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Abstract: Land optimization simulation and ecosystem service value (ESV) estimation can better serve
land managers in decision-making. However, land survey data are seldom used in existing studies,
and land optimization constraints fail to fully consider land planning control, and the optimization at
the provincial scale is not fine enough, which leads to a disconnection between academic research
and land management. We coupled ESV, gray multi-objective optimization (GMOP), and patch-
generating land use simulation (PLUS) models based on authoritative data on land management to
project land use and ESV change under natural development (ND), rapid economic development
(RED), ecological land protection (ELP), and sustainable development (SD) scenarios in 2030. The
results show that construction land expanded dramatically (by 97.96% from 2000 to 2020), which
encroached on grassland and cropland. This trend will continue in the BAU scenario. Construction
land, woodland, and cropland are the main types of land used for expansion, while grassland and
unused land, which lack strict use control, are the main land outflow categories. From 2000 to
2030, the total amount of ESV increases steadily and slightly. The spatial distribution of ESV is
significantly aggregated and the agglomeration is increasing. The policy direction and land planning
are important reasons for land use changes. The land use scenarios we set up can play an important
role in preventing the uncontrolled expansion of construction land, mitigating the phenomenon of
ecological construction, i.e., “governance while destruction”, and promoting food security. This study
provides a new approach for provincial large-scale land optimization and ESV estimation based on
land survey data and provides technical support for achieving sustainable land development.

Keywords: ecosystem service value; GMOP-PLUS coupling model; multi-scenario simulation; fine-scale
land use optimization; land survey

1. Introduction

Ecosystem services are all the benefits that humans obtain from ecosystems [1], in-
cluding food production, water conservation, climate regulation, biodiversity conservation,
and other services [2,3]. Ecosystem services become a bridge between natural ecosystem
functioning and human well-being and one of the most important ways for humans to
perceive and evaluate the state of ecological security [4]. However, existing socio-economic
systems and government performance assessments do not adequately value ecosystem
assets [5,6], and ecosystem services are viewed as abundant free public services, leading
to the over-consumption of ecological services, which has a serious impact on human
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well-being [7–9]. Therefore, understanding and valuing ecosystem service value (ESV)
can facilitate policymakers to be able to fully consider ecosystem services when balancing
competing land uses and making ecologically sustainable development decisions [10–12].
The estimation methods for ESV can be grouped into two types: the primary data-based ap-
proach and the equivalent factor method for estimating land use value per unit area [13,14].
When estimating ESV on the basis of the primary data approach, it is difficult to assess and
standardize the value of each type of ecosystem service using a unified approach due to
the difficulty of ecological process model construction, multiple model input parameters,
and complex simulation processes [15,16]. Therefore, this approach is usually applied to
small spatial scales or single ecosystems [17,18]. This paper uses a modified equivalence
factor (see Section 3.2 for details) to calculate ESV, which can evaluate the spatiotemporal
changes of large-scale and diverse ecosystem services [15,19].

Land use optimization includes quantity optimization and spatial optimization. Quan-
titative optimization models mainly include the gray model (GM), the system dynamics
(SD) model [14], gray multi-objective optimization (GMOP) [20], Markov [21], etc. The GM
model considers a single factor, and the long-term prediction results are unreliable. The
selection of factors and the description of the long-range, comprehensive, and trend nature
of SD model construction is subjective and difficult to accurately quantify [22]. The Markov
modeling process requires land use data to be stable and is not applicable to areas that
are subject to complex factors over long periods of time [23,24]. GMOP has been widely
used because it can fully consider the uncertainty of future land use and utilize multiple
constraints to solve the objective problem [19,25,26]. The main spatial optimization models
are the conversion of land use and its effects at small region extent (CLUE-S) model [19,27],
agent-based (ABS) model [28,29], and cellular automata (CA) model. The CLUE-S model’s
assumptions about causality are not always fully justified. At the same time, the model does
not have a process mechanism to correct the system parameters for some land use change
processes. The ABS model focuses on local scales and cannot be directly applied to large
scales and high resolutions. Meanwhile, the simulation process is too mechanized, and the
parameters are set randomly, which cannot reflect the real-world network structure [30].
CA models can predict complex land use processes by setting simple rules and have been
widely applied at different scales [31–33]. Currently, the coupled CA model that takes into
account both quantity and space has become a hot topic in the study of land use pattern op-
timization [34]. Common CA models include CA-Markov [23], SD-CA [14], artificial neural
network (ANN)-CA [35], future land use simulation (FLUS) [36], patch-generating land use
simulation (PLUS) [37], etc. Among them, PLUS is based on the random forest algorithm
and adaptive inertia competition mechanism, which can better mine all kinds of land
use change triggers. Combined with random seed generation and a threshold-decreasing
mechanism, it can realize the dynamic simulation of land use change at the patch level. It
has been widely proven to have higher accuracy in land use simulation [22,38].

The constraint mechanism is a key component of land use simulations [34]. At present,
the Chinese government’s control over land is mainly reflected in the rigid constraints of
the Territorial Spatial Plan (2021–2035) (TSP) (Figure 1). Most of the current studies have
two drawbacks for spatial constraints on land optimization. Firstly, some of the studies
incorporated the red lines for protecting ecosystems (RLE) directly into the prohibited
conversion zone [19,22], which is obviously unreasonable. Although construction and
farming are not allowed within the RLE, the conversion of woodland, grassland, and
unused land cannot be avoided. Secondly, little research has included permanent basic
cropland (PBC) and boundaries for urban development (BUD) in spatial constraints [20,25,39].
As for the management of land, construction projects must be within the BUD (except for
nationally important infrastructure projects), and PBC is strictly prohibited from being
occupied by construction and planted with non-food crops.
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PBC, RLE, and BUD are the boundary controls of the TSP, which puts mandatory constraint re-
quirements on the national land space. It is an insurmountable red line for China to adjust its 
economic structure, plan industrial development, and promote urbanization. 
PBC: High-quality arable land determined in accordance with the demand for agricultural prod-
ucts by the population and socio-economic development over a certain period. It may not be 
occupied or changed in use without authorization. 
RLE: Land, water, and sea areas that have special important ecological functions and must be 
strictly protected on a mandatory basis. They are the bottom lines and lifelines for safeguarding 
and maintaining national ecological security. 
BUD: This is to guide and constrain urban development for a certain period. No centralized urban 
construction, planning, or building of any kind in development zones and industrial parks shall 
be carried out outside its boundaries. 

Figure 1. Location and basic information of the study area. (a) Location and DEM of Ningxia prov-
ince; (b) national territory spatial planning (2021–2035). 

Figure 1. Location and basic information of the study area. (a) Location and DEM of Ningxia province;
(b) national territory spatial planning (2021–2035).

The bridge between academic research and natural resource management decisions
cannot be built without using land survey data [12]. However, due to the difficulties in
obtaining land survey data, the lack of historical data, and inconsistent data standards, most
of the existing studies use remote sensing image interpretation to obtain land use data when
calculating the ESV and optimizing land [37,40,41]. Nevertheless, the accuracy of remote
sensing interpretation data lacks validation and cannot meet the actual land management
needs. Taking the 30 m land use data from the Resource and Environment Sciences and
Data Center (https://www.resdc.cn) (accessed on 30 October 2022), commonly used in
previous studies as an example [14,25,36,42], the accuracy of the area is only 69%, compared
with the land survey data of Ningxia in 2020 (Table S1). In addition, it is difficult to balance
the resolution and study scale in existing studies. Large-scale studies are often carried out
at low resolutions, such as Wang et al. [43], Gu et al. [44], and Li et al. [45], who used 200 m
to 1 km resolution data for provincial and watershed studies. Fine resolution (30 m) is
often difficult to apply at provincial and higher scales. Most of the studies carried out using
30 m resolution data are concentrated at the county and municipal scales [14,39,46]. The
minimum patch size for the land survey has been increased from 1500 m2 to 400 m2. Land
use data below 30 m cannot meet the needs of land survey and management if used.

Numerous studies have shown that land use change has a significant effect on the
ESV and can improve ecosystem service capacity by improving and optimizing land use

https://www.resdc.cn
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structure [25,47,48]. Therefore, the ESV can be used to assess, compare, and select land use
options under multiple planning target scenarios.

The aim of our study is to optimize land use patterns from the perspective of ac-
tual land management using large-scale survey data and coupled land use models. Our
objectives were the following: (1) to analyze the spatial and temporal evolution of land
use and the ESV in Ningxia over the past 20 years; (2) to predict the trends of land use
and ESV changes in 2030 under natural development (ND), rapid economic development
(RED), ecological land protection (ELP), and sustainable development (SD) scenarios; (3) to
analyze the comprehensive effect of land use changes on the ESV. Our study provides new
insights for optimizing land allocation and improving land resource use efficiency in the
future. It provides a basis for promoting regional ecosystem conservation.

2. Study Area and Data Sources
2.1. Study Area

Ningxia is located in the middle and upper reaches of the Yellow River and at the
intersection of the desert and the Loess Plateau. It consists of five cities and covers an area of
about 51,900 km2 between latitudes of 35◦14′–39◦23′ N and longitudes of 104◦17′–107◦39′ E
(Figure 1). The area has an average altitude of 1100 m, an average annual temperature
of 8 ◦C, an average annual rainfall of less than 200 mm, and an average annual water
evaporation of 1250 mm, which is typical of a temperate continental climate. Ningxia bears
the important mission of maintaining ecological security in Northwest China and even
the whole country, and its ecological status is of great significance. The Ningxia TSP was
approved in August 2023 by the State Council, requiring that by 2035, the area of PBC in
Ningxia will be no less than 9493 km2, the area of the RLE no less than 12,000 km2, and the
expansion of the BUD no more than 1.3 times the scale of urban construction land in 2020.

2.2. Data and Processing

Land survey data are the basis for all land management and the most accurate and
the only legal data for land cover. Ningxia has conducted three land surveys in 1986–1995,
2007–2009, and 2017–2020. On the foundation of a comprehensive survey every 10 years,
an updated survey is conducted annually to ensure the timeliness of the data. The process
of land survey is as follows: firstly, satellite images are used to outline the scope of land use,
then field reviews are conducted to determine the types of land use, and finally, verification
is conducted at the county, municipal, provincial, and national levels, patch by patch.
Taking the third land survey of Ningxia as an example, there are about 2.7 million patches,
and the number of patches evidenced by field photographs is as high as 1.26 million, and
the number of evidenced photographs is about 11 million, which ensures the accuracy of
the data. As data accuracy improves, land survey data become less accessible. The land
survey data and most of the driving factors used in this study were obtained from the
Ningxia Department of Natural Resources. The total amount of data is more than 500 GB,
which ensures the accuracy and applicability of the research results.

Firstly, the first and second land survey data are standardized with the third land
survey data. The standardization process mainly includes the normalization of land
class names (Table S2) and the conversion of point and line features into surface features.
Then the land use types are divided into six categories: cropland, woodland, grassland,
construction land, water area, and unused land (Figure 2, Table S2). Finally, we used
high-performance server clusters to convert the data into grid cells with a spatial resolution
of 30 m and an extent of 9923 × 15,371. We also derived raster maps of multiple driving
factors and spatial constraints with the same extent as the land use data. Table 1 lists the
data source pre-processing process for this study.
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Table 1. Data sources and processing.

Category Data Name Year Resolution Data Sources and Data Processing

Land use Land survey data 2000, 2010,
2020 Vector Ningxia Department of Natural

Resources.

Socio-economic
statistics data

Population, GDP, Grain
yield, Planting area, Food

prices, Output value of
agriculture, forestry,

animal husbandry, and
fishery

2010–2020 Non-spatial
data

Ningxia Statistical Yearbook 2010–2020
(https://tj.nx.gov.cn/)

(accessed on 20 October 2022)
Ningxia Grain and Material Reserve

Bureau (http://lswz.nx.gov.cn/)
(accessed on 15 March2023)

Socio-economic
spatial data

Population density 2019 1 km
Resource and Environmental Science and

Data Center (http://www.resdc.cn)
(accessed on 30 October 2022)

GDP 2019 1 km
Nighttime light intensity 2020 0.004◦

Climate and
environmental data

Average annual
precipitation, Average

annual ground
temperature, Average
annual evaporation,

Soil type

1960–2010 1 km
Resource and Environment Sciences and

Data Center (http://www.resdc.cn)
(accessed on 30 October 2022)

Spatial accessibility
data

Distance to rural
settlements 2020 30 m The range of settlements and towns was

extracted from the 2020 Land Change
Survey data.

The range of development zones was
extracted from the 2020 Land

Intensification Evaluation data of
development zones.

The data on roads and rivers were
extracted from geographic

state monitoring.
The distances to rural settlements, towns,

open economic zones, major rivers,
railroads, national roads, provincial roads,
and other roads are calculated in ArcGIS

with the “near” tool.

Distance to town 2020 30 m
Distance to open economic

zone 2020 30 m

Distance to major rivers 2020 30 m
Distance to railroads,

national roads, provincial
roads, and other roads

2020 30 m

Spatial constraints
data

Permanent basic farmland 2022 Vector Ningxia Territorial Spatial Planning
(2021–2035)Urban development

boundary 2022 Vector

Key projects 2021–2035 Vector Outline of the 14th Five-Year Plan and
Vision 2035

3. Methods
3.1. The GMOP-PLUS Model

We proposed a method for coupling the GMOP and the PLUS models. The coupled
model consists of two steps. Firstly, the GMOP algorithm is used to obtain optimal land
use solutions under different scenarios by inputting decision variables, constraints, and
objective functions. Secondly, parameters such as land change drivers, land use conversion
rules, domain weights, and spatial restrictions are input into the PLUS model to realize the
spatialized representation of land use quantity changes (Figure 3).

https://tj.nx.gov.cn/
http://lswz.nx.gov.cn/
http://www.resdc.cn
http://www.resdc.cn
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Figure 3. Flow chart of land utilization simulation and ESV evaluation. Figure 3. Flow chart of land utilization simulation and ESV evaluation.

3.1.1. Optimization of Land Use Structure Using GMOP Algorithm

• Scenario Setting

We predicted the areas of each land use type in 2030 under four scenarios in Ningxia
using Lingo 12.0 software.

Natural development scenario: The scenario follows the natural evolution of land
without considering any policy constraints and spatial controls. It is obtained using Markov
chain projections based on land use data for 2010 and 2020.

Rapid economic development scenario: The scenario maximizes the economic benefits
of land use.

f1(x) = max
6

∑
i=1

xidi (1)

where f1(x) is the maximum economic output of land use. xi is the total area of the i-th
land use type. di is the economic output value per unit area of the i-th land use type.
The economic benefits of cropland, woodland, grassland, and water were estimated by
the output value of plantation, forestry, animal husbandry, and fishery, respectively. The
GDP of secondary and tertiary industries was used to estimate the economic benefits
of construction land. We collected historical data from the Ningxia Statistical Yearbook
(2010–2020) and uniformly imputed to comparable 2010 prices. The economic production
value of cropland, woodland, grassland, construction land, and water area in 2030 was
predicted to be 2.84, 0.04, 1.23, 149.92, and 3.10 (unit: 104CNY/ha) using the GM (1, 1)
model, respectively.
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Ecological land protection scenario: The scenario maximizes the ecological value of
land use.

f2(x) = max
6

∑
i=1

xiei (2)

where f2(x) is the maximum ESV of land use, and ei is the ESV of the ith land use type.
The ESV of cropland, woodland, grassland, construction land, water area, and unused land
are 1.84, 6.54, 2.72, −1.32, 11.05, and 0.32 (unit: 104CNY/ha), respectively (see Section 3.2
for details).

Sustainable development scenario: To achieve harmonious economic and ecological
development, it is necessary to maximize the ecological and economic value of land use.

max{ f1(x), f2(x)} (3)

• Constraints

(1) The RED, ELP, and SD scenarios are also subject to the conditions of historical land
use, TSP control, strategic objectives, and development vision.

7

∑
i=1

xi = 5, 196, 400 hm2 (4)

(2) Constraint of the total population. The total population should be below the
carrying capacity of land resources for human activities. Based on the population and land
statistics from 2010 to 2020 and the GM (1,1) algorithm, the total population of Ningxia is
predicted to reach 8.19 million, and the average population densities of construction land
and agricultural land (woodland, grassland, and cropland) will be 16.38 and 0.42 people
per hectare by 2030, respectively.

0.42 × (x1 + x2 + x3) + 16.38 × x4 ≤ 8.19 × 106 (5)

(3) Constraint of food security.

⊗α31 × f0 × f1 × 0.81x1 ≥ s × w × p (6)

where α31 is the grain yield per unit area, its lower limit is the current grain yield, and the
upper limit is the grain yield in the target year. f0 is the average number of crops planted
per year on the same cropland. f1 is the proportion of food crops grown on cropland. s is
the per capita food demand, which is expected to reach 517.3 kg/a in 2030 [49]. w is the
grain self-sufficiency rate. Ningxia has the second largest arable land per capita and is one
of the twelve commercial grain production bases in China. Grain production should at
least meet the requirement of self-sufficiency, so w is taken as 100%. p is the population
size in the forecast year. Based on the GM (1, 1) model and historical data, we predict that
f0 = 0.97, f1 = 0.49, and ⊗α31 ∈ (5603.68, 6931.77). According to historical land use data,
after removing supporting facilities such as ditches and roads, the area of cropland that can
really be used for cultivation is about 81%.

(4) Constraint of cropland area. The TSP sets the target of cropland protection for
Ningxia at 1,169,220 hm2. According to the “Guidelines for the Evaluation of the Suitability
of Resource and Environment Carrying Capacity and Territorial Spatial Development “,
under the constraints of land resources and water resources, the upper limit of the cropland
carrying capacity in Ningxia is 1,406,310 hm2.

1, 169, 220 hm2 ≤ 0.81x1 ≤ 1, 406, 310 hm2 (7)

(5) Constraint of woodland area. Ningxia’s forest coverage rate rose from 11.9% in 2012
to 15.8% in 2020. According to the target of Ningxia’s 14th Five-Year Plan (2021–2025), the
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forest coverage rate should reach 20% in 2025. Obviously, the growth rate of the woodland
area will be higher than in the ND scenario.

1, 080, 925 hm2 ≤ x2 (8)

(6) Constraint of construction land area. Construction land includes urban construction
land, village construction land, and other construction land. According to the TSP, the
area of urban construction land in 2030 will not exceed 1.2 times that of in 2020. With the
decrease in village population, the village construction land in 2030 will remain unchanged.
Other construction land in 2030 will be calculated based on the average growth rate from
2010 to 2020. The lower limit of construction land in 2030 is the construction land area
in 2020.

350, 487 hm2 ≤ x4 ≤ 398, 390 hm2 (9)

(7) Constraint of grassland area. In 2030, the probability is that grassland areas will
remain on a downward trend. Therefore, the upper limit of the grassland area is the
current grassland area, and the lower limit is the grassland area with 10% downward of
the ND scenario.

1, 549, 577 hm2 ≤ x3 ≤ 2, 024, 176 hm2 (10)

(8) Constraint of water area. Ningxia’s water area has remained stable over the years.
Therefore, the minimum and maximum water areas from 2000 to 2020 are adopted as the
bound area of the watershed in 2030.

96, 700 hm2 ≤ x6 ≤ 110, 011 hm2 (11)

(9) Constraint of unused land area. Under the double pressure of strict land use control
measures and economic development, a large amount of unused land can only be reclaimed
to meet the development. Hence, the upper limit of the unused land area is the currently
existing unused land, and the lower limit is the area of unused land under the ND scenario.

165, 791 hm2 ≤ x7 ≤ 249, 720 hm2 (12)

3.1.2. Optimization of Land Use Spatial Allocation by PLUS Model

The PLUS model includes two parts: a rule mining framework for the Land Expansion
Analysis Strategy (LEAS) and a CA model based on multi-class random patch seeding
(CARS) in two parts. The former was randomly sampled from the portion of each type of
land use increase between the two periods of land use change. Then the random forest
algorithm is used to mine each type of land use expansion and the driving factors one
by one. Finally, the development probability of each type of land use and the degree
of contribution of the driving factors to the expansion of each type of land use in that
period are obtained. The latter is based on the adaptive inertia competition mechanism of
roulette to obtain the overall probability of land use change. The final land use approach is
then achieved through multiple iterations by combining random patch generation and the
threshold decreasing mechanism. The specific parameters are set as follows:

• Spatial driving factors

We referred to previous research [19,25], and while considering the principles of repre-
sentativeness, the quantifiability of factors, and the availability of information, 19 driving
factors were selected for our study (Table 1, Figure 4).
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1 
 

Figure 4. The spatial driving factors and spatial restrictions of the land use change in this study.
(a) Dem; (b) Slope; (c) Aspect; (d) soil type e; (e) Precipitation; (f) Temperature; (g) Evaporation;
(h) Dis rural settlements; (i). Dis railroads; (j) Dis national road; (k) Dis provincial road; (l) Dis other
road; (m) Dis open economic zone; (n) Dis town; (o) Dis main rivers; (p) Nighttime light intensity;
(q) GDP; (r) Population density; (s) Spatial restrictions; (t) RLE.

• Spatial restrictions

We set the PBC as the prohibited conversion zone and the BUD and the planned key
projects as the priority development zones of the construction land.

• Conversion elastic coefficient and conversion matrix setting
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The elasticity coefficient of land use conversion is the degree of difficulty in converting
a certain type of land use to another type. It can be defined by the model parameter ELAS
(taking values from 0 to 1), with higher values indicating higher stability of land use types
and a lower probability of conversion. In our research, the ELAS for the ND scenario is
determined using the rate of land use change from 2000 to 2020, and the values of RED, ELP,
and SD are determined based on the specifics of each scenario and other studies (Table S3).

The cost matrix between different land use types represents whether they can be
transferred to each other. The ND scenario is unrestricted and can be converted between
different land use types. The RED scenario does not allow the conversion of construc-
tion land into other land use types. Under RED, ELP, and SD scenarios, cropland and
construction land cannot be degraded into water areas and unused land (Table S4).

• Model validation

Fom and Kapa are often used to assess the accuracy and consistency of simulation
results. Fom reflects the accuracy of the simulation results by considering only the number
of cells that change during the simulation and excluding the invariant cells that lead to
erroneous accuracy [50]. Kappa is calculated based on the confusion matrix, reflecting
the consistency of the simulation results [51]. Both Fom and Kappa take values ranging
from 0 to 1, with larger values indicating a higher simulation accuracy. However, Fom
values are usually less than 0.3 [22,37]. When Fom is close to 0.3 and the Kappa coefficient
is greater than 0.6, it indicates that the model simulation accuracy achieves better results in
a statistically significant way.

3.2. Ecosystem Services
3.2.1. Ecosystem Services Valuation

Wang et al. [52] revised the model proposed by Costanza et al. [53] and developed
the equivalent factor table of ecosystem service values in China (Table S5). However, the
model set the ESV of construction land to 0 [19,42]. In fact, construction land can provide
recreation and cultural services and have negative ecological impacts due to pollution [48].
In our study, we made two modifications to the model proposed by Xie [54]. First, the
unused land is dominated by bare land and sandy land, so it corresponds to desert [55].
Water area is the area-weighted average of the water system and wetland [44]. Second, the
negative impacts of construction land on ecosystem services are estimated using a proxy
cost approach, in which water resource conservation is approximately calculated based on
the annual average value of domestic and commercial water use, and waste treatment is
estimated based on the social labor value consumed in treating the three wastes [56]. The
ESV in each grid is calculated as follows:

ESVi = D × a ×
9

∑
j=1

Eij (13)

ESVi is the ESV for grid with land use type i. D is a standard ecosystem service value
equivalent, equal to 1/7 of the market value of grain yield per hectare. D is calculated from
the yield and area of major grain crops (corn, wheat, rice, soybean) in Ningxia from 2010
to 2020, and predicted using the GM (1, 1) model to obtain D in 2030 as 2327.5 CNY/ha.
a is the area of each grid, equal to 0.9 ha. Eij is the value equivalent of the j-th ecosystem
service for a grid with land use type i.

3.2.2. Spatial Autocorrelation Analysis

The global Moran index is used to determine whether the ESVs in the study area are
spatially clustered and the degree of clustering. The calculation formula is as follows:

moran’s =
n∑n

i=1 ∑n
j=1 wij(xi −

_
x)(xj −

_
x)

∑n
i=1 ∑n

j=1 wij∑n
i=1 (xi −

_
x)2 (14)



Land 2024, 13, 557 12 of 23

where n is the total number of spatial cells, xi and xj represent the ESV of i and j spatial
cells,

_
x is the average of the ESV of all spatial cells, wij is the spatial weight value. If i

is greater than 0, it means that regions with large (small) ESV values are more likely to
cluster together.

4. Results and Analysis

We simulated the land use in 2020 using the land use data from 2000 and 2010. Then
the simulated result was compared with the actual land use in 2020 (Figure S1). The results
showed that the Fom is 0.2526 and the Kappa is 0.7442, which indicates that the simulation
accuracy of this experiment is high, and the model parameters are set reasonably.

4.1. Spatial and Temporal Variation Characteristics of Land Use
4.1.1. Variation in Land Use between 2000 and 2020

As shown in Table 2 and Figure 5, the structure and distribution of land use in Ningxia
have undergone significant changes. From 2000 to 2020, the area of grassland decreased by
4355 km2, which is the land type with the largest area change. The expansion of construction
land has nearly doubled, with a continuous increase in area from 1770 km2 to 3505 km2,
with the expansion mainly occupying cropland (43.95%), grassland (34.99%), and unused
land (11.74%). Similarly, the area of woodland increased by 69.2% over 20 years, from
5646 km2 in 2000 to 9555 km2 in 2020. A total of 60.73% of the growth area of woodland
that originated from grassland and 24.09% from cropland returned to forest. Unused
land decreased by 61.5%, with the reduced area mainly flowing to grassland (55.53%) and
farmland (20.03%). The water area remained basically unchanged. It is noteworthy that the
land change between 2000 and 2010 is more drastic than that between 2010 and 2020.

4.1.2. Projection of Land Use Changes in 2030 Based on GMOP-PLUS Model

To explore the impact of the PBC, RLE, and BUD on land optimization, four sample
plots were selected to explore and compare the land use structure (Figure 6). As shown
in Table 2, all four scenarios show a steady increase in farmland area, with all sources of
increase mainly coming from grassland. The area of construction land remains undimin-
ished. As expected, compared to 2020, the ND scenario has the highest expansion rate
of construction land (18.57%), much higher than the RED scenario (10.10%) and the SD
scenario (9.47%). It remains largely unchanged in the ELP scenario. Woodland shows a
more substantial increase, with a 13.12% increase under the ND scenario and RED scenario,
and a nearly 50% increase under both the ELP scenario and SD scenario. The water com-
bines high economic and ecological benefits, coupled with the strict national control of
water consumption on the Yellow River (90% of Ningxia’s water resources originate from
the Yellow River), and the RED, ELP, and EEB scenarios all show a small increase in the
water area. Land change tends to seek to maximize economic benefits. Therefore, the ND
scenario and RED scenario show a negative growth of ecological land. In contrast, the ELP
scenario and SD scenario emphasize the importance of ecology, and the ecological land has
a growth trend.
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Figure 5. Land use transfer in different periods: (a) 2000–2010; (b) 2010–2020; (c) 2000–2020; (d) 2020–ND;
(e) 2020–RED; (f) 2020–ELP; (g) 2020–SD.
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Table 2. Variations in land use from 2000 to 2030.

LU Type
Land Use (km2) Relative Change Rate (%)

2000 2010 2020 ND RED ELP SD 2000–
2010

2010–
2020

2000–
2020

2020–
ND

2020–
RED

2020–
ELP

2020–
SD

Ecological land 43,704 45,144 45,961 45,690 45,608 46,801 46,469 3.29 1.81 5.16 −0.59 −0.77 1.83 1.11
Cropland 12,350 14,899 15,076 16,649 17,362 15,876 15,876 20.64 1.19 22.07 10.43 15.16 5.30 5.30
Woodland 5646 7817 9555 10,809 10,809 14,330 13,998 38.46 22.23 69.24 13.12 13.12 49.97 46.50
Grassland 24,603 21,303 20,248 17,218 16,337 15,496 15,496 −13.41 −4.95 −17.70 −14.97 −19.32 −23.47 −23.47

Construction land 1770 2659 3505 4156 3859 3505 3837 50.16 31.83 97.96 18.57 10.10 0.00 9.47
Water area 1105 1125 1081 1014 1100 1100 1100 1.79 −3.93 −2.20 −6.20 1.77 1.77 1.77

Unused land 6489 4161 2498 2119 2497 1658 1658 −35.87 −39.96 −61.50 −15.20 −0.05 −33.64 −33.64

4.2. Variations in Ecosystem Service Value during 2000–2030
4.2.1. Temporal Estimation in Ecosystem Service Value

As shown in Table 3, in general, the proportion of the ESV of each function to the total
ESV did not change much. Ecosystem services in the study area mainly consist of regulating
services and supporting services, which account for 50.8% and 31.6% of the total ESV in
2020, respectively. From 2000 to 2020, the total ESV in Ningxia increased by 14.9 billion
CNY, with a growth rate of 10.74%. Specifically, all types of ecosystem services increase
except waste treatment, which decreases, with the growth rate of raw material (35.24%)
much higher than other ecosystem services. From 2020 to 2030, the total ESV continues to
show an increasing trend for all scenarios. Each individual ESV is also increasing, except
for water conservation and waste treatment in the ND scenario and waste treatment and
soil formation and protection in the RED scenario. Undoubtedly, the ELP scenario has the
largest increase in the total ESV, while the ND scenario and RED scenario have the lowest
increase in the total ESV at 0.78% and 1.03%, much lower than the ELP scenario (12.91%)
and the SD scenario (11.21%).

Table 3. Variations in ecosystem service value during 2000–2030.

Primary
Classification

Secondary
Classification

ESV (109 CNY) ESV Relative Changes (%)

2000 2010 2020 ND RED ELP SD 2000–
2020

2020–
ND

2020–
RED

2020–
ELP

2020–
SD

Supply
services

Food
production 59.27 63.48 64.03 65.54 66.44 64.80 64.55 8.02 2.37 3.76 1.21 0.81

Raw material 72.43 86.83 97.95 105.48 105.49 127.77 125.47 35.24 7.69 7.70 30.45 28.10

Regulating
service

Air regulation 166.68 180.98 194.68 199.20 197.57 227.42 224.08 16.80 2.32 1.48 16.82 15.10
Climate

regulation 184.61 198.46 210.45 214.10 213.56 240.25 237.10 14.00 1.73 1.48 14.16 12.66

Water
conservation 194.85 201.65 205.79 201.82 205.97 236.57 230.73 5.62 −1.93 0.09 14.96 12.12

Waste
treatment 169.92 170.93 167.81 162.42 166.90 175.12 171.90 −1.24 −3.21 −0.54 4.35 2.43

Supporting
services

Soil formation
and protection 227.89 238.83 249.39 250.51 248.66 271.80 268.69 9.44 0.45 −0.29 8.99 7.74

Biodiversity
conservation 210.68 223.16 235.25 238.13 237.05 266.03 262.55 11.66 1.22 0.76 13.08 11.60

Cultural
services

Recreation and
culture 98.22 102.46 107.86 107.90 107.34 121.43 120.01 9.81 0.04 −0.48 12.58 11.27

total 1384.55 1466.79 1533.22 1545.10 1548.98 1731.19 1705.08 10.74 0.78 1.03 12.91 11.21

4.2.2. Spatial Characteristics of Ecosystem Service Value

To further analyze the spatial distribution of the ESVs and their degree of change in
the study area, we created a 3 km × 3 km square grid, and then calculated the ESV and
change values for each grid, and finally produced a spatial distribution (Figure 7) and
change map of the ESVs from 2000–2030 (Figure 6). The ESV in the study area is dominated
by medium values and medium-low values. From 2000 to 2020, the area with ESVs of
low value, medium-low value, and medium value has been decreasing, and the area of
medium-high value and high value has been increasing. This trend will continue under the
ELP scenario and SD scenario. However, in the ND scenario and RED scenario, except for a
decrease in the median value area, all other areas increased.
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The spatial distribution of ESVs in the study area shows the characteristic of gradually
increasing from north to south and from west to east (Figure 7). The spatial pattern is
highly consistent with the land use types. The low value is mainly distributed in and
around cities. The medium-low value is mainly distributed in the Ningxia Plain and south-
central areas, which are consistent with the distribution of cropland. The medium-high
value is mainly distributed in the Yellow River and in woodland and grassland-intensive
areas such as the Helan Mountains and Liupan Mountains. The ESV distribution pattern
is basically stable in different periods, with significant spatial clustering and increasing
agglomeration. Analyzed from the spatial distribution of ESV changes, ESV decreases are
mainly distributed in the areas around cities, flat terrain, and frequent human activities.
It is noteworthy that the decrease in the ESV along the Yellow River is obvious. The ESV
increases mainly in areas with high elevation, abundant rainfall, and low urban sprawl,
with significant increases in ecological reserves.
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4.3. Impact of Land Use Changes on the Value of Ecosystem Services

Based on the equivalence coefficient table (Table S6) and the land use transfer matrix,
we calculated the ESV transfer matrix (Figure 8, Table S7) from 2000 to 2030 to analyze
the impact of land use quantity change on the ESV. The results show that the increase in
woodland is the main type of ESV added. From 2000 to 2020, the increase in woodland
increased the ESV by 28.94 billion CNY, contributing 64.24% to the increase in ESV. This
contribution rate further increases in 2030, with 79.63%, 93.83%, 93.43%, and 92.57% in ND,
RED, ELP, and SD, respectively.
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Construction expansion and cropland reclamation are important types of ecological
service losses. From 2000 to 2020, the ESV is reduced by 9.21 billion CNY due to construction
expansion, accounting for 30.56% of the total ESV loss. Similarly, under the ND scenario,
RED scenario, and SD scenario, the ESV was reduced by 3.49, 1.51, and 1.66 billion CNY
due to construction expansion, accounting for 41.72%, 24.96%, and 34.05% of the total ESV
loss, respectively. Under the rigid constraints of cropland protection, many lands have
been reclaimed into cropland, resulting in significant ESV losses. During 2000–2020, ND,
RED, ELP, and SD have reduced the ESV by 11.85, 2.99, 3.72, 0.76, and 0.76 billion CNY due
to reclaiming farmland, respectively.

5. Discussion
5.1. Significance of the ESV-GMOP-PLUS Model for Future Land Use Optimization

Achieving sustainable land use through optimal allocation of land resources is an im-
portant goal pursued by land managers [57]. The ESV-GMOP-PLUS model we constructed
realizes the optimization of the quantitative demand and spatial pattern of land from the
perspective of practical management of land, with full consideration of the ecological and
economic benefits of land.

The experimental results verify the effectiveness of the model in land planning and
ecological protection. The growth rate of construction land slows down considerably in
all four scenarios. However, in the ND scenario, the scale of construction land exceeds
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the planning control indicators and extends beyond the BUD (Figure 6). This does not
happen in any of the scenarios with BUD constraints. During 2000–2020, the proportion
of construction land expansion occupying cropland is as high as 43.95%, but in 2030, this
proportion drops sharply, and construction land expansion mainly occupies grassland.
Meanwhile, all four scenarios saw an increase in farmland. This is mainly because we
consider PBC protection and food security in our constraints. It is worth noting that the
inter-conversion of land has changed due to a combination of planning constraints and
policy orientation (food security and ecological security have become important aspects
of national security). During 2000–2020, inter-conversion between different categories
occurred. In 2030, the conversion of land types tends to be fixed, with the flow of mainly
grassland and unused land to other land types. In addition, we considered the eco-
efficiency of the land during land optimization, especially under the ELP and SD scenarios;
the woodland with a high ESV has been maintaining a high growth trend, especially the
woodland within the RLE (Figure 6).

In summary, the ESV-GMOP-PLUS model can maximize the simulation of land use
under planning constraints and identify the optimal land use (i.e., the SD scenario), while
meeting the needs of various types of land use and ecological protection. Land use under
the ELP and RED scenarios is also provided for decision makers’ reference. In addition,
the ND scenario can provide a reference for judging the rationality of land planning.
Meanwhile, the breakthroughs of PBC and BUD under the ND scenario can be monitored
as high-risk areas for illegal land use. The areas of increased ecological land such as forests
and grasslands under the SD scenario can be used as a reference for the selection of areas
for the implementation of forestation projects.

5.2. Impact of Land Use Policies on Changes in Ecosystem Services Value

Land management policies can change the land cover and thus affect the ESV. For
example, the policy of “returning cropland to woodland” promotes ESV increase, and
policies such as “cropland land requisition-compensation balance” and “linking the increase
in land used for urban construction with the decrease in land used for rural construction”
impair the ESV. To improve the ecosystem, Ningxia launched the project of returning
cropland to woodland in 2000, which includes two components: returning slope cropland
to woodland and afforestation on barren hills and wastelands. This promotes the conversion
of other land use types to woodland and increases the ESV [58,59]. Although the return
of cropland to woodland has reduced food production services, the total ESV has greatly
increased. Over the past 20 years, the flow of cropland to woodland and grassland to
woodland increased the ESV by 7.54 and 15.48 billion CNY, respectively (Table S7). The
increase in woodland contributed to 64.24% of the increase in the ESV. In addition, returning
cropland to woodland only gives farmers compensation of 22,500 CNY per hectare, which
is equivalent to the value of 10 years of food production. Farmers’ interests were not fully
protected, forcing them to return woodland back to farming [58], which greatly reduced
the ecological benefits of returning cropland to woodland. This assertion can be confirmed
by comparing the officially announced area of cropland return to woodland and grass
(8967 km2) with the increase in forest land in the land survey (3909 km2). To protect
cropland, the Chinese government has implemented policies such as the “cropland land
requisition-compensation balance” and “permanent basic cropland protection”. Although
these policies have ensured food security and increased supply services, a large amount of
land has been reclaimed as cropland, resulting in a large reduction in regulating service
and support services. From 2000 to 2020, the conversion of woodland, grassland, and
water areas to cropland caused ESV losses of 5.40, 3.52, and 2.93 billion CNY, respectively
(Table S7). Construction land expansion is another important factor in ESV loss. A total of
9207 million CNY in ESV loss was due to construction from 2000 to 2020 (Table S7), and
this trend will continue in 2030.

It is worth noting that the lack of forward-looking and systematic planning of policies
is also an important reason for the loss of ESV. Take the development and utilization of
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the Yellow River beach land in Ningxia as an example. In the 1990s, the local government
encouraged people to develop the riverbank land, resulting in many riverbanks being
reclaimed into cropland. There are more than 13,000 hectares of cropland within the Yellow
River channel in Ningxia. Although food security was ensured in the short term, it caused
degradation to the ecosystem and a reduction in the water conservation function. From
2000 to 2020, 2.9 billion CNY of ESV loss was caused by the conversion of water area into
cropland. With the proposed ecological protection and high-quality development of the
Yellow River basin, the Yellow Riverbank cropland will again be withdrawn by way of
ecological restoration.

5.3. The Necessity and Urgency of Integrating ESV into Land Management

Although the Chinese government has placed a high priority on the construction of
ecological civilization and has attempted to assess managers through natural resource
balance sheets [60], natural resource use quantities (forest coverage rate, etc.), and other
methods to achieve an “ecological performance perspective”, little consideration has been
given to the ESV. This study shows that incorporating the ESV into land management
decisions is necessary because it can provide managers with a simple and easily understood
single monetary indicator like GDP, allowing them to measure the contribution of ecosystem
services to the economy. In Ningxia, the ESV was much higher than GDP in 2000 (GDP
was 29.5 billion CNY and the ESV was 138.5 billion CNY). Even though the economy grew
rapidly in the following decade and GDP increased 5.3 times, the ESV remained almost
equal to GDP (GDP was 157.2 billion CNY and the ESV was 153.3 billion CNY).

It is also urgent to incorporate the ESV into land management decisions as soon
as possible. In the study area, the phenomenon of “governance while destruction” in
ecological construction is serious. From 2000 to 2020, the ESV increase of 45.05 billion CNY
was accompanied by an ESV loss of 30.13 billion CNY (Figure 8). This phenomenon is
more severe under the ND scenario and the RED scenario. In the ND scenario, the increase
in the ESV of 9.49 billion CNY is accompanied by a decrease of 8.35 billion CNY. In the
RED scenario, the increase in the ESV of 7.60 billion CNY is accompanied by a decrease of
6.07 billion CNY. However, in the ELP and EEB scenarios, ESV changes are dominated by
increases. Therefore, taking the ESV into full consideration when making land decisions
can effectively alleviate the phenomenon of “governance while destruction” and make the
integrated development of economic construction and ecological construction safeguard
the well-being of human beings.

Although there is still a long way to go to integrate ESVs into land management,
it is possible to change the management concept of land managers from an “economic
performance concept” to an “ecological performance concept” through lower precision
ESV estimation first and then by gradually applying it in land use planning, ecological
compensation, and other land management through higher precision ESV estimation.

5.4. Realism in Land Optimization Simulations

Firstly, we ensured the authority and authenticity of the foundational data. Land
survey data are considered the sole statutory data for land cover, offering a more accurate
reflection of land use changes compared to commonly used remote sensing interpretation
data. Additionally, our data predominantly originate from government agencies, ensuring
the reliability, comprehensiveness, and timeliness of the data. Secondly, our imposed
constraints closely align with land management practices. We thoroughly considered
constraints related to planning controls, socio-economic conditions, and strategic objectives.
Factors such as TSP, PBC, and BUD were incorporated into the spatial constraints. When
establishing quantity constraints, we accounted for the government’s stringent planning
requirements for forests, grasslands, and arable land as well as the specific circumstances in
Ningxia. Lastly, our model exhibits high precision. The simulation model we constructed
boasts the Fom of 0.2526 and Kappa of 0.7442, ensuring the model’s accuracy and the
rationality of its parameter settings.
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5.5. Limitations and Future Research Directions

Our research still has some limitations. First, we incorporate the RLE as a driver rather
than a spatial constraint in land optimization. Although it can avoid the disadvantage
of fixed ecological constraints that cannot be converted between land use categories, it
cannot reflect the rigid control of the RLE. Therefore, in the future, we should explore a REL
constraint model that only allows for mutual conversion between woodland, grassland,
and unused land. Secondly, the accuracy of land surveys has reached 1 m, and there are
9 major categories and 48 subcategories of land use types. Although we have tried as
much as possible to improve the resolution of land optimization and refine the land use
types, we are still unable to meet the needs of land management due to limitations in
algorithms and computing power. Third, the existing ecological service value coefficients
do not cover the types of land use used in land management and fail to adequately take into
account the complexity and dynamics of ecosystems. In subsequent studies, the estimation
accuracy can be improved by value coefficient correction, the unification of land use types,
the subdivision of land use types, and assigning value coefficients consistent with their
ecological function.

6. Conclusions

We proposed a model coupling ESV, GMOP, and PLUS, used land survey data, and
added TSP constraints to simulate the land use structure and ESV of Ningxia in 2030 under
the ND, RED, ELP, and SD scenarios. We found that (1) TSP played an important role
in stopping the uncontrolled expansion of construction land, improving the effectiveness
of ecological land use, and promoting food security; (2) in the future, construction land,
woodland, and cropland will be the main expansion land categories, while grassland
and unused land, which lack strict use control, will be the main types of land outflow;
(3) although the total ESV has increased steadily and slightly, the spatial distribution has
become more and more concentrated. However, the phenomenon of “governance while
destruction” in ecological construction is serious, which is alleviated under the ELP scenario
and SD scenario; (4) we offered a wide range of possibilities for future land use. The ND
scenario has the highest rate of construction land expansion (18.57%) and the lowest ESV
(153.75 billion CNY). The RED scenario has the highest land economic efficiency and the
largest amount of ecological land reduction (−0.77%). The ELP scenario has the highest
ESV (173.12 billion CNY). The SD may be more suitable for future regional development,
although the ESV (17.51 billion CNY) is slightly lower than ELP, but the economic benefits
have greatly improved. Our study provided a reference for an early warning of land risks
and sustainable development. Land modeling based on land survey and management data
can facilitate academic research in practical management applications.
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