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Abstract: Regularly, large parts of the agricultural areas of the Great Hungarian Plain are inundated
due to excessive rainfall and insufficient evaporation and infiltration. Climate change is expected to
lead to increasingly extreme weather conditions, which may even increase the frequency and extent
of these inundations. Shallow “floods”, also defined as inland excess water, are phenomena that
occur due to a complex set of interrelated factors. Our research presents a workflow based on active
and passive satellite data from Sentinel-1 and -2, combined with a large auxiliary data set to detect
and predict these floods. The workflow uses convolutional neural networks to classify water bodies
based on Sentinel-1 and Sentinel-2 satellite data. The inundation data were complimented with
meteorological, soil, land use, and GIS data to form 24 features that were used to train an XGBoost
model and a deep neural network to predict future inundations, with a daily interval. The best
prediction was reached with the XGBoost model, with an overall accuracy of 86%, a Kappa value
of 0.71, and an F1 score of 0.86. The SHAP explainable AI method showed that the most important
input features were the amount of water detected in the satellite imagery during the week before the
forecast and during the period two weeks earlier, the number of water pixels in the surroundings
on the day before the forecast, and the potential evapotranspiration on the day of the forecast. The
resulting inland excess water inundation time series can be used for operational action, planning,
and prevention.

Keywords: convolutional neural network; inland excess water; machine learning; Sentinel-1;
Sentinel-2; XGBoost; water classification

1. Introduction

Since the introduction of the river regulations at the end of the 19th century in Hun-
gary, shallow floods, also described as inland excess water (IEW), became increasingly
problematic in large parts of the cultivated areas of the country. Prior to the regulations, the
rivers featured expansive floodplains, which were subject to regular inundation. Farmers
cultivated these periodically flooded regions by adjusting to the conditions. The notion
of IEW was unfamiliar to them. However, with the construction of the flood embank-
ments, the IEW generated in the protected areas could no longer flow back into the natural
watercourses, causing prolonged inundations. The term IEW was first used when the
former flood plains, mainly low-lying areas without drainage, were inundated [1]. In
winter and early spring, as a result of low temperatures, ground frost prevents infiltration
into the ground, saturated air prevents evaporation, and cultivated plants can utilize less
water; therefore, the large quantities of accumulated, usually solid, precipitation suddenly
melts as the temperature rises and causes water coverage on the surface. In spring and
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summer, high intensity or prolonged precipitation can cause water cover to appear on the
surface. From a topographical point of view, accumulated water is not able to infiltrate into
the soil in the local surface depressions. The phenomenon, which is unfavorable from a
water management perspective, was described as early as the mid-19th century, but the
concept of IEW itself was not used until years later [2]. A significant part of Hungary’s
arable land (7.3 million hectares) is agricultural land (5.3 million hectares), of which about
1.9 million hectares can be considered at potential risk of IEW inundation [3,4]. On average,
100–150 thousand hectares are inundated every 2–3 years, due to extreme hydrological
conditions. Mainly the Great Hungarian Plain, the Little Plain, and some scattered areas
(e.g., the Dráva valley and around the southern shore of Lake Balaton) are affected. The
natural/environmental factors that determine the formation of IEW can be divided into
two parts, based on their temporal variability [5]. Permanent factors like topography, soil
composition and structure, shallow geology, and abandoned riverbeds form the conditions
required for IEW formation, while the phenomenon is generated by factors that vary over
time, like meteorology, hydrology, and groundwater flow. In addition to these natural
factors, anthropogenic influences, like poor farming practices (disc and plough pan), the
state of the drainage network, land use patterns, etc., also play a significant role in the
formation and persistence of IEW. The former shows that the IEW phenomenon is a com-
plex hydrological extreme, of which the precise definition is still difficult today. There are
several definitions, which Pálfai [2] has attempted to summarize, as follows: “IEW is a
temporary but chronic phenomenon in flat areas, caused by natural hydrometeorological
events; it is not only open water cover but also the excessively wet state of the soil”.

The latest climate change projections predict that extreme weather could increase
the likelihood of high-intensity precipitation [6]. According to model simulations, the
variability and extreme nature of the precipitation distribution is increasing, which is likely
to be more pronounced in the Carpathian Basin [7]. According to the study of Bartholy
et al. [8], the total annual precipitation will not change significantly, but winter precipitation
is expected to increase by about 20%, while summer precipitation is expected to decrease
by 20%.

IEW is not specific to Hungary, but also affects other countries around the world (e.g.,
China, India, Germany, Netherlands, Poland, Romania, and Russia) [9,10]. Governments
have invested substantial financial and human resources to effectively address the damage,
through comprehensive protection and prevention measures. Initially, IEW mapping
was studied based on field surveys and then hydrological models emerged from various
technical and engineering sides (e.g., [11–13]). Such models require the collection of many
high-resolution input parameters that are often not available or are costly to acquire using
surveys. Their applicability is, therefore, restricted to limited scales, like catchment areas,
water management districts, and pilot areas.

Various studies on the vulnerability of flat areas to IEW at a national scale have been
carried out; first by Pálfai [4] and later by Pálfai et al. [14], Pásztor et al. [15], and Laborczi
et al. [16]. Recent research on IEW mapping and monitoring is often based on remote
sensing data [17–19]. Unmanned aerial vehicles, aerial surveys, and active and passive data
from satellites provide sufficient spatial and temporal resolution for these studies. Various
methods (index-based slicing, classification, traditional machine learning, and deep neural
networks) have been applied to delineate IEW. In recent years, neural networks, especially
deep neural networks (DNNs) such as the convolutional neural network (CNN) [20], have
gained increasing popularity in earth science applications [21–24]. In our previous study,
eight methods were used to detect IEW, of which CNNs proved to be the most accurate on
the Sentinel-2 high-resolution multispectral satellite images [25].

So far, the prediction of IEW has been performed using hydrological modeling on small
areas [11–13]. The prediction of the inundation using a data-driven approach has not been
attempted. In this research, a methodology is presented that uses a large remote sensing-
based data set, complemented with meteorological, soil, geomorphological, and land use
data, to predict the development of IEW several days in the future. For this purpose, a deep
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neural network (DNN) and an Extreme Gradient Boosting (XGBoost) model have been
evaluated. The DNN has been applied to determine the non-linear relationship between
dependent and independent features in many earth science fields [26–28]. Currently, one
of the most successful data-driven methods in machine learning is the XGBoost method.
This is an ensemble version of the decision tree method [29]. It has been found to provide
good results for the exploration of nonlinear relationships in many fields. Li et al. [30],
for example, used the method to predict soybean yield, based on a combination of spatial
data including satellite images, climate, meteorological, and soil data. Urban flooding
susceptibility, based on hydrometeorological and building data, and surface morphological
parameters was modeled by Wang et al. [31]. They also presented an analysis of the
input data using SHapley Additive exPlanations (SHAP) [32], an explainable Artificial
Intelligence method (xAI). xAI methods have been developed to increase the interpretability
of advanced machine learning methods, which are often considered as black boxes.

The aim of our research is to develop a spatial information model that allows the
generation of daily flood maps over large areas, using static and dynamic data and active
and passive satellite imagery, as well as the possibility to make short-term forecasts. The
proposed workflow is based on a combination of machine learning algorithms that are fully
data-driven. The methodology can help to identify water management priorities in real time
and to mitigate damage by creating a time series of water coverage maps and predicting
inundations several days ahead. The study of the inundations over a one-year period from
1 June 2020 to 31 May 2021 helps to understand the development and disappearance of the
phenomenon. A specific problem of the use of optical satellite imagery in IEW studies is
the unavailability of useful data during cloudy weather. In the present study, we sought to
address this problem by complementing Sentinel-2 multispectral images with the Radar
Vegetation Index (RVI) and Gray Level Co-Occurrence Matrix (GLCM) textures, derived
from the Sentinel-1 radar images [33–35].

2. Materials and Methods
2.1. Study Area

The study area of 1600 km2 is located in the center of the Great Hungarian Plain
(Figure 1). Its surface is uniformly flat, with distinct microrelief. The climate is moderately
warm and dry, with an annual average precipitation ranging between 450 and 550 mm.
The depressions of abandoned riverbeds and oxbows in the landscape are filled with
muddy–silty sediments and loess mud. Due to poor water management in the soil, as well
as the meteorological conditions, the area is affected not only by IEW, but also by frequent
droughts [36].

2.2. Data

Our analysis was based on the Sentinel-1 radar and Sentinel-2 multispectral images,
combined with continuous data for the period 1 January 2020–31 May 2021. The delineation
of the water surfaces was achieved by applying two different models for the two types
of satellite imagery. The continuous data consisted of meteorological, land cover, soil,
elevation, and distance maps. The prediction of the inundations is based on the derived
water surfaces, as well as dynamic and static data.

Sentinel-1 is a constellation of two satellites orbiting in a sun-synchronous orbit. The
satellites are equipped with identical radar instruments that acquire images of the Earth’s
surface, with a swath width of 250 km. Since the decommissioning of Sentinel-1B in
December 2021, only Sentinel-1A data have been available. The satellite collects images
regardless of the time of day, weather, and atmospheric conditions, with a return time
of about three days for Hungary. Its imaging instrument is a C-band synthetic aperture
radar with a central frequency of 5.405 GHz. The instrument is capable of transmitting and
receiving radar signals in vertical–vertical (VV—vertical–vertical) and vertical–horizontal
(VH—vertical–horizontal) polarization modes. For this study, we used Sentinel-1 Ground
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Range Detected (GRD) data in interferometric Wide-Swath (IW) mode with a spatial
resolution of 5 × 20 m.
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Figure 1. Study area with meteorological stations and sample points.

Sentinel-2A and Sentinel-2B are multispectral imaging satellites, providing optical
data, with a revisit time of 3–4 days for Hungary. The images consist of 13 spectral bands
covering the spectrum from visible to near infrared and shortwave infrared. The data have
spatial resolutions of 10, 20, and 60 m.

The National Meteorological Service’s (OMSZ) meteorological data repository [37]
provides daily meteorological data. Per meteorological station, the station ID, geographic
coordinates, precipitation (mm), global radiation (J/m2), relative humidity (%), average
minimum and maximum temperature (◦C), and average wind speed (m/s) at 10 m altitude
were extracted. From these data, the potential evapotranspiration was calculated. In
our model, precipitation is regarded as a source for the inundations, while potential
evapotranspiration and wind speed are regarded as factors that reduce them.

The Ecosystem Map of Hungary, with a spatial resolution of 20 × 20 m (NÖSZTÉP, [38]),
was used to determine the land use/cover. The map from 2020 shows the actual distribu-
tion, extent, and frequency of the ecosystems at a national level. It was used to determine
which land use categories are vulnerable to IEW.

The multilayered European Soil Hydraulic Database (EU Soil Grids) was derived
with European pedotransfer functions [39], based on the soil information of 250 m grids.
It incorporates soil taxonomical, physical, and chemical data at seven soil depths. The
following soil properties were used to calculate the soil hydraulic properties: clay, silt, and
sand content (mass %); organic carbon content (g kg−1); bulk density (kg m−3); pH in water;
and depth to bedrock (cm) at 0, 5, 15, 30, 60, 100, and 200 cm depth. Saturated water content
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(THS), water content at field capacity and wilting point (FC), and saturated hydraulic
conductivity (KS) were used in the prediction model to relate soil water management
parameters to IEW.

Slope, profile, and plan curvature were derived from the national digital elevation
model [40], with a spatial resolution of five meters. Profile curvature is the curvature inter-
secting the plane defined by the Z axis and the direction of the maximum gradient. Positive
values describe the convex profile curvature, while negative values describe the concave
profile curvature. The plan curvature describes the horizontal curvature intersecting the
XY plane. Slope, profile, and plane curvature are geomorphological characteristics that
influence where inundations may occur.

The input data set includes maps based on distances to the closest road, canal, or
settlement. The base data for these maps was collected from OpenStreetMap. Distances to
anthropogenic features may impact on the frequency of occurrence of IEW. The produced
maps have a spatial resolution of 10 × 10 m and the distances were expressed in meters.

2.3. Methodology

The training of the inundation prediction model requires a large data set, consisting of
satellite-based inundation maps, as well as dynamic and static data. Each data set went
through a complex set of preprocessing steps to be able to use it for training and, later, for
prediction (Figure 2).

2.3.1. Data Preparation

The input data for the models consisted of static and dynamic data. The satellite
data-based water maps and the meteorological data form the dynamic maps, while the
static data consists of the soil and distance maps.

Sentinel-1 data preparation

The Sentinel-1 images were collected and processed using Google Earth Engine (GEE).
GEE is a cloud-based platform for scientific analysis and the visualization of spatial data
sets [41]. It stores satellite imagery in a public data repository and provides the ability
to analyze large data sets. During the study period, there were a total of 241 image
acquisitions that covered our study area. From these images, those that did not cover
at least 40% of the area were filtered out, resulting in a total of 182 processed images.
The images were subjected to a preprocessing process where thermal noise removal and
radiometric calibration, as well as topographic correction, were applied to create 10 × 10 m
resolution sigma0 backscatter images [42].

Radar Vegetation Indexes (RVIs) are used for monitoring vegetation growth levels
in time series data analysis and are used as an alternative to the Normalized Difference
Vegetation Index (NDVI) method applied in optical image processing studies. An RVI
is a normalized index, with limits ideally varying between zero and one. For smooth,
unvegetated surfaces, the value is close to zero, increasing in proportion to the increase
in vegetation density. In our approach, low RVI values are expected to represent areas
without vegetation.

To calculate the RVI, the following formula was used [43,44]:

RVI =
4VH

VV + VH
(1)

where VH is the vertical–horizontal band and VV is the vertical–vertical band of Sentinel-1.
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The Gray Level Co-occurrence Matrix (GLCM) method was first introduced by Har-
alick et al. [33]. It is a mathematical method used in digital image processing to analyze
image texture [35,45]. It shows the frequency of occurrence of pairs of pixel values at a
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certain distance and angle in a grayscale image. The covariance matrix of grayscale levels
represents a more regular spatial arrangement and texture of the same surfaces (in our
case, water surfaces). The Google Earth Engine’s glcmTexture function was applied to
calculate the 14 GLCM textures proposed by Haralick et al. [33], as well as four additional
textures proposed by Conners et al. [34]. The 18 texture maps were analyzed and it was
concluded that eight textures provided the following water-related characteristics: contrast,
overall average, difference variance, difference, inertia, cluster shadow, cluster salience,
and inverse difference moment. Speckle noise in Sentinel-1 images often interfered with the
extraction of GLCM textures and frequently resulted in the misclassification of water bodies;
therefore, a RefineLee single image speckle filter was applied during the preprocessing of
the radar images [46]. Data downloading, preprocessing, and RVI and GLCM calculation
happened in a Jupiter Notebook using the Google Earth Engine, Python API, and ArcPy.
The raw VV and VH bands, the RVI, and 2 × 8 GLCM textures were combined to 19-band
composite images.

Sentinel-2 data preparation

The Sentinel-2A and Sentinel-2B satellite images were processed in an ArcGIS Pro
ArcPy environment. For the period under study, 140 satellite images were available in
the ESA Copernicus database. Images with a cloud cover larger than 80% were excluded,
resulting in 63 remaining multispectral images. Ten bands from thirteen spectral bands of
the raw imagery were processed. The red edge bands 5, 6, 7, and 8A, as well as shortwave
infrared band 11, with a spatial resolution of 20 m, were resampled to reach a uniform
resolution of 10 × 10 m for all bands. The masking of atmospheric disturbances (clouds and
cloud shadows) was performed based on the Scene Classification Layer (SCL) provided
by ESA. From the 11 SLC classes, the areas delimited by the classes identified as clouds
and cloud shadows were removed (classes 3, 8, 9, and 10). In the study by Kajári et al. [25],
a detailed description on the preprocessing of the Sentinel-1 data is provided. After
preprocessing, all images were cropped to the study area and stored as 10-band composites.

Meteorological data

Minimum, maximum, and mean temperature; window speed; relative humidity;
global radiation; elevation; and latitude information at each measurement station were
downloaded from the OMSZ database. Nine meteorological stations were identified within
a 40 km buffer around our research area (Figure 1). The number of stations beyond the
study area needed to be extended, because only three stations fall within the original study
area, which proved insufficient for the generation of continuous maps of meteorological
data. Furthermore, the extension accommodated the continuous nature of interpolation
calculations. Potential evapotranspiration (PET) values were calculated using the Pen-
man method implemented in the pyet Python package [47]. The Penman method is a
combination method, in which the total evaporation rate is calculated by weighing the
evaporation rate due to net radiation and the evaporation rate due to mass transfer [48].
The meteorological data from the nine stations were interpolated using the Inverse Distance
Weighted method. Mean temperature, precipitation, PET, and wind speed maps were
generated with a spatial resolution of 10 × 10 m.

Static data

The following three anthropogenic static factors were included in the model: the
influence of (1) settlements, (2) roads, and (3) canals on the development of IEW. These
layers were extracted from OpenStreetMap. Euclidean distance maps were created from
each layer, with a spatial resolution of 10 × 10 m. Three data sets were selected from the
European Soil Hydraulic database to incorporate the influence of the soil in the development
of IEW, as follows: (1) saturated water content (THS), (2) water content at field capacity and
wilting point (FC), and (3) saturated hydraulic conductivity (KS) at seven depths (0, 5, 15,
30, 60, 100, and 200 cm). The data from the top 30 cm and from 30 to 60 cm were averaged,
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resulting in two maps for each of the three data sets. Each map had a spatial resolution of
10 × 10 m.

2.3.2. Water Classification Using Convolutional Neural Network Satellite Data

Sentinel-1 and -2 satellite data were not available for classification on every examined
day during the study period. Due to the orbit of the Sentinel-1 satellites, data were available
every 2–3 days, resulting in a total of 241 images, of which 60 were discarded because
they did not cover at least 40% of the study area. Usable Sentinel-2 data were available
for 140 days. In total, 76 images were excluded, due to too-high cloud coverage (>80%),
but many of the remaining Sentinel-2 images were also partly cloudy. On 31 days, both
Sentinel-1 and -2 data were available.

The Sentinel-1 classification algorithm is described in detail by Kajári et al. [49]. The
algorithm uses a convolutional neural network (CNN) as a classification model. The input
features consisted of the original VV and VH bands, radar vegetation index, and GLCM
texture layers. The F1 score of the model was 0.84. The Sentinel-2 images were also
classified using a CNN model. This model used 10 input features, consisting of visual, near
infrared, and shortwave infrared bands. Its overall accuracy was 0.98 and its Kappa score
was 0.61. More details can be found in Kajári et al. [50]. Each available satellite image was
classified to a binary water map. Its values were 1 for water, 0 for no water, and No Data if
the CNN model could not determine if there was water or not.

2.3.3. Water Time Series and Generation of IEW Inundation History

An iterative method was developed to create a time series of water coverage maps
based on the satellite-derived binary water cover maps that were described in Section 2.3.2.
First, all available maps were stacked according to their date. If a classified water map was
available from both Sentinel-1 and -2 for the same date, the intersection between the maps
was taken. This resulted in a slight underestimation of the total amount of water in the
time series, but prevented the incorporation of cloud shadow pixels in Sentinel-2 images
that were misclassified as water.

Figure 3 presents our methodology to create a continuous time series from the Sentinel-
1- and -2-based water maps. If, on a certain date, no classified water map was available,
an empty map was created at its place in the stack. During the next step, the algorithm
evaluated the first map in the stack for pixels without data. If a pixel without data was
found, the data of one day before (at t−1) and one day after (at t+1) were considered. If Xt−1
and Xt+1 were available, then Xt0 = [(Xt+1 + Xt−1) /2], where X is the value 0 (“no water”)
or 1 (“water”) of the pixel, and Xt0 were rounded up to the closest integer. This means that,
if there was water in the pixel before or after the date under consideration, the pixel was
designated as “water”. If Xt−1 or Xt+1 were missing, Xt−2 and Xt+2 were considered. If data
were still unavailable, another day earlier and/or later was considered, up until Xt−4 and
/or Xt+4. If there was still no data available, the earlier and later water information were
regarded as unreliable and the pixel was assigned as “no water”. After all no data pixels in
the map were filled with either 0 or 1, the next date in the stack was considered, and so
on, until all no data pixels in each daily water cover map were filled. Finally, a frequency
map was created based on the complete time series. For each pixel, it was determined how
many times water occurred and a relative frequency was calculated.

2.3.4. Training of Prediction Models

Based on the binary water classification of the Sentinel-2 image of 23 February 2021,
250 sample points were randomly selected, of which 50% were designated as a water pixel
and 50% as a no water pixel. For each sample point and each date, features were extracted
from the separate data sets resulting in 91,250 samples. All samples that had missing data
for one or more features were deleted. Areas that were always classified as water or always
dry, according to the frequency map, during the 365 days of the test period were excluded
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from the data set. The final number of samples was 50,315. The features and statistics of
the samples are shown in Table 1.
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All samples were split into the following two data sets: one with water occurrences
and one without. From each set, 3000 samples were randomly extracted. The two sets
of 3000 samples were then randomly split into 70% (4200) training and 30% (1800) test
samples. Finally, all training water and no water samples, as well as all test water and
no water samples, were combined. The training and test set were split into dependent
and independent features. The NÖSZTÉP land use feature is categorical data and was
converted into binary features using one-hot-encoding, resulting in 56 new features, one for
each land use class. All features were then scaled using the standard scaler of sklearn [51].

Two models were trained to predict the future occurrence of water in a pixel. The
first model was a deep neural network (DNN), with four densely connected layers with
32, 16, 12, and 1 neurons. Other architectures were tested, but deeper models resulted in
overfitting. The first three layers had an ReLU activation function, while the last layer
was activated using the Sigmoid function. The model was trained with the Adam training
algorithm. A binary cross-entropy loss function was applied and the accuracy metric was
used to evaluate the training results. The DNN classifier was implemented using the Keras
library [52].
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Table 1. Water (light blue), meteorological (purple), and static (light orange) input features.

Feature Name Description Minimum Value Maximum Value Mean Value

1 WATER

Number of water pixels in
satellite-derived water maps within a

distance of 50 m (or 9 × 9 kernel) from
center pixel at t−1

0.00 69 * 16.62

2 IEWSUMweek1
Number of days with water detected at a

pixel in satellite-derived water maps
between t−1 and t−7

0.00 7 1.92

3 IEWSUMweek2
Number of days with water detected at a

pixel in satellite-derived water maps
between t−8 and t−15

0.00 7 1.90

4 Precipitation Daily precipitation in mm on t0 0.00 95.46 1.80

5 PET Daily potential evapotranspiration in
mm on t0

0.00 8.16 2.58

6 Wind Average daily wind speed in meters per
second t0

0.00 7.30 2.23

7 PreSUMweek1 Sum of precipitation between t0 and t−6 0.00 151.64 12.90

8 PreSUMweek2 Sum of precipitation between t−7 and
t−14

0.00 151.64 12.90

9 PETSUMweek1 Sum of evapotranspiration between t0
and t−6

0.59 47.45 18.05

10 PETSUMweek2 Sum of evapotranspiration between t−7
and t−14

0.59 47.45 18.05

11 WindAVGweek1 Average wind speed between t0 and t−6 0.11 4.89 2.22

12 WindAVGweek2 Average wind speed between t−7 and
t−14

0.11 4.89 2.22

13 Road_dist Distance from pixel to nearest road class
pixel in meters 0.00 1564.16 281.50

14 City_dist Distance from pixel to nearest urban class
pixel in meters 0.00 8489.08 3344.08

15 Channel_dist Distance from pixel to nearest channel
class pixel in meters 0.00 1697.29 285.67

16 Profile Profile curvature in meters −0.04 0.21 0.00
17 Plane Plane curvature in meters −0.25 0.13 0.00

Slope Slope in degrees, this feature was
removed ** 0.00 0.11 5.22

18 FC_0_30 Average field capacity between 0 and 30
cm deep (in cm3 cm−3) 32.50 40.25 36.26

19 FC_30_60 Average field capacity between 30 and 60
cm deep (in cm3 cm−3) 30.50 39.50 34.89

20 KS_0_30 Average saturated hydraulic conductivity
between 0 and 30 cm deep (in cm day−1) 1361.50 4964.75 2895.95

21 KS_30_60
Average saturated hydraulic conductivity

between 30 and 60 cm deep
(in cm day−1)

468.00 5015.50 3774.94

22 THS_0_30 Average saturated water content between
0 and 30 cm deep (in cm3 cm−3) 47.75 51.75 49.39

23 THS_30_60 Average saturated water content between
30 and 60 cm deep (in cm3 cm−3) 45.50 49.50 47.27

24 LU Land use classes
Three most predominant classes: 2100—arable land,

3400—closed grassland on compacted soil, and
6100—open water

Notes: The statistics are based on the samples in the training data set. * The maximum number of pixels within
the 9 × 9 pixel kernel is 69 instead of 81, because the permanent water class, according to the frequency map, was
omitted from the training data. ** The slope feature was removed because only 17% of the samples had a slope of
more than 0 degrees and only 3% had a slope larger than 1 degree.
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The second algorithm was the XGBoost (Extreme Gradient Boosting) algorithm, devel-
oped by Chen and Guestrin [29]. It is a sequential machine learning algorithm, published as
an open-source library that combines several weak learners, to provide more robust learn-
ing [31]. This tree-based ensemble method is faster than most other algorithms, reduces
overfitting, and improves computational efficiency. It is one of the most successful machine
learning libraries [29]. The optimal hyper parameters for the models such as learning rate
and decay, batch size, and number of epochs were selected using the Keras Grid Search
with 3-fold cross-validation [52].

For the training of the models, at first, we used the scaled 24 input parameters and
56 one-hot-encoded land use classes, as presented in Table 1. The dependent variable was
“Occurrence of water”, which is a binary feature. The training was evaluated with the
following metrics:

Overall Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Kappa =
2 ∗ (TP ∗ TN − FN ∗ FP)

(TP + FP) ∗ (FP + TN) + (TP + FN) ∗ (FN + TN)
(3)

Precision =
TP

TP + FP
(4)

Sensitivity =
TP

TP + FN
(5)

F1 score =
2TP

2TP + FP + FN
(6)

where TP is true positive, TN is true negative, FP is false positive, and FN is false negative.
To understand the role of the input features during training, we used the SHAP

xAI method [32]. The algorithm is designed to evaluate the contribution of each input
feature to the prediction. The variance inflation factor (VIF) was calculated to identify
multicollinearity among the independent variables [53]. Exclusion of multicollinearity
between independent values increased the interpretability of the XGBoost model using
SHAP [31].

2.4. Prediction and Forecast with the Trained Model

Prediction on new data was performed using the XGBoost model, because it had a
slightly better accuracy and a much better performance than the DNN. Based on the results
of the xAI analysis, it was decided to remove the features with very low importance (Table 1,
features: 9; 18; 19; 21; 22; 23; and 24). For each of the remaining 17 input features, continuous
raster maps were generated (Table 2). The static feature maps do not change in time and
need to be generated only once. The surrounding water map was dynamically generated
for t−1, the day before the day of the prediction. The water history maps were stored as
the water time series (see Section 2.3.3). For the forecast of t0, water maps from t−1 to t−7
(“one week ago”) and t−8 to t−15 (“two weeks ago”) were used. Similarly, the precipitation,
evapotranspiration, and wind maps were generated for one week and two weeks before
t0. All data were stacked to each other and split into batches of 250 × 250 pixels, to reduce
the computational load. The separate batches were scaled using the same scaler as the
training data and were fed to the model. The prediction results were merged to the original
geometry of the input files, to obtain the final prediction result.
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Table 2. Input features for prediction on tn. The x indicates which data sets are used.

Input Data (# of Features) t−8. . .−15 t−1. . .−7 t−1 tn

Static features (6) x

Prediction
Surrounding water (1) x

Water history (2) x x

Meteorological data (8) x x

Forecasting follows the same procedure as prediction, but is performed iteratively. To
forecast the water cover on day tn, we predict the water on consecutive days t0, t+1, t+2, etc.,
until tn, while each time using the predictions of the preceding day(s).

3. Results

The presented algorithms provide three types of results. First, the frequency of
inundations shows how vulnerable the area is to IEW. Second, the assessment of the
training of the machine learning models shows their applicability to map water, and, finally,
the prediction algorithm gives the water cover for several days in the future.

3.1. IEW Inundation Time Series

For each pixel in the study area, the frequency of inundation can be evaluated
(Figure 4). The daily water maps show where and for how long the area was covered
by water. Pixels with water coverage of >0.4 were designated as “Permanent water”,
pixels with a frequency between 0.23 and 0.40 were classified as “high”, pixels with a
frequency between 0.18 and 0.23 were classified as “middle”, and pixels less than 0.13 were
designated as “low”. The permanent water surfaces are a good reflection of lakes, ponds,
rivers, and canals with wider cross-sections in the study area. Areas of high inundation
include poorly managed runoff areas such as former riverbeds. Rice paddies (square and
rectangular shapes) also fall into this category, as they are covered by water for most of the
year. Medium and low frequency areas are negligible. They usually mark the shallowest
water sources or the edges of larger patches, which dry out or become re-covered with
water over time.
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Figure 5 shows two examples of areas with a high frequency of IEW inundation. The
shapes of the flooded rice fields are clearly visible in the upper map (A). There may be
small patches classified as “Permanent water”, because these areas were under continuous
water cover for most of the year. Another example is the accumulation of water in an old,
buried, undrained riverbed (B). The deeper areas have a high frequency of water coverage,
while the shallower areas are IEW areas with middle-to-low frequency.
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Figure 5. IEW inundation frequency for flooded rice fields (A) and an old riverbed (B).

The relationship between daily water maps and precipitation during the studied
period of one year is illustrated on a selected parcel in Figure 6. It is clearly visible that no
inundations (blue line) occur during the high precipitation (orange line) in the summer
months, due to high temperatures, high potential evapotranspiration, and the high water
absorption capacity of the crops. In autumn and winter though, rainfall is lower, but plant
activity and temperatures are also lower, so evapotranspiration is also lower. When runoff,
evapotranspiration, and infiltration are low enough, water remains on the surface (from 1
January to early April).
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3.2. Training of Prediction Model

The DNN training was optimized with a learning rate of 0.001 and a decay of 0.0001.
The best training result was reached with a batch size of 10 and 100 epochs. The overall
accuracy was 0.84, Cohen’s Kappa was 0.68, and F1 was 0.84 (Table 3). XGBoost ran with a
learning rate of 0.02, 350 estimators, a maximum depth of six, a minimum child weight of
three, and a gamma value of zero. It gave a slightly better overall accuracy, of 0.852, than
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the DNN. The Kappa and F1 scores were also better, with values of 0.703 and 0.854. The
XGBoost model runs about five times faster (18 s vs. 102 s) than the deep learning model.

Table 3. Accuracy analysis of the DNN and XGBoost training, based on 1800 independent
test samples.

Metric DNN XGBoost

Overall Accuracy 0.84 0.85
Cohen’s Kappa 0.68 0.70

Sensitivity 0.86 0.87
Precision 0.83 0.84
F1 score 0.84 0.85

The calculation of the multicollinearity of the input features using VIF resulted in the
exclusion of the PETSUMtmin1 and FC_0_30 variables, which had a VIF higher than 10 [54].
All other variables had a VIF value lower than four. Moreover, the SHAP analysis resulted
in the exclusion of input features that had minimal impact on the training (Figure 7). The
importance values show that, for both models, the surrounding water coverage (WATER)
and the IEW inundation occurrences of the last week (IEWSUMweek1) and of two weeks
(IEWSUMweek2) earlier are of decisive importance. The final models were trained with
17 input features.
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3.3. Results of the Inundation Prediction

The XGBoost model outperformed the DNN in terms of both accuracy and perfor-
mance. Consequently, it was employed to predict water coverage during a 9-day inundation
period in the study area in 2021 (15–23 February 2021) (Figure 8). The prediction for the 15th
of February was based on the water time series data that were derived from the satellite
data. The consecutive days used the model predictions from the preceding days. A valida-
tion analysis was conducted between the predictions and used the separately calculated
CNN-based water coverage maps as reference. The overall accuracy (15 February 2021:
0.97; 23 February 2021: 0.98), Cohen’s Kappa (15 February 2021: 0.55; 23 February 2021:
0.69), and F1 scores (15 February 2021: 0.56; 23 February 2021: 0.71) were calculated for the
statistical evaluation of the water classifications. The confusion matrix prepared for the
whole 1600 km2 study area is presented in Table 4.
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Figure 8. Reference and prediction water map differences in a subset of the study area.

Figure 8 shows the difference between the reference and predicted water coverage in
a selected area for 15 and 23 February 2021. The figure shows the periodic accumulation
of water in the runoff areas, which collected in the former riverbeds. The water maps
retrieved from satellite imagery were used to validate the prediction maps. They were not
used in the calculation of the predictions. The error map shows the difference between the
maps generated using the two models. This is a useful tool for understanding how the
prediction models behave, how well they perform, and where they might make mistakes.
The reference data are the water maps, against which the prediction maps were compared.
The true positive (green) pixels indicate where the prediction model correctly predicts
the positive (water) class. False positive (orange) results are when the prediction model
incorrectly predicted the positive (water) class. These mistakes are clearly visible in the map
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from 15 February 2021. They appear at the edges of the larger water patches, indicating
shallow intermittent drying water surfaces and saturated soil. It is likely that the model is
sensitive to moistened soils. False negative (red) values are cases where the model did not
predict water, although it should have. These are mainly small or narrow water patches. It
is possible that these patches were not part of the training set. The 23 February 2021 error
map shows a better forecast. On this date, the overestimation at the edges of the larger
inundations did not happen, but many small or narrow undetected patches remained.
Overall, the two models identified IEW patches well, with F1 scores of 0.56 and 0.71.

Table 4. Accuracy assessment based on water coverage and prediction maps. Background colors
indicate the type of pixels: green: true positive, orange: false positive and red: false negative.

15/02/2021
Reference

Pixel Water No Water Total Overall Accuracy 0.97

Prediction
Water 265,531 257,641 523,172 Precision 0.51

No Water 154,736 15,322,092 15,476,828 Kappa 0.55
Total 420,267 15,579,733 16,000,000 F1 score 0.56

23/02/2021
Reference

Pixel Water No Water Total Overall Accuracy 0.98

Prediction
Water 466,232 1081 467,313 Precision 1.00

No Water 387,091 15,145,596 15,532,687 Kappa 0.69
Total 853,323 15,146,677 16,000,000 F1 score 0.71

4. Discussion

The DNN and XGBoost models with the same 24 input parameters gave almost
identical results, but the training and prediction with XGBoost are much faster. Therefore,
this model was used for prediction.

To the best of our knowledge, no study has yet been carried out to forecast IEW
using data-driven, machine learning-based methods. The XGBoost model can predict water
surfaces for one or two weeks ahead, which is similar to the soybean crop forecasting model
of Li et al. [30] and the daily precipitation forecasting system developed by Dong et al. [54].
XGBoost has also been successfully used for flash flood forecasting [55], hazard mapping
with similar input data (precipitation, topography, anthropogenic factors, and flash flood
events). Another study by Abedi et al. [56] similarly investigated flash flood susceptibility
within a watershed, where input parameters like land cover (LULC), hydrological soil
groups, lithology, slope, and profile curvature were used in XGBoost, Random Forest, and
boosted regression tree models, where the models investigated performed similarly well in
flood susceptibility mapping. Our approach differs from earlier studies, because it predicts
inundations that are very shallow and discontinuous in nature. The methodology is also
new because it uses data from two weeks ahead of the prediction date.

The XGBoost model can predict a few days ahead but does not include knowledge of
past IEW behavior. On the contrary, long short-term memory (LSTM) models do incorporate
this knowledge [57]. The LSTM, which is widely recognized as one of the best deep learning
algorithms for forecasting problems, has the ability to identify trends and provide better
forecasts and would, therefore, be a suitable candidate for future research on the prediction
of IEW inundations.

As shown in our earlier research [25], CNNs provide the best results for producing
inundation maps. Another advantage of the CNN model compared to other methods
is that it is robust and can be reused on data sets of other dates, which is required for
time series studies. With other classification algorithms, such as index-based slicing, a
different threshold must be set for each date, due to differences in spectral reflectance. In
traditional machine learning (e.g., Support Vector Machine, Random Forest, and Maximum
Likelihood), classes must be constructed repeatedly [58].
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During the SHAP analysis, the relative importance of the first three factors in the
model was found to be highest for the “surrounding water map” and the “one and two
weeks before water maps”. Following these were evapotranspiration and anthropogenic
factors (roads, cities, and canals). A sensitivity analysis could provide additional insight
into the role of the input features, but the current research did not cover this aspect. This
might be a direction for future development.

Despite the model performing well, there are still limiting factors related to the input
data, preprocessing, and modeling. For the input data, the meteorological stations could
be more densely distributed, leading to more accurate interpolated maps. The resolution
of land cover, elevation, and soil maps could also be better. The meteorological data were
interpolated with the relatively simple IDW algorithm. More sophisticated interpolation
algorithms may provide better results, especially for larger areas. The water classification
maps based on the CNN models are the basis of the predictions. The accuracy of these
water maps has a high F1 score [50], but strongly depends on the available Sentinel-1
and/or Sentinel-2 data. Missing satellite data results in limitations in the accuracy of the
water forecast. More satellite data reduces the need for temporal interpolation.

Since satellite images were not available for every day, due to cloud cover and limita-
tions of the return time of the platform, missing data had to be corrected using the temporal
interpolation algorithm. The stack of daily water maps provided an intermediate of this
research—the frequency map. It was possible to investigate where temporarily inundated
inland areas are located next to permanent water surfaces. The IEW frequency map can
also be used to determine the area’s vulnerability, like the IEW hazard maps published in
earlier research [4,14–16]. The advantage of our method compared to the common static
vulnerability maps is that it can update the IEW frequency map dynamically when new
data becomes available.

Daily predictions enable water resource managers to adjust water allocation schedules
in alignment with potential IEW events, facilitating the removal of IEW from agricultural
fields while preventing over-drainage. These forecasts support the implementation of
strategic measures to manage and divert surplus water, thus safeguarding agricultural
lands, irrigation infrastructure, and other water management systems. IEW events can
occur during the summer season, necessitating daily forecasts to optimize irrigation sched-
ules and maintain adequate soil moisture levels, without causing oversaturation in affected
areas. Predictions are integral for the precise application of fertilizers and pesticides in
agricultural production, as they can mitigate the risk of agrochemical runoff into water
sources during IEW events. Daily forecasts enhance coordination among water resource
authorities, farmers, and other relevant stakeholders, promoting a unified approach to IEW
prevention and management. Proactive agricultural water management based on daily
predictions can lead to cost savings, by reducing the expenses associated with emergency
interventions, damage compensation, and losses in agricultural productivity.

Optical satellite imagery inherently suffers from disturbances due to clouds and cloud
shadows. This problem is reduced in four ways in the proposed workflow. First, only
images that had less than 80% cloud cover were considered in the analysis. Second, based
on Sentinel-2’s SCL layer, clouds and cloud shadows were excluded. Third, Sentinel-1 active
radar data, that is more or less weather independent was incorporated in the algorithms.
Fourth, the excluded cloud and cloud shadow pixels were replaced by pixels with water/no
water information from a maximum of 4 days before or ahead of the day with missing data.
During the analysis, it became clear that the SCL layer does not always provide good cloud
or cloud shadow masks, therefore other algorithms like F-mask will be considered to refine
our model in the future.

The presented methodology is suitable for the short-term forecasting of IEW inunda-
tions and, thus, to mitigate economic damage. The inclusion of other factors like shallow
geology, groundwater regime, land use changes, actual agricultural practices, irrigation,
drainage system, amelioration, etc., may improve the forecasting. The incorporation of
water maps based on complementing satellite data with higher temporal or spatial resolu-
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tion (e.g., Landsat or PlanetScope) can reduce the need for interpolation of missing data or
provide a higher spatial resolution, which improves the training data set for the forecast.

The methodology was implemented and tested on a study area on the Great Hungarian
Plain but can be applied at other locations with similar geographic characteristics. The
models are implemented using open-source libraries and the Sentinel satellite data are
freely available for large parts of the world. The other data sets on land cover, meteorology,
soil, elevation, and anthropogenic factors (distance from built environment, roads, cities,
and canals) are available for most places in the world.

In our current research, we investigated a period of one year with moderate IEW. A
longer time series based on Sentinel or other satellite data sets from drier and wetter years
may make the prediction model more robust.

5. Conclusions

The aim of this study was to develop a methodology for the detection and prediction
of IEW inundations. The phenomenon was investigated for one year (1 June 2020–31 May
2021) in a 1600 km2 study area. Prediction models were constructed using water maps
from active and passive imagery from Sentinel satellites, with static and dynamic natural
factors as input data. The most accurate results were obtained with an XGBoost model.
The short-term predictions provide an opportunity for IEW prevention, damage mitigation,
and, indirectly, the sustainable use of water in agriculture (i.e., supplemental irrigation and
water retention), as well as water management (i.e., water storage, groundwater recharge,
and wetland restoration). The Carpathian Basin region is susceptible to IEW due to its
complex topography and climatic conditions. Enhanced IEW prediction in the region can
yield notable economic and social outcomes. Economically, precise IEW forecasting can
alleviate the adverse financial impacts of IEW inundations, by enabling the implementation
of timely preventive measures. This diminishes damage to agricultural fields, infrastructure,
and real estate. Accurate prediction can result in reduced insurance and damage mitigation
expenses, as risks can be lowered according to the region’s specific attributes, thereby
minimizing potential harm. Consequently, predictive insights allow businesses to better
anticipate IEW, enabling punctual agricultural operations and operational continuity, which,
in turn, minimizes economic losses. A decrease in the risk of unexpected damage in
agricultural areas, due to predictions, can enhance the region’s appeal to investors, by
ensuring production stability. From a social standpoint, it is essential to advocate for
the interpretation of IEW predictions within communities through educational forums
and training sessions. This fosters agricultural communities equipped with knowledge
that enhances their resilience to the adverse effects of IEW and facilitates the adoption of
coordinated strategies. Within a well-informed and prepared agricultural environment,
infrastructure enhancements such as upgrading drainage systems become feasible, thereby
providing opportunities for the adoption of more sophisticated agricultural technologies,
compared to prior capabilities. In the future, the presented methodology can be extended
to a regional or national level.
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