦ [32]. This model considers soil
moisture content from 0 to 200 cm depth, as well as surface water in vegetation canopies
and snow water. The data have a temporal resolution of every three hours.

(2) The CLDAS regional Model

The regional high-resolution atmospheric pressure data used in this study were ob-
tained from the soil moisture analysis product provided by CLDAS (the China Meteorolog-
ical Administration Land Data Assimilation System) V2.0. This dataset covers the Asian
region (0◦–65◦ N, 60◦–160◦ E) and provides soil moisture analysis products with a spatial
resolution of 0.0625◦ × 0.0625◦ latitude-longitude grid, divided into five layers vertically
(0–5 cm, 0–10 cm, 10–40 cm, 40–100 cm, 100–200 cm). The real-time product has a lag of
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1.5 h, and the near-real-time product has a lag of 2 days. This dataset was developed using
various observational data sources, such as ground-based and satellite observations. It
exhibits superior quality in China, with higher spatial and temporal resolutions.

3. Methods

(1) The method of spherical harmonic approximation.

The changes in surface mass can be represented by the variation in EWH (equiva-
lent water height). According to the theory of Earth’s load deformation, the normalized
spherical harmonic expansion of the EWH variation is [33,34]:

∆hw(φ, λ) = a∑L
l=1 ∑l

m=0

[
∆Cq

lm cos mλ + ∆Sq
lm sin mλ

]
Plm(sin φ) (1)

where (φ, λ) represents the geocentric latitude and longitude, while ∆Cq
lm, ∆Sq

lm is the
load sphere harmonic coefficient with degree l and order m. Plm(sin φ) is the associated
Legendre function with degree l and m order the changes in vertical displacement caused
by surface mass loads can be calculated using the following equation [22,33]:

H(φ, λ, t) = 3
ρw

ρe

GM
γR ∑L

l=2

h′l
2l + 1∑l

m=0

[
∆Cq

lm cos mλ + ∆Sq
lm sin mλ

]
Plm(sin φ) (2)

where ρe ≈ 5.5 × 103 kg · m−3; G is the gravitational constant; and γ is the average
ground gravity.

(2) The method of loading Green’s functions.

The GNSS vertical displacement caused by surface mass loads should satisfy the
dynamic equation of load deformation:

H(φ, λ, t) =
∫ 2π

0
dλ′

∫ π

0
ρw∆hwG(ψ)R2 sin λ′dφ′ (3)

where t represents time; (φ′, λ′) represents the load point to be integrated on the ground;
ρw ≈ 103 kg · m−3; ψ represents the spherical angular distance between the calculated and
load points; and R represents the average earth radius.

The radial load Green’s function G(ψ) is as follows [34]:

G(ψ) =
Rh′∞

2M sin(ψ/2)
+

a
M

N

∑
n=0

(h′l − h′∞)Pn(cos ψ) (4)

where h′l is the radial load LOVE number [35], M is the mass of the Earth, and Pn is the
Legendre function.

(3) Calculation of regional hydrological load based on the remove–restore method.

In gravity field research, the characteristic of the Earth’s gravity field is that the long-
wave component predominates (greater than 90%), while the perturbation mass generated
by terrain and crustal disturbances contributes relatively small amounts of medium and
short-wave components, with the short-wave effect particularly minimal, varying from
meters, decimeters, and centimeters in large, medium, and small mountainous areas,
respectively. Global gravity field models mainly contain information on long-wave com-
ponents. In refining regional gravity field models, the remove–restore method, combined
with locally measured gravity data, can introduce information on medium- and short-wave
components, thus enhancing the accuracy and resolution of regional gravity field mod-
els. Similar to this principle, this paper, based on the remove–restore method, combines
global hydrological models with regional high-resolution data to calculate high-precision,
high-resolution regional hydrological load results, thereby enhancing its applicability in
medium- and small-scale regions.
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As shown in Figure 2, the process involves the following steps: 1⃝ Download and
process GLDAS global model data, Using Formula (1), the global hydrological model is
expressed in terms of spherical harmonic coefficients. 2⃝ Utilize Formula (2) to estimate
the reference EWH and hydrological load reference values, serving as contributions from
the far field in the global background field. 3⃝ Acquire high-resolution hydrological data
for the study area from CLDAS. 4⃝ Densify the grids of reference EWH and local high-
resolution EWH into the same 1′ × 1′ grid. 5⃝ Subtract the reference EWH grid from the
local high-resolution EWH grid to obtain the residual EWH grid. 6⃝ Utilize Formula (3) to
calculate the hydrological load caused by residual EWH, introducing finer near-field load
source contributions. 7⃝ Sum the load impacts of residual EWH with the hydrological load
reference values, obtaining a regional hydrological load with finer spectrum information at
a resolution of 1′ × 1′.
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From the perspective of the spectrum, the impact of the load can be divided into “near-
zone impact” and “far-zone impact”. The remove–restore method not only preserves the
long-wave information of the global model, that is, the far-zone impact, but also introduces
the mid-short-wave information of the regional model, which is a refined expression of the
near-zone impact. This method not only utilizes regional high-resolution data to improve
the accuracy and spatiotemporal resolution of hydrological load results but also effectively
suppresses truncation errors generated during spherical harmonic expansion.
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4. Results
4.1. The Impact of Hydrological Load on Vertical Displacement in the Western Yunnan Region

In this study, the global hydrological model provided by GLDAS and the regional
high-resolution hydrological data provided by CLDAS were averaged on a weekly basis
to obtain results with a temporal resolution of one week. To standardize the baseline, the
average of the 52 weekly values for the year 2018 was subtracted as the reference, resulting
in a grid of weekly hydrological changes.

Figure 3 shows the model values of vertical deformation in the western Yunnan
region calculated based on the GODAS global model, representing the reference vertical
deformation. The grid results for each week are represented by the Wednesday of each
week. From the figure, it can be observed that vertical deformation in the western Yunnan
region exhibits significant seasonal characteristics, with the impact of hydrological load
on vertical deformation ranging from −8 to 8 mm, reaching the centimeter scale. The
results obtained based on the GODAS global model primarily reflect spatial and long-
wave scale information. However, due to limitations in the resolution of the global model
and truncation errors in spherical harmonic expansion, the short-wave information is not
accurately captured. As a result, the spatial difference of the hydrological load deformation
field is not pronounced, and it fails to reveal local characteristics in the region.
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Figure 4 depicts the refined hydrological load impact obtained after assimilating
regional high-resolution data from CLDAS, representing the impact of residual hydrological
load on vertical displacement. The magnitude of vertical deformation induced by residual
hydrological load ranges from −2 to 2 mm. This result does not include global background
field information but provides a refined representation of near-field load sources, thus
better revealing local spatial characteristics. By adding the reference hydrological load
impact (Figure 3) to the residual hydrological load impact (Figure 4), we obtain the vertical
deformation field of high-resolution regional hydrological load calculated based on the
remove–restore method. This method assimilates regional high-resolution hydrological
model data, making the spectral information of the calculation results more refined. It also
effectively suppresses truncation errors in the traditional spherical harmonic approximation
method, thereby enhancing the applicability of hydrological load results in medium- and
small-scale regions.
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4.2. The Comparison with the Vertical Displacement Seasonal Fluctuations from Hydrological Load
and the GNSS

Figure 5 shows the results of the vertical displacement time series for the four selected
CORS. The red dots represent the GNSS vertical displacement time series calculated by
GAMIT/GLOBK software, indicating the changes in the geodetic height at CORS, after
gross error detection and step processing. The blue lines represent the linear trend compo-
nent. Furthermore, this study utilized the least squares method to perform low-frequency
reconstruction of the nonlinear variation in GNSS vertical displacement, which better
expresses its seasonal characteristics while suppressing the influence of high-frequency
noise in the original time series, as depicted by the black curves. The vertical displacement
at most stations ranges from −25 to 25 mm.
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Figure 6 shows the vertical displacement at the XIAG station caused by hydrological
load, atmospheric load, and non-tidal ocean load, where the hydrological load is based on
the remove–restore method. All three types of surface mass loads exhibit significant sea-
sonal characteristics. The impacts of hydrological load and atmospheric load are relatively
large, both reaching the centimeter scale. The influence of non-tidal ocean loads is smaller,
within the range of −2 to 2 mm.
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To quantitatively compare and analyze hydrological load with GNSS vertical displace-
ment, this study employed RMS (%), R two metrics, as defined in Equations (5) and (6):

WRMS (%) =
WRMSGNSS − WRMSGNSS−load

WRMSGNSS
(5)

where WRMSGNSS is the WRMS of the GNSS vertical displacement. WRMS (%) can reflect
the hydrological load influences on the GNSS’s vertical displacement.

The Pearson correlation coefficient (R) is calculated as follows:

R =
Cov(X, Y)√

Var(X), Var(Y)
(6)

where X = (x1, x2, · · · , xN) represents the GNSS vertical displacement;Y = (y1, y2, · · · , yN)
represents the vertical deformation caused by hydrological loads. The R values range from
−1 to 1, indicating strong negative and positive correlations between the periodic phases
of the two series.

To better compare and analyze the seasonal variation relationship between GNSS
vertical displacement and hydrological load displacement, we performed a load correction,
i.e., the atmospheric and non-tidal ocean load deformation was removed from the LSF-
reconstructed GNSS vertical displacement. Figure 7 shows the comparison between the
GNSS vertical displacement and the vertical displacement caused by hydrological load
at XIAG, YNLJ, YNSD, and YNLC stations. The red curve represents the GNSS vertical
displacement without load correction, while the blue curve represents the GNSS vertical
displacement after load correction. It can be observed from the figure that the phases
and amplitudes of all CORS are relatively consistent. These CORS are located in areas
of significant soil moisture variation, indicating that hydrological load deformation can
effectively explain the seasonal variation of GNSS vertical displacement in the western
Yunnan region.

It is worth noting that in the western Yunnan region, the influence of non-tidal ocean
load on atmospheric load has a compensatory effect (as shown in Figure 6), so the amplitude
difference of GNSS vertical displacement before and after load correction is not significant.
The specific effects can be seen in the statistical confidence of Table 1. The correlation
coefficient calculation results of the GNSS vertical displacements and hydrological load
displacements for 12 CORS are shown in Table 1. When the atmospheric and non-tidal ocean
load effects are not deducted from GNSS vertical displacements, the average correlation
is 0.77.the smallest correlation being at the YNGM, with a value of 0.68. And the largest
correlation is at the YNCX, with a value of 0.84. After correcting for atmospheric and
non-tidal ocean load effects, the average correlation between the two becomes 0.84, with
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the smallest correlation still at the YNGM, with a value of 0.78, and the largest correlation
being at the YNTC, with a value of 0.88. This indicates that most CORS have a strong
correlation between GNSS vertical displacement and hydrological load displacement,
and after correcting for atmospheric and non-tidal ocean load effects on GNSS vertical
displacement, the correlation between the two can be significantly improved, verifying the
reliability of the methods and theories presented in this paper.
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Table 1. Correlation coefficient and contribution rate WRMS (%) between vertical time series from
GNSS and hydrological load vertical displacement in the western Yunnan region from 2018 to 2020.

CORS

Without Load Correction Atmospheric Load and Non-Tide
Ocean Load Correction

Correlation
Coefficient WRMS (%) Correlation

Coefficient WRMS (%)

XIAG 0.68 25.33 0.78 33.60
YNCX 0.84 31.18 0.85 33.59
YNGM 0.79 23.67 0.84 34.86
YNJD 0.71 25.78 0.80 32.48
YNLC 0.72 26.63 0.82 35.96
YNLJ 0.79 34.80 0.86 41.99
YNRL 0.77 33.74 0.86 43.28
YNSD 0.75 29.87 0.85 38.38
YNTC 0.81 33.56 0.88 39.13
YNYA 0.78 30.98 0.86 37.13
YNYL 0.77 27.73 0.85 33.53
YNYS 0.78 31.82 0.86 38.75

To further illustrate the consistency of seasonal variations between GNSS vertical
displacements and hydrological load deformations, this paper quantitatively evaluates
whether hydrological load deformations can effectively correct non-tectonic deformations in
GNSS vertical displacement by using the WRMS (%) obtained from subtracting hydrological
load displacement from GNSS vertical displacement. If the WRMS (%) is positive, it means
that hydrological load displacement can effectively correct non-tectonic deformations in
GNSS vertical displacement. From Table 1, it can be seen that the values for all CORS
are positive, indicating that hydrological load displacement can effectively remove non-
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tectonic deformations for Yunnan CORS. When the atmospheric and non-tidal ocean load
effects are not deducted from GNSS vertical displacement, the average WRMS (%) for
all CORS is 29.59%, which increases to 37.17% after load correction. This indicates that
the contribution of hydrological loads to the seasonal vertical displacements of CORS
stations in western Yunnan is above 30%. When studying the impact of hydrological loads
using GNSS vertical displacement, it is effective and necessary to deduct the effects of
atmospheric loads, non-tidal ocean loads, and other loads.

4.3. The Comparison with the Vertical Displacement Annual Variation from the GNSS and
Hydrological Load

This study employs the SSA method to separately extract the annual signals of GNSS
vertical displacement and hydrological load deformation [36–38], as shown in Figure 8. The
red curve represents the annual signal of GNSS vertical displacement, while the blue curve
represents the annual signal of hydrological load. The statistical results are presented in
Table 2. Both signals exhibit strong consistency in amplitude and period. The annual signal
of GNSS vertical displacement fluctuates within ±5.5 mm to ±8 mm, while the annual
signal of hydrological load fluctuates within ±3.5 mm to ±5 mm. The difference in annual
phase values ranges from 0.87◦ to 12.67◦. There is significant variation in the amplitude
of vertical displacement among different CORS, indicating that GNSS signals are more
sensitive to vertical displacement changes and can effectively reveal local characteristics of
the region.
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Table 2. Statistical values of the vertical annual variation from the GNSS and hydrological load.

Station

GNSS Hydrological Load

Annual Amplitude
/mm

Annual Phase
/◦

Annual Amplitude
/mm

Annual Phase
/◦

XIAG 5.71 ± 0.24 19.30 ± 5.26 3.75 ± 0.16 23.46 ± 5.47
YNCX 5.52 ± 0.29 31.18 ± 5.70 3.57 ± 0.17 22.93 ± 6.98
YNGM 5.89 ± 0.48 28.38 ± 4.64 4.25 ± 0.20 29.25 ± 5.76
YNJD 7.71 ± 0.34 26.25 ± 5.64 3.85 ± 0.19 22.20 ± 6.09
YNLC 6.61 ± 0.44 15.87 ± 6.47 4.09 ± 0.20 21.55 ± 5.78
YNLJ 6.19 ± 0.22 33.08 ± 4.47 3.70 ± 0.18 24.29 ± 5.76
YNRL 7.52 ± 0.30 35.55 ± 5.16 4.63 ± 0.20 22.88 ± 5.29
YNSD 7.51 ± 0.26 21.34 ± 4.37 3.99 ± 0.20 23.51 ± 6.04
YNTC 8.10 ± 0.27 32.69 ± 3.78 4.36 ± 0.19 23.12 ± 5.38
YNYA 7.18 ± 0.23 34.71 ± 4.10 3.55 ± 0.16 23.74 ± 5.67
YNYL 8.01 ± 0.33 20.96 ± 5.14 3.71 ± 0.18 25.16 ± 5.83
YNYS 6.61 ± 0.17 34.11 ± 3.34 3.52 ± 0.16 25.29 ± 5.53
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As shown in Table 3, the average correlation coefficient between vertical annual
variation from the GNSS and hydrological load is 0.94. The lowest correlation coefficient
is observed at the XIAG station, which is 0.91, while the highest correlation coefficient is
observed at the YNCX station, which is 0.97. There is a strong correlation between GNSS
vertical annual variation and hydrological load vertical annual variation. The average
WRMS (%) is 46.5%, indicating that hydrological loads contribute to nearly 50% of the
non-tectonic annual signals of GNSS vertical displacements.

Table 3. R and WRMS (%) between vertical annual variation from the GNSS and hydrological load in
the western Yunnan region from 2018 to 2020.

Station Correlation
Coefficient WRMS (%) Station Correlation

Coefficient WRMS (%)

XIAG 0.91 51 YNRL 0.93 51
YNCX 0.97 45 YNSD 0.94 47
YNGM 0.92 43 YNTC 0.95 43
YNJD 0.94 44 YNYA 0.96 46
YNLC 0.92 44 YNYL 0.94 42
YNLJ 0.96 54 YNYS 0.95 48

5. Discussion

In traditional hydrological load impact studies, global hydrological models, or GRACE
data, are generally used. The spatial resolution of global hydrological models is typically
0.5◦ × 0.5◦ or 0.25◦ × 0.25◦, while the GRACE gravity satellite has a resolution of about
300 km [39,40]. Both have a temporal resolution on the monthly scale. However, neither
global hydrological models nor GRACE data can meet the demand for high precision and
high resolution in medium- and small-scale regional areas. This article proposes using the
remove–restore method to assimilate high-resolution hydrological data in regional areas,
thereby improving the applicability of hydrological load impact in medium- and small-
scale regions. The remove–restore method not only preserves the long-wave information
of the global model, that is, the far-zone impact, but also introduces the mid-short-wave
information of the regional model, which is a refined expression of the near-zone impact.
Experimental trials were conducted using the western Yunnan region as an example,
obtaining hydrological load results with a resolution of 1′ × 1′, thus demonstrating the
feasibility of this method. Furthermore, GNSS data were utilized for comparative analysis,
validating the reliability of this method. From the perspective of temporal resolution,
the hydrological load impact in this study yields results on a weekly scale, representing
some improvement. However, the temporal resolution of regional hydrological data is 3 h,
and the weekly averaging method does not fully exploit its advantage of high temporal
resolution. In future research, the applicability of daily hydrological load results will be
further investigated.

The findings of this study indicate that monitoring hydrological load displacement
using GNSS is feasible, and GNSS signals are more sensitive and accurate, capable of fully
revealing the local characteristics of the region [19,41]. The strong consistency between
the hydrological load displacement monitored by GNSS and regional hydrological data is
evident from the correlation coefficient results. However, there are still some differences in
amplitude between the two. The annual signal of GNSS vertical displacement fluctuates
within ±5.5 mm to ±8 mm, while the annual signal of hydrological load fluctuates within
±3.5 mm to ±5 mm. The differences are not only related to model errors in regional hydro-
logical data but also to the processing of GNSS vertical displacement time series. GNSS
time series not only include non-tectonic motions such as hydrological load, atmospheric
load, and non-tidal ocean load but also incorporate other environmental changes and
geodynamic variations, such as earthquakes, volcanoes, and tectonic motions. In particular,
the influence of atmospheric load and non-tidal ocean load is significant. When studying
hydrological load deformation using GNSS, it is necessary to remove the influence of



Water 2024, 16, 1260 12 of 14

atmospheric load and non-tidal ocean load. After load correction, there is a noticeable
improvement in the correlation between GNSS vertical deformation and hydrological load,
demonstrating the feasibility and necessity of the technical approach proposed in this paper.

In addition, thermal expansion effects can induce changes in the vertical displace-
ment of CORS stations. Jiang found that the thermal expansion effect is more pronounced
at GNSS stations located in mid- to high latitudes, with a maximum vertical displace-
ment amplitude of 1.8 mm, while the average amplitude at low-latitude stations is only
0.16 mm [42]. This effect is one of the important factors contributing to the differences in
annual amplitudes between these locations, but it was overlooked in this study. In future
research, it is crucial to fully consider all influencing factors in GNSS signals to accurately
capture hydrological load displacement in GNSS vertical displacement.

6. Conclusions

To enhance the applicability of hydrological load results in small to medium-scale
regions, this study introduced the concept of the remove–restore method, assimilating
regional high-resolution hydrological data to obtain higher spatiotemporal-resolution hy-
drological load results. Subsequently, this study utilized GNSS vertical displacement from
12 CORS and hydrological load displacement spanning the time period from 2018 to 2020
to investigate the seasonal variations in vertical motion in the western Yunnan region. This
study compared and analyzed the quantitative relationship and characteristic variations
between GNSS vertical displacement and hydrological load displacement. Additionally,
the SSA method was employed to extract the annual variation signals of GNSS vertical dis-
placement and hydrological load displacement, demonstrating strong consistency between
the two. The results are as follows:

(1) The hydrological load displacement calculated in this study based on the remove–
restore method has a higher spatiotemporal resolution. This provides scientific sup-
port and important references for future research aiming to remove non-tectonic
deformations, such as hydrological loads, from GNSS vertical displacement and study
surface tectonic deformations.

(2) The seasonal motion trends of GNSS vertical displacement and hydrological load
displacement are consistent. However, the displacement values of hydrological
load are generally smaller than those of GNSS, indicating that hydrological load
displacement can explain a portion of the seasonal variations in GNSS vertical motion.
After removing the effects of atmospheric loads and non-tidal ocean loads from GNSS
signals, the average correlation coefficient between the two increased from 0.77 to 0.84,
and the average WRMS (%) increased from 29.59% to 37.17%. This suggests that in the
western Yunnan region, approximately 30% or more of the non-tectonic deformations
in GNSS vertical displacement originate from hydrological load.

(3) The average correlation coefficient between the annual variations of GNSS and hydro-
logical load reaches 0.94, indicating a strong correlation. The average WRMS (%) is
46.5%, suggesting that hydrological loads contribute to nearly 50% of the non-tectonic
annual variations of GNSS vertical displacement.

The research results can effectively reveal the finer deformation characteristics of
hydrological loads in the region and help to explore the mechanism of action between
water storage migration and surface displacement.
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