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Abstract: Various methods for evaluating the visual quality of landscapes have been continuously
studied. In the era of the rapid development of big data, methods to obtain evaluation data efficiently
and accurately have received attention. However, few studies have been conducted to optimize the
evaluation methods for landscape visual quality. Here, we aim to develop an evaluation model that
is model fine-tuned using Scenic Beauty Evaluation (SBE) results. In elucidating the methodology,
it is imperative to delve into the intricacies of refining the evaluation process. First, fine-tuning
the model can be initiated with a scoring test on a small population, serving as an efficient starting
point. Second, determining the optimal hyperparameter settings necessitates establishing intervals
within a threshold range tailored to the characteristics of the dataset. Third, from the pool of fine-
tuned models, selecting the one exhibiting optimal performance is crucial for accurately predicting
the visual quality of the landscape within the study population. Lastly, through the interpolation
process, discernible differences in landscape aesthetics within the core monitoring area can be visually
distinguished, thereby reinforcing the reliability and practicality of the new method. In order to
demonstrate the efficiency and practicality of the new method, we chose the core section of the
famous Beijing–Hangzhou Grand Canal in Wujiang District, China, as a case study. The results
show the following: (1) Fine-tuning the model can start with a scoring test on a small population.
(2) The optimal hyperparameter setting intervals of the model need to be set in a threshold range
according to different dataset characteristics. (3) The model with optimal performance is selected
among the four fine-tuning models for predicting the visual quality of the landscape in the study
population. (4) After the interpolation process, the differences in landscape aesthetics within the core
monitoring area can be visually distinguished. We believe that the new method is efficient, accurate,
and practically applicable for improving landscape visual quality evaluation.

Keywords: landscape visual evaluation; image aesthetic quality; SBE method; convolutional neural
network; deep learning; Grand Canal

1. Introduction

Research on assessing the visual quality of landscapes has gradually emerged since
the 1960s, with early studies focusing on subjective evaluations of landscape aesthetics,
concentrating on experts’ aesthetic criteria and public preferences [1]. For example, Crowe
and Litton responded to the aesthetic impacts of rural landscapes and woodland land-
scapes, respectively [2,3]. The expert assessment model was soon adopted by government
agencies in several countries, including U.S. federal agencies [4]. Daniel and Boster’s (1976)
proposed Scenic Beauty Estimation (SBE) made a major breakthrough in quantifying public
preferences [5]. Since then, new perspectives and dimensions are being gradually incorpo-
rated into the assessment of landscape visual quality, allowing for a more comprehensive
understanding of landscape aesthetics. Examples include ecological quality and biodi-
versity [6–8], multisensory landscape experience [9–11], attractiveness and security [12],
accessibility [13–15], and more.
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Despite the achievements of SBE methods and other traditional techniques in land-
scape aesthetic assessment, they have limitations in capturing landscape diversity and
dynamic character. Traditional methods tend to ignore complexity in changing urban
environments and natural landscapes [16]. In addition, expert-led assessment methods
face challenges of subjectivity and repeatability [17,18].

In recent years, there has been a significant shift in the field of visual quality assess-
ment. The use of big data sources such as street view images instead of traditional film
photographs is becoming mainstream, an approach that captures a broader and more
realistic view of the landscape and provides more comprehensive data support [19–24]. In
addition, the application of convolutional neural networks (CNNs) has revolutionized the
efficiency and accuracy of image aesthetic quality assessment. CNNs are able to not only
process large amounts of image data but also learn complex visual features to more accu-
rately predict the aesthetic quality of an image. The application of these new techniques
improves efficiency while providing new possibilities for understanding the diversity and
subjectivity of landscape aesthetics.

The application of neural networks in the visual arts is evolving, with photography
and painting being key areas of research [25]. For example, DiffRankBoost, based on
RankBoost and support vector techniques, was proposed in 2010 to explore methods
for estimating aesthetic scores at a fine-grain level [26]. Subsequently, Deep Multi-Patch
Aggregation Network methods were used to solve the problem of image style, aesthetics,
and quality assessment in high resolution images [27]. In the same year, new frameworks
also emerged, such as methods for learning aesthetic features using convolutional networks
and perceptual calibration systems for the automatic aesthetic assessment of photographic
images [28,29]. Meanwhile, image segmentation models play an important role in landscape
quantification studies, and convolutional neural network-based segmentation models can
effectively identify and separate key visual elements in an image, providing more in-depth
visual information for aesthetic assessment [30].

While these early approaches have made progress in image aesthetic quality assess-
ment, they usually fail to fully understand and model the complexity of human perception
and response to aesthetics. They struggle to accurately assess aesthetic quality in the
absence of referents and have limitations in dealing with highly subjective and complex
aesthetic assessments [31].

In recent years, the development of deep learning techniques, especially the applica-
tion of CNNs, has opened up new possibilities for image aesthetic quality assessment. For
example, the NIMA (Neural Image Assessment) model uses CNNs to predict the distribu-
tion of human perception rating numbers [32]. The PSAA algorithm for aesthetic attributes
based on unsupervised learning [33], the MRACNN method [34] that utilizes multimodal
information for aesthetic prediction, and natural language processing (NLP) techniques
can provide additional contextual information to aid computers in understanding aesthetic
value [35]. Deep neural networks are trained with real-life photos and corresponding scor-
ing data to recognize visual features of urban street vitality for a better understanding of
the development and evolution of cities [36]. Simultaneous human–machine–environment
quantitative analysis techniques have been demonstrated to be useful for improving the
reliability and accuracy of visual quality assessment results in linear landscapes [37]. All
these methods and techniques provide new research perspectives for assessing the aesthetic
quality of images.

In this study, we utilize CNNs and big data technology based on deep learning
methods and related technical tools developed from 2015 to the present to improve the
efficiency and accuracy of assessing the visual quality of landscapes and the aesthetic
quality of images in landscape assessment, such as the identification of urban waterfront
streetscape images.
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In the subsequent sections, we discuss the following aspects in detail: (1) the selection
of the study area and the basis for its delineation; (2) the process of fine-tuning the CNN
model based on the SBE samples and the performance evaluation; (3) the prediction of the
landscape quality of all the streetscapes in the study area using the fine-tuned model; and
(4) the main findings of the study and the potential for the application of deep learning
techniques in the discipline of landscaping.

2. Methods and Data
2.1. Study Area

Suzhou is located in eastern China, in the center of the Yangtze River Delta and the
southeast of Jiangsu Province, and it is one of the most economically active cities in China. It
is an important city in the Shanghai metropolitan circle and the Suzhou–Wuxi–Changzhou
metropolitan circle, as well as one of the important central cities in the Yangtze River
Delta, a national high-tech industrial base and a scenic tourist city, as approved by the
State Council. Due to the adjacency of the Beijing–Hangzhou Canal, the ancient city of
Suzhou has become a commercial hub with nearly half of Suzhou’s freight transportation
still relying on waterways. Due to the city’s history, Suzhou has the typical geographical
features and diverse landscape characteristics of Jiangnan water towns. We chose Wujiang
District, located in the southwest of Suzhou City, as the main study area (Figure 1), because
we can observe a rich variety of landscape types in this area, including rural landscapes,
urban landscapes, waterfront landscapes, and park landscapes. Here, we base our study
on the categorization of the Grand Canal area in Wujiang District in local government
documents. Specifically, the core monitoring area refers to the 2 km extent on each side
of the main channel of the Jiangsu section of the Grand Canal. The core monitoring area
includes a riverfront ecological area (i.e., in principle, in addition to the built-up area, the
range of 1 km on each side of the main channel of the Jiangsu section of the Grand Canal
within the core monitoring area), built-up area, and other area of the monitoring area [38].
In order to achieve the precision of this test and obtain practical research value, we selected
the core monitoring area of the canal in Wujiang District as the test sample site because the
canal landscape in this section is rich in visual resources and diverse in aesthetic features,
which can significantly reflect the relationship between the human subjective evaluation
conclusions and the results of the prediction model, and it is an ideal research object.
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2.2. Methods
2.2.1. Street View Images

Streetscape imagery is widely used for neighborhood environmental quality assess-
ment [39], street vitality [40], street safety perception [41], visual preference [42], thermal
comfort perception [43], and walking route selection [44], extending to the measurement
and assessment of streetscape quality [45–47]. With the continuous optimization of algo-
rithms, one is able to obtain a larger range of visual fields and a finer granularity of visual
information [48].

The use of street view images helps to analyze the visual quality of a canal landscape
with linear characteristics. We obtained vector data of a canal water system and roads in
Wujiang District from Open Street Map by using Baidu Street View (BSV) photos. Then, the
road vectors in the buffer zone were extracted separately using the cropping tool. In QGIS
3.22.11, the “Points along geometry” tool was used to generate vertices on the roads at 100 m
intervals [49], and these vertices’ coordinates were the acquisition coordinates of the Street
View images. The original images acquired through the API are 360◦ panoramic images.
In order to facilitate the subsequent fine-tuning of the model, we split the panoramic
image obtained from a single acquisition coordinate into four sheets, which show the 90◦

viewpoints in the four directions of east, south, west, and north. Each image has a size of
480 × 320 pixels and a color depth of 24 bit. Finally, we import the acquisition coordinates
into the Application programming interface of Baidu Street View photos to acquire Street
View images in bulk. Since some image points are remote, the Baidu acquisition vehicle
did not drive to them, so there are no photos. A total of 5097 acquisition coordinates were
generated, and 16908 valid street view images were acquired in a batch, with an acquisition
efficiency of 82.93%. This provides sufficient data support for the follow-up to model
fine-tuning and analysis.

2.2.2. Landscape Beauty Assessment

The beauty degree assessment method proposed by Daniel and Boster (1976) [5] is a
representative method in the theoretical framework of the psychophysical school of thought
based on public appraisal with high reliability and sensitivity [50]. The method has been
widely used in subjective assessment studies of landscape aesthetics because of its ability
to reflect the combined opinions of diverse multi-numeric interest groups [51] and its high
applicability. This study employs the universally recognized 7 point Likert scale to quantify
respondents’ visual perceptions of canal landscape photographs. The model is given by
Equation (1):

Qij =
(
Rij − Rj

)
/Sj

Qi = ∑j Qij/Ni (1)

Qij is the standardized rating value of the jth rater for the ith landscape, Rij is the rating
value of the jth rater for the ith landscape, Rj is the mean of the jth rater’s ratings for all
landscapes, Sj is the standard deviation of the jth rater’s ratings for the same landscape, Qi
is the scenic beauty value for the ith landscape, and Ni is the number of valid raters for the
ith landscape.

To facilitate the testing of landscape beauty assessment for the three sub-area types
within the core monitoring area, we quantified the ratio of each sub-area to the total area
of the monitoring area of 105.71 square kilometers [38] as 3:5:2. The area of riverfront
ecological space is 27.6 square kilometers (26.11%), the area of built-up area is 55.24 square
kilometers (52.26%), and the area of the monitoring area is 22.87 square kilometers (21.63%).
We randomly selected 30, 50, and 20 test images proportionally, totaling 100 images. To
ensure the accuracy and recall rate of the questionnaire test, we used both online and offline
methods to obtain the questionnaire results and set the time for testers to view each image
to 7 s [5].
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2.2.3. Convolutional Neural Network Fine-Tuning

We chose Neural Image Assessment (NIMA) as the experimental model, a mainstream
neural convolutional network for image aesthetic quality assessment with the advantage
of achieving a high correlation of predicted population ratings of test images in a concise
architecture, which has significant advantages in prediction methods [32]. To meet the
needs of this study, we used MobileNet V2 as the baseline convolutional neural network
and fine-tuned it. Compared to VGG16, which has about 130 million parameters, MobileNet
V2 uses only about one-forty-fifth of the number of parameters (3.22 million), but it is able
to achieve about 82.98% of the performance of VGG16 [32,52].

Fine-tuning a convolutional neural network requires the use of a specific dataset.
We divide the dataset into two parts: the image dataset and the score dataset. The image
dataset contains the SBE-evaluated street photos, along with the photo IDs and the collected
latitude and longitude coordinates; the score dataset contains the mean rank and standard
deviation of the SBE evaluation results. After merging these datasets, they are divided into
training, validation, and test sets in the proportions of 75%, 15%, and 10%.

After loading the pre-trained NIMA model and augmented training dataset in Matlab
2022b, the MobileNet V2 network is modified, and the training parameters are set. The
main parameters affecting the performance of the model are batch size, learning rate, and
epoch, respectively. The batch size is directly related to the training speed, and a larger
batch size can accelerate the training speed. However, either too large or too small a batch
size can negatively affect the results. Too large a batch size can cause the model to be overly
dependent on a few samples in the dataset, which reduces the model’s generalization ability;
too small a batch size introduces more noise, leading to an unstable training process [53].
Learning rate is one way to adjust the input weights of a neural network. For MobileNet
V2, the fine-tuning learning rate is usually between 1 × 10−5 and 1 × 10−3. The number of
iteration rounds is the number of times the training dataset passes through the network
intact and returns. Pre-trained models usually have good feature extraction capabilities
and thus do not require too many iteration rounds [54].

After the fine-tuning is completed, the performance of the model needs to be evaluated.
The metrics used in this study are Earth Mover’s Distance (EMD), Binary Classification
Accuracy (BCA), Mean Linear Correlation Coefficient (meanLCC), and Mean Spearman’s
Rank Correlation Coefficient (meanSRCC). The value of EMD indicates the closeness of the
prediction to the true rating distribution, and the closer the value of EMD is to 0, the closer
the model is to the true rating distribution [55]. Binary Classification Accuracy is a metric
used for binary classification model performance and indicates the proportion of samples
correctly classified by the model. It takes values in the range of [0, 1], where 0 indicates that
the model is completely wrong and 1 indicates that the model is completely correct [56].
meanLCC is used to measure the linear correlation performance of image quality evaluation
models. It measures the degree of fit of the assessment model to human subjective ratings by
calculating the linear correlation coefficient between the predicted values of the assessment
model and the subjective ratings of the test population. The closer the value of meanLCC
is to 1, the higher the linear correlation between the model and the ratings of the test
population. meanSRCC is used to measure the hierarchical correlation performance of the
image quality evaluation model. It measures the ranking consistency of the assessment
model for human subjective ratings by calculating the Spearman rank correlation coefficient
between the predicted values of the assessment model and the subjective ratings of the test
population. The closer the value of meanSRCC is to 1, the higher the ranking consistency
between the model and the ratings of the test population [57,58].
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3. Results
3.1. Results of SBE Evaluation

In order to obtain objective and comprehensive test data, a combination of online and
offline research methods were used. A questionnaire was presented to the respondents
in a compact, specific, and highly contextualized manner [59]. The online research was
conducted between 14 April 2023 and 28 April 2023 using the questionnaire star program to
obtain data. The offline questionnaire was conducted by the team at parks along the canal in
Wujiang District, Suzhou City. The parks were Canal Ancient Slender Road Park, Canal Cul-
ture Park, and Sanliqiao Ecological Park. The research time was 22 April 2023, 12:00~17:00,
and the weather was cloudy. In order to ensure that the respondents had enough time
to think and make judgments, we set the display time of each test picture to 7 s, and the
testers could not flip to the next test picture in advance. A total of 128 questionnaires were
recovered from this test, and after eliminating invalid questionnaires filled in randomly
(such as filling in only one star for all questions), a total of 100 valid questionnaires were ob-
tained, with an effective rate of 78.13%. To reflect the principle of fairness, the respondents
involved different social groups, with differences mainly in occupation, age group, and
familiarity with the study area [60,61]. Meanwhile, we used SPSS to test the reliability of the
questionnaire results, and the Cronbach’s α coefficient value was 0.866, which indicates that
the questionnaire results are highly reliable [62] (Table 1). The inflection point of each fold
in the figure represents the SBE score for a particular streetscape. The vertical axis shows
the mean SBE score and standard deviation for each streetscape ID. The mean score reflects
the degree to which the streetscape is perceived to be aesthetically pleasing, while the
standard deviation reflects the consistency of the ratings or the diversity of opinions, with
larger standard deviations indicating greater differences in opinion among evaluators [5]
(Figure 2).

Table 1. Reliability test of questionnaire results.

Cronbach’s α Ratio Standardization
Cronbach’s α Ratio Item Count Sample Size

0.866 0.835 100 100
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Within the riparian ecological space, we observed a high fluctuation in the average
SBE score curve. This is formed due to the strong visual attraction generated by landscape
visual attraction elements such as the watershed, vegetation, and topography. The standard
deviation of the high points reflects the subjective variability in the respondents’ evaluation
of the aesthetic quality of the landscape [63]. The other areas of the monitoring zone have
lower mean score values than the riverfront ecological space, with significant fluctuations.
This indicates that there is a large difference in the visual favoritism of the streetscape
within the area by different testers. This indicates that the richness of landscape elements
within the area is high. In particular, urban streetscapes with diverse vegetation species
have higher mean score values, whereas those in the outskirts of the city will have lower
mean score values due to the lack of diverse vegetation species [64]. Within built-up
areas, the fluctuations in mean score values increased significantly, reflecting the increased
diversity of visual landscape elements within built-up areas and their compatibility with
the surrounding environment, such as architectural style, scale, color, and materials [65].
The standard deviation values also showed large fluctuations, reflecting the low consistency
of streetscape aesthetics scores in built-up areas. This may be due to the fact that people’s
evaluations of the aesthetics of urban environments are more subjective and more likely to
be influenced by personal aesthetic preferences [66].

3.2. Model Parameter Exploration Results

The main purpose of model parameter exploration when fine-tuning convolutional
neural networks is to improve the performance and adaptability of CNNs [67]. We use
grids that have already been trained on other datasets for continued training, which can
be more efficient than starting with random weights. In order not to change the weights
excessively, we assume that the existing model performs well on the new dataset and can
reduce the learning rate. Reducing the learning rate helps the model to adapt to the new
dataset in small steps up to the point of retaining the already learned features [68].

Model parameter exploration is divided into two main steps. First, the batch size of
the parameters is determined. Small batch sizes provide better quality training stability
and generalization performance by allowing the model to make more noisy updates during
training. Large batch sizes provide fewer noisy updates and stable gradients during
model training and can lead to fast but low-quality generalization [69]. To ensure that the
model has good generalization ability, a batch size of 16 for this study was determined
after integrating the morphology of the validation curves. Next, two sets of variables
were explored, the learning rate and the number of iteration rounds. We first restrict the
learning rate to 1 × 10−5 and explore the sets of iteration rounds 25, 50, 75, 100, 125, and
150. The results show that when the number of iteration rounds is less than 50, the loss
curve of the model does not realize smooth convergence, and there is still a more obvious
downward trend; when the number of iteration rounds is greater than 75, the loss curve of
the model has completed convergence and the subsequent changes are small, and even the
phenomenon of overfitting is absent; thus, 50 and 75 are the parameter values of iteration
rounds for the present study. Finally, we tested all the learning rates from 1 × 10−4 to
1 × 10−3 at intervals of 1 × 10−4 under the conditions of 50 and 75 iteration rounds, =and
the results show that the model performance is best in the interval of [5 × 10−4, 1 × 10−3]
(Figure 3) (Table 2).

Table 2. Information on the four best-performing models.

Model_id Batch Size LR Epoch EMD BCA (%) meanLCC meanSRCC

Model_1 16 1 × 10−3 50 0.0761 73.3 0.6805 0.6893
Model_2 16 8 × 10−4 75 0.0756 66.7 0.7329 0.6679
Model_3 16 7 × 10−4 50 0.0476 * 100 * 0.6315 0.6321
Model_4 16 5 × 10−4 50 0.0874 66.7 0.7348 * 0.7929 *

* Indicates the finest value in each performance indicator.
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3.3. Results of Model Performance Evaluation

In order to fully reflect the performance of the model, we chose two correlation
indices, Pearson and Spearman, to correlate the subjective evaluations of respondents with
the model in the dataset [70]. In the Pearson correlation coefficients report, the average
scores of Model_1, Model_2, Model_3, and Model_4 with the average scores of the human
evaluation data (meanData_0) Pearson correlation coefficients were 0.541, 0.544, 0.601, and
0.368, respectively, and all of the correlation coefficients were at the 1% level of significance
(p-value < 0.001) (Table 3). This indicates that there is a moderate to strong positive
correlation between the mean scores of the four models and the mean human scores,
with Model_3 having the strongest correlation with the human ratings. The correlation
coefficients between Model_1, Model_2, Model_3, and Model_4 show the similarity of their
respective evaluation criteria. For example, Model_1 and Model_2 have a correlation of
0.622, while Model_3 and Model_4 have a correlation of 0.412, which suggests that the
degree of similarity between the models internally is not high.

In the Spearman mean score correlation coefficients report, the Spearman correlation
coefficients of Model_1, Model_2, Model_3, and Model_4 with the human evaluation
data were 0.574, 0.634, 0.661, and 0.413, respectively, and were also significant at the 1%
significance level (p-value < 0.001) (Table 4). The positive correlation between model
evaluation and respondent evaluation is further emphasized, with Model_3 in particular
showing the strongest correlation.

From the standard deviation correlation coefficients reported, it was found that the
standard deviation of Model_1 showed a negative correlation with the standard deviation
of the human evaluation data in Pearson’s test (−0.201) but was stronger in Spearman’s test
(−0.219), both being significant at the 5% level of significance (Tables 3 and 4). The standard
deviation correlations between the Human Evaluation data and the Model Evaluation data
show the extent to which they vary in consistency. For example, the correlation between
human evaluation data and Model_3 is −0.227, indicating that the magnitude of change in
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Model_3 in the evaluation is not exactly the same as in the human evaluation; however, the
correlation of standard deviations between the models shows a consistent change in the
evaluation criteria. For example, the standard deviation correlation between Model_2 and
Model_3 is 0.525, indicating that the two models are more similar in terms of changes in
evaluation criteria.

Table 3. Pearson correlation test for pre-selected models.

meanData_0 meanData_1 meanData_2 meanData_3 meanData_4

meanData_0 1 (0.000 ***) 0.541 (0.000 ***) 0.544 (0.000 ***) 0.601 (0.000 ***) 0.368 (0.000 ***)
meanData_1 0.541 (0.000 ***) 1 (0.000 ***) 0.622 (0.000 ***) 0.49 (0.000 ***) 0.368 (0.000 ***)
meanData_2 0.544 (0.000 ***) 0.622 (0.000 ***) 1 (0.000 ***) 0.541 (0.000 ***) 0.352 (0.000 ***)
meanData_3 0.601 (0.000 ***) 0.49 (0.000 ***) 0.541 (0.000 ***) 1 (0.000 ***) 0.412 (0.000 ***)
meanData_4 0.368 (0.000 ***) 0.368 (0.000 ***) 0.352 (0.000 ***) 0.412 (0.000 ***) 1 (0.000 ***)

stdData_0 stdData_1 stdData_2 stdData_3 stdData_4

stdData_0 1 (0.000 ***) −0.201 (0.045 **) −0.116 (0.249) −0.227 (0.023 **) 0.066 (0.516)
stdData_1 −0.201 (0.045 **) 1 (0.000 ***) 0.368 (0.000 ***) 0.391 (0.000 ***) 0.217 (0.030 **)
stdData_2 −0.116 (0.249) 0.368 (0.000 ***) 1 (0.000 ***) 0.525 (0.000 ***) 0.459 (0.000 ***)
stdData_3 −0.227 (0.023 **) 0.391 (0.000 ***) 0.525 (0.000 ***) 1 (0.000 ***) 0.224 (0.025 **)
stdData_4 0.066 (0.516) 0.217 (0.030 **) 0.459 (0.000 ***) 0.224 (0.025**) 1 (0.000 ***)

Note: ***, ** represent 1% and 5% significance levels, respectively.

Table 4. Spearman correlation test for pre-selected models.

meanData_0 meanData_1 meanData_2 meanData_3 meanData_4

meanData_0 1 (0.000 ***) 0.574 (0.000 ***) 0.634 (0.000 ***) 0.661 (0.000 ***) 0.413 (0.000 ***)
meanData_1 0.574 (0.000 ***) 1 (0.000 ***) 0.67 (0.000 ***) 0.575 (0.000 ***) 0.447 (0.000 ***)
meanData_2 0.634 (0.000 ***) 0.67 (0.000 ***) 1 (0.000 ***) 0.68 (0.000 ***) 0.456 (0.000 ***)
meanData_3 0.661 (0.000 ***) 0.575 (0.000 ***) 0.68 (0.000 ***) 1 (0.000 ***) 0.494 (0.000 ***)
meanData_4 0.413 (0.000 ***) 0.447 (0.000 ***) 0.456 (0.000 ***) 0.494 (0.000 ***) 1 (0.000 ***)

stdData_0 stdData_1 stdData_2 stdData_3 stdData_4

stdData_0 1 (0.000 ***) −0.219 (0.028 **) −0.139 (0.167) −0.235 (0.018 **) 0.031 (0.762)
stdData_1 −0.219 (0.028 **) 1 (0.000 ***) 0.366 (0.000 ***) 0.349 (0.000 ***) 0.219 (0.029 **)
stdData_2 −0.139 (0.167) 0.366 (0.000 ***) 1 (0.000 ***) 0.539 (0.000 ***) 0.421 (0.000 ***)
stdData_3 −0.235 (0.018 **) 0.349 (0.000 ***) 0.539 (0.000 ***) 1 (0.000 ***) 0.226 (0.023 **)
stdData_4 0.031 (0.762) 0.219 (0.029 **) 0.421 (0.000 ***) 0.226 (0.023**) 1 (0.000 ***)

Note: ***, ** represent 1% and 5% significance levels, respectively.

Model_3 performed the best in terms of consistency with human evaluations, with
a high degree of consistency between its Pearson and Spearman correlation coefficients
(Table 3). Model_4 performed the worst in terms of consistency with human evaluations.
The similarity of the evaluation criteria was higher between Model_1 and Model_2 and
between Model_2 and Model_3. By comparison, Model_3 was found to perform close to
the performance of the NIMA (MobileNet) model trained by TID2013 (0.698) and better
than the NIMA (MobileNet) model (0.510) [32]. To summarize, Model_3 already has the
theoretical performance to predict the distribution of streetscape beauty in the study area
to a certain extent.

3.4. Visualization of Prediction Results

To verify the usefulness of the model, the 100 street view images used to fine-tune
the model were removed. We used Model_3 to predict the remaining 16,808 street view
images for human subjective evaluation and visualized the results using ArcGIS Pro 3.0.2
(Figure 4). We first mapped the prediction results containing coordinate information to
form point elements on the map. Since point elements are not uniformly distributed on
the map, it is necessary to rely on an interpolation process to create continuous spatial
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surfaces or predicted surfaces from limited point data [71]. This process covers a variety of
interpolation methods including inverse distance weighting, natural neighborhood, trend,
spline, and kriging. Kriging, the interpolation technique for point elements in ArcGIS Pro
3.0.2 selected for this study, is an efficient and reliable tool for spatial data analysis due to
its ability to provide accurate predictions based on statistical models, its ability to optimize
sampling strategies and to take into account scientific and technological trends, and its
high degree of flexibility and adaptability [72]. Cross-validation is a key component to
ensure the quality of kriging interpolation [73]. Bias in the model can be detected and
corrected to ensure the accuracy and reliability of the interpolation results. Commonly
used assessment metrics include Root Mean Square (RMS) and Average Standard Error
(ASE), where the RMS is used to measure how close the predicted values are to the average
measurements; the smaller the RMS, the more accurate the predicted values are, and thus
the ASE value should be close to the RMS. If the opposite is true, it means that the ASE
value is inaccurate [74]. These metrics help to quantify the difference between the predicted
values and the actual observed values, thus assessing the performance of the model. The
results of cross-validation show that the Root-Mean-Square and Average Standard Error
are both at a low level (less than 0.2) and are very close to each other (∆ ≈ 0.025) (Table 5).
It can be concluded that Model_3 performs well in the prediction of human subjective
evaluations of street view images and that the results processed by Kriging interpolation
are reliable.

Table 5. Summary of cross-validation report.

Indicator Value

Mean −0.00119693795090222
Root-Mean-Square 0.112469443221043
Mean Standardized −0.0082343573416086

Root-Mean-Square Standardized 0.978334654061759
Average Standard Error 0.11499194216091
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We statistically analyzed the landscape aesthetics of the three study areas (Table 6 and
Figure 5). The built-up area had a mean of 6.67, which was the lowest among the three
areas. The first and third quartiles ranged from 6.50 to 6.85; outliers were not clearly shown
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and there were no extreme high or low values. The standard deviation was 0.22, but due to
the wide interquartile spacing, it indicated that the data were slightly more dispersed. The
mean of the aesthetics of other areas in the monitoring area was about 6.72, which is tied for
first place with the riverfront ecological space; the range of the first quartile and the third
quartile is about 6.60 to 6.85; the outliers are not clearly shown, with some streetscapes
lower than the score of 6.20, and the overall distribution of the aesthetics values is relatively
centralized; the standard deviation is about 0.22, which is similar to that of the built-up
area. The average beauty degree of the riverfront ecological space is 6.72, which is tied for
first place with other areas in the monitoring area; the first quartile and third quartile range
from 6.60 to 6.85; the outliers are not clearly shown, but some streetscapes are lower than
6.20, the lowest value is slightly higher than that of other areas in the monitoring area, and
the distribution of the overall beauty degree value is relatively centralized; the standard
deviation of riverfront ecological area is the smallest among the three areas, indicating that
the beauty degree value of the riverfront ecological space is the most stable and consistent.
Here are some examples of higher and lower ratings (Figure 6).

Table 6. Statistics on the SBE value of each area.

Area meanSBE minSBE maxSBE Standard Dev.

Built-up area 6.67 6.04 7.03 0.22
Other area of the monitoring area 6.72 6.03 7.07 0.22

Riverfront ecological area 6.72 6.06 7.03 0.20
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4. Discussion
4.1. Main Findings

We found from the analysis results that there are obvious fluctuations in the landscape
beauty rating values of the riverfront ecological space, other areas of the monitoring
area, and the built-up area, among which the built-up area shows significant fluctuations
in the beauty rating values. This indicates that there are large differences in the visual
attractiveness of natural landscape features and architectural styles in different areas, which
also reflects the diversity of visual landscapes and the subjectivity of evaluation groups.

By fine-tuning the pre-trained CNN and selecting appropriate hyperparameters, we
were able to enhance the model’s generalization ability on small datasets. Ultimately,
Model_3 is considered the optimal model for its high agreement with human evaluation
on Pearson and Spearman correlation coefficients. In addition, the utility of Model_3
is validated by the prediction of a large-scale collection of street view images and the
visualization of kriging interpolation in ArcGIS Pro 3.0.2. The cross-validation results show
that Model_3 has a high prediction accuracy, and its root-mean-square and average standard
error are at a low level, which ensures the accuracy and reliability of the interpolation
results. The above metrics show that CNNs with smaller number of parameters are able to
effectively learn the features of human subjective evaluations and make predictions over a
wide geographic range.

According to the prediction results of Model_3, we find that the built-up area has the
lowest mean value of aesthetics, while the riverfront ecological space and other areas of
the monitoring area have the highest mean value of aesthetics. It indicates that landscapes
with high naturalness play an important role in enhancing the visual quality of streetscape
aesthetics. Overall, our study not only demonstrates the potential application of deep
learning models in streetscape aesthetics evaluation but also provides an important visual
aesthetics evaluation tool for urban planners.

4.2. Importance of Fine-Tuning for Performance Improvement

In analyzing the relationship between human ratings and each model (including one
pre-trained model and four screened fine-tuned models), we found the following key phe-
nomena. First, all the fine-tuned models showed a positive correlation with human ratings,
indicating that these models were able to mimic human rating patterns to some extent.
However, for the pre-trained models, the trend line showed a negative slope, suggesting a
negative correlation with human ratings (Figure 7). This suggests that without fine-tuning,
the model’s scoring patterns are significantly different from human scoring patterns. This
finding highlights the importance of fine-tuning in machine learning, especially in scenar-
ios where models are required to accurately understand and mimic human behavior [75].
Performance differences between fine-tuned models further reveal the possible impact
of different fine-tuning strategies, highlighting the need to optimize models for specific
tasks [76]. These observations not only demonstrate the potential of machine learning to
mimic complex human tasks but also highlight the importance of the fine-tuning process in
enabling highly specialized machine learning applications [77].
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4.3. Application of Deep Learning Techniques in Landscape Disciplines

In recent years, deep learning techniques have become an important means to quantify
the perception of the human living environment in the landscape discipline. In the land-
scape discipline, two types of deep learning models, mainly image segmentation models
and natural language processing, are widely used.

4.3.1. Image Segmentation Model

The role of image segmentation models is to segment an image into different regions or
objects with semantic information, which facilitates target detection and recognition tasks.
In the discipline of landscape, SegNet was used to quantify the greenness, openness, and
enclosure of Beijing’s hutong streetscapes to analyze the connection between the physical
quality of the environment and human subjective perception [78]. The association between
green visibility and residents’ mental health can be analyzed by using the green visibility
indicator in separated streetscape images [79]. Image segmentation can also be used to
study walking accessibility (Walkability) and street safety [80,81]

Compared to the widespread use of image segmentation models, models based on
image aesthetic quality assessment have not yet received a great deal of attention in the
landscape discipline at present, and the difference lies in the fact that the two yield different
results: image segmentation models are mainly used to quantify landscape elements in
streetscape images [82], while image aesthetic quality assessment models are mainly used
to quantify the overall aesthetic quality of a streetscape image [83]. In addition, image
segmentation models often do not need to be fine-tuned and can be segmented directly
using the pre-trained model, while image aesthetic quality assessment models need to
be fine-tuned with sample data to match experimental and practical needs [84]. Despite
the generalizability of the image aesthetic quality assessment pretraining model, it does
not reflect the subjective needs of a specific population [85]. The image aesthetic quality
assessment model, with its prominent beauty metrics, can provide an intuitive and direct
reflection of the landscape aesthetics of the study population without the need to rely on
data other than street view images and human ratings.
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4.3.2. Natural Language Processing Models

Natural language processing is an important branch at the intersection of computer
science, artificial intelligence, and linguistics, which is dedicated to the study and devel-
opment of computer systems that are capable of effectively understanding, interpreting,
and modeling human language [86]. Natural language processing covers a wide range of
topics including, but not limited to, speech recognition, natural language understanding,
natural language generation, machine translation, and sentiment analysis. Among them,
sentiment analysis is the main direction of landscape disciplines using natural language
processing models, usually using social media comments as research samples, by analyz-
ing the sentiment polarity (positive or negative labels) of the comments and identifying
the positive and negative sentiment parts of the venues by using the sentiment analysis
technique based on the EASYDL deep learning platform [87] for correlation analysis with
other variables [88]. Sentiment analysis can also be used to identify urban park attributes
associated with positive emotions, finding that visitors to different types of urban parks
have different levels of positive emotions [89]. Recently, scholars have begun to combine
sentiment analysis techniques with street scene image segmentation techniques. Coupling
remote sensing imagery, streetscape images, social media comments, and PPGIS platform
data is advocated to assist informal green space identification in the context of urban
renewal [90].

Natural language processing (NLP) models and image aesthetic quality assessment
models differ significantly in their core purposes, with natural language processing models
focusing on interpreting and generating human language [91], while image aesthetic quality
assessment models are dedicated to quantifying the overall aesthetic quality of images.
However, the two exhibit certain similarities when dealing with complex data: methodolog-
ically, natural language processing models usually require a large amount of linguistic data
for training in order to understand and model different linguistic structures and meanings,
similar to image aesthetic quality assessment models that require a large number of images
and related aesthetic scores to train their judgment criteria [92]. Furthermore, similar to
image aesthetic quality assessment models, natural language processing models face the
challenge of needing to adapt to specific application scenarios, such as parsing and generat-
ing text within a specific scenic area or in a specific cultural context [93]. However, despite
the ability of NLP models to understand and reflect the emotion or style of a text in certain
situations, this ability is not always a complete substitute for subjective human judgments,
similar to the limitations of image aesthetic quality assessment models in evaluating the
aesthetics of a specific population [94]. In summary, despite the different purposes for
which natural language processing models and image aesthetics quality assessment models
can be applied in landscape disciplines, they show some similarities in terms of dealing
with highly complex datasets, the challenges they need to face, and the search for a balance
between model generalizability and specific needs.

4.4. Advantages and Limitations

Compared with traditional methods, landscape assessment using convolutional neural
network models has the following advantages. First, it can reduce the time and economic
cost required for landscape assessment. Traditional urban landscape assessment methods
require a large amount of human resources for research, while the convolutional neural
network model can predict the quality of a large range of landscapes by learning a small
number of samples, which effectively reduces the cost of research and improves efficiency.
Second, the model is very easy to adjust. The pre-trained convolutional neural network
model only needs to be fine-tuned with a small number of samples, so it is more targeted
in predicting landscape quality and can meet the aesthetic needs of different landscape
types and different interest groups. Finally, the current field of artificial intelligence is
developing rapidly, and the field of computer vision has made rapid progress in recent
years, and many excellent models have emerged, such as the image segmentation model
SAM (Segment Anything Model) and the generative model DALLE-2 [95,96]. These models



Land 2024, 13, 673 15 of 19

have strong generalization properties and do not require post-process fine-tuning by the
user. Since image aesthetic quality prediction models share similar principles with these
models, strong generalization performance can theoretically be achieved as well.

Of course, there are some limitations to the current use of convolutional neural net-
works for landscape assessment. The first is the limitation of training samples. Although
the sample size required for fine-tuning the model is small, the status of the characteristics
of the test population in the process of making the sample will directly affect whether
the model prediction results are universally representative. This can only be achieved by
having some knowledge of the demographic composition of the study area. In addition,
the street view images themselves have more variables (e.g., seasons, weather), making it
difficult to present the landscape in a completely objective and consistent manner. Second,
there are limitations in the configuration conditions of the hardware used to analyze the
data. Large models with high generalizability often need to be obtained by high-level
research institutions after a long time of training on large-scale computing devices. In-
dividual users or small-scale research institutions may find it difficult to fine-tune large
models due to hardware constraints, limiting the popularity and scope of application of
customized models. The above advantages and limitations make convolutional neural
network modeling a promising emerging technique in the field of landscape assessment.

5. Conclusions

In conclusion, this study successfully demonstrated the feasibility of employing convo-
lutional neural networks to emulate human subjective assessments and forecast landscape
visual quality, affirming their efficacy in this domain with outcomes closely mirroring hu-
man judgments, thereby attesting to a high level of precision and robustness. Moreover, it
validated the potential for achieving superior performance through model fine-tuning with
a minimal dataset, broadening practical applications. By visually rendering these predic-
tive analyses, our work fosters an intuitive grasp of varying regional landscape aesthetics,
thereby enriching the understanding and practical toolbox of urban planners, landscape
designers, and environmental assessment specialists. In doing so, it not only supplies these
professions with innovative techniques for assessing and comprehending landscape beauty
but also imparts significant insights and empirical data to the realms of computer vision
and machine learning research. Ultimately, this research endeavor contributes significantly
to elevating societal consciousness and appreciation concerning the value of environmen-
tal aesthetics. Our research findings furnish municipal administrations with theoretical
underpinnings and hold considerable promise across multiple domains. Primarily, this
technology facilitates the development of a multidimensional urban landscape aesthetics
evaluation framework, encompassing both natural and man-made landscapes, as well as
visual and cultural–historical values, enabling comprehensive and objective assessments
tailored to the distinct characteristics of each city. Furthermore, it empowers urban admin-
istrators to conduct simulation studies on the impact of various policy interventions, such
as increasing green spaces, enhancing street scenery, or preserving historical structures,
on the city’s aesthetic appeal. This step is pivotal in demonstrating the potential bene-
fits of specific changes to policymakers. Augmented by social media, policy formulation
bodies can also engage citizens in the appraisal of landscape aesthetics, collecting public
perceptions and preferences regarding different urban areas. This process enhances our
understanding of the key elements vital for improving urban aesthetics, informing policy
recommendations more attuned to popular sentiment. Lastly, we may establish a sus-
tained monitoring and evaluation mechanism for urban landscapes, periodically assessing
whether policy implementations meet expectations, if aesthetic enhancements are notable,
and how these transformations influence residents’ quality of life, urban attractiveness,
and tourism economy, among others. Such a system not only facilitates timely strategic
adjustments but also furnishes invaluable data for subsequent research endeavors. In
summary, we believe that this approach has a wide potential for application in real life and
much room for development. This method brings a new interpretation to the traditional
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means of environmental perception, so we will continue to explore the better application of
this technology in urban landscape planning and habitat improvement.
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