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Abstract: The goal of blast-hole detection is to help place charge explosives into blast-holes. This
process is full of challenges, because it requires the ability to extract sample features in complex
environments, and to detect a wide variety of blast-holes. Detection techniques based on deep
learning with RGB-D semantic segmentation have emerged in recent years of research and achieved
good results. However, implementing semantic segmentation based on deep learning usually
requires a large amount of labeled data, which creates a large burden on the production of the
dataset. To address the dilemma that there is very little training data available for explosive charging
equipment to detect blast-holes, this paper extends the core idea of semi-supervised learning to RGB-
D semantic segmentation, and devises an ERF-AC-PSPNet model based on a symmetric encoder–
decoder structure. The model adds a residual connection layer and a dilated convolution layer
for down-sampling, followed by an attention complementary module to acquire the feature maps,
and uses a pyramid scene parsing network to achieve hole segmentation during decoding. A new
semi-supervised learning method, based on pseudo-labeling and self-training, is proposed, to train
the model for intelligent detection of blast-holes. The designed pseudo-labeling is based on the HOG
algorithm and depth data, and proved to have good results in experiments. To verify the validity
of the method, we carried out experiments on the images of blast-holes collected at a mine site.
Compared to the previous segmentation methods, our method is less dependent on the labeled data
and achieved IoU of 0.810, 0.867, 0.923, and 0.945, at labeling ratios of 1/8, 1/4, 1/2, and 1.

Keywords: hole detection; semi-supervised learning; semantic segmentation; RGB-D perception

1. Introduction

Charging explosives is an essential part of mining operations [1], and conveying the
pipe to the required blast-hole location is a critical link in the development of a mechanized
charging system [2]; i.e., hole detection. The main objectives of this work were focused on
assisting with blast-hole detection for charge blasting systems. At present, almost all mines
still require a large amount of manpower during hole loading, due to manual operation,
and a series of problems inevitably occur, such as inefficiency, explosive corrosion, untimely
response, and physiological fatigue [3]. More seriously, the workers are exposed under
the top of the loose rock, and their lives are in danger all the time. In recent years, with
the development of artificial intelligence and computer vision technology, automatic hole
detection has undoubtedly become a major trend for the future [4]. Unfortunately, the
harsh environment in mines makes this hard to achieve. There are various methods of
drilling blast-holes, and the fracture patterns of rock walls near the holes are varied. These
problems seriously affect the efficiency and accuracy of automatic hole detection, which
makes it a key problem that needs to be solved for explosive charging equipment. Some
related research work has been carried out, as follows.
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For the hole detection problem, Duda et al. [5] first used the Hough transform (HT) for
circle detection. Nakanishi et al. [6] proposed a highly parallel Hough transform algorithm
for high-speed extraction, using the symmetry of image space, but the algorithm is very
intensive in terms of computational and storage resources. Many improvements have,
therefore, been made on this basis, such as probabilistic HT [7], randomized HT [8], fuzzy
HT [9], and randomized circle detection (RCD) algorithms [10], etc. These methods make
the detection more efficient, but none of them has a good trade-off between accuracy
and computational complexity. In the work done by Ayala-Ramirez et al. [11], a genetic
algorithm (GA) detector achieved sub-pixel accuracy for round hole detection, but could not
handle small round holes in images. The edge drawing parameter free (EDPF) algorithm
proposed by Akinlar et al. [12] uses a parameter-free edge segment detector to achieve
real-time detection of circular holes, based on previous studies; hence the name EDCircles,
but it is generally ineffective for detecting defective circular holes. Inspired by Jiao et al. [13],
object detection based on deep learning came into the limelight.

With the development of deep learning in computer vision, there is a clear picture
of its achievements in the field of object detection. One of the generic models is the full
convolutional neural network (FCN), which can be trained end-to-end [14]. Chen et al.,
proposed [15] introducing conditional random fields at the fully connected layer, based
on FCN, and showed a better segmentation performance, as tested in PASCAL VOC
2012, but with the problems of a large number of parameters and long processing time.
Lu et al. [16] raised a graph model initialized by FCN, named Graph-FCN, to achieve better
segmentation performance by extracting more features with a larger receptive field; but
this still does not address the problem of low processing efficiency. An efficient residual
factorized convolutional neural network (ERFNet) [17] reduces the number of network
parameters and processing time, by adding a residual connection layer and a dilated
convolution layer in the down-sampling based on FCN, and at the same time obtaining
more information, but the limited scene resolution capability restricts the segmentation
effect of the network. Zhao et al. [18] suggested a pyramid scene parsing network (PSPNet),
to improve the network’s ability to perceive scenes; however, in practical tests, it was found
that the quantity of information provided by RGB images in the mining cave environment
was not sufficient for detection. Therefore, the method using RGB-D data as network
input [19] captured our attention. References [20,21] achieved good segmentation with
RGB-D data, but the feature extraction ratio was stationary, which is not suitable for some
special cases. The study in [22] enhanced the segmentation effect, by achieving a dynamic
extraction of features through an attention complementary module (ACM). However,
training these networks takes a large amount of labeled data. In the mining industry,
there is very little labeled data, as manual labeling is time-consuming and tedious. Large
amounts of unlabeled data are usually accessible with relative ease. The semi-supervised
learning (SSL) developed by Chapelle et al. [23] provides us with methods to train deep
networks using vast quantities of unlabeled data.

In summary, blast-hole detection approaches suffer from two problems: the insufficient
accuracy of segmentation models, and the absence of labeled data for training. We intend
to train a multimodal fusion deep learning model to achieve pixel-level detection of blast-
holes through a semi-supervised learning method. To accomplish this, we need to design a
feature extraction network with RGB-D input and employ it to increase the information
in the feature map. In addition, a new SSL method is proposed, by combining pseudo-
labeling and self-training methods to train the network using unlabeled data, and without
increasing the model complexity.

In this paper, we propose a new method for achieving the intelligent detection of
blast-holes, using semi-supervised learning. We design a symmetric FCN-based ERF-AC-
PSPNet model to enhance the sample extraction capability, which incorporates a residual
connection layer and dilated convolution layer in down-sampling. The ACM is integrated
to capture the feature map for dynamic extraction from RGB-D data, and the pyramid
scene parsing network is used in decoding. After that, the model is trained with our SSL
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approach, to achieve hole segmentation. The pseudo-label we designed is based on the
HOG algorithm and depth and provided a good result in experiments. Compared with
the currently popular segmentation methods, our approach has a prominent segmentation
effect on blast-holes and less dependence on labeled data; reaching IoU of 0.810, 0.867,
0.923, 0.945, at labeling ratios of 1/8, 1/4, 1/2, and 1. The main features of our work are
as follows:

1. The proposed method for blast-hole detection with our ERF-AC-PSPNet model ex-
tends the idea of SSL to RGB-D semantic segmentation and has a segmentation effect,
to meet the demand for blast-hole detection without labeled datasets.

2. The model optimizes the problem of unequal information and inconsistent back-
ground distribution between RGB images and depth images.

2. Related Work

In this section, we review the relevant literature on RGBD pixel-wise semantic seg-
mentation and semi-supervised learning.

2.1. RGBD Pixel-Wise Segmentation

The performance of semantic segmentation networks based on single-modal data
tends to degrade when illumination conditions are not sufficient in the mine tunnel [24].
The auxiliary depth may reduce the uncertainty of the segmentation of objects having
similar appearance information. An early attempt, in [25], was simply to connect the
RGB and depth channel as four-channel inputs and feed them into a conventional RGB
modal network. However, in most cases, this approach cannot take advantage of the
complementary information in the depth map [26]. Recently, fully convolutional network
architectures of the encoder–decoder type have been successful in the field of semantic
segmentation. Hazirbas et al. proposed FuseNet [20], by fusing RGB and depth data in an
encoder–decoder architecture, where the encoders use a VGG-16 [27] backbone to extract
features. The feature maps from the depth encoder are fused into the RGB encoder as the
network progresses, increasing the information features extracted, but the sparse fusion is
less effective in extracting some types of shadow. Similarly, Sun et al. [28] designed two
independent branches to extract features from RGB and depth images, respectively; they
fuse the output features of the depth branch to the RGB branch using the attentional feature
complementation (AFC) module. The depth map in the mine cave is sparser, with more
complex shadows and noise. Most of these methods have complex structures and a fixed
ratio for the fusion of RGB-D features. In this paper, we use an attention complementation
network to extract features of the input, achieving competitive results with the latest
techniques in RGB-D segmentation.

2.2. Semi-Supervised Learning

The primary purpose of semi-supervised learning is to use unlabeled data to build
better learning programs. They can be divided into transfer learning, weakly-supervised
learning, positive and unlabeled learning, and meta-learning [29]. Transfer learning [30]
aims to apply knowledge from one or more source domains to knowledge from the target
domain, to improve performance on the target task. Weakly-supervised learning reduces
the dependence on data and can be divided into three categories: incomplete supervised
data, inexact supervised data, and inaccurate supervised data. Incomplete supervised data
means that only a subset of the training data is labeled. A representative approach is domain
adaptation. Inexact supervised data indicates that the labels of the training instances are
coarse; e.g., in the presence of multiple instance learning. Inaccurate supervised data
means that the given labels have errors, for example in the situation of label noise learning.
Meta-learning [31,32] aims to use previous knowledge and a few training examples to
quickly learn new skills or adapt to new tasks, also known as ‘learning to learn’. The
meta-learning model is expected to adapt to the new environment encountered during the
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training process. The adaptation process is essentially a mini-learning process that occurs
during testing, but with limited exposure to the new task configuration.

Blast-hole segmentation is essentially a pixel classification problem. Based on weakly-
supervised learning, we implement an SSL approach, combining incomplete supervised
data and inexact supervised data. Our SSL method combines pseudo-labeling and self-
training, which has two advantages over prevalent SSL methods: first, no additional
network design is required, reducing parameter complexity. Second, few SSL methods
can be applied to RGBD inputs, and our pseudo-labeling utilizes both RGB and depth
information, resulting in a smaller error rate. However, semantic segmentation applications
through SSL, especially in the mining domain, are rare and deserve more attention. There-
fore, it is necessary to bridge the gap between SSL and the field of intelligent mining. We
intend to extend the core idea of semi-supervised learning to RGBD semantic segmentation
for pixel detection of blast-holes.

3. An SSL Method Utilizing ERF-AC-PSPNet

Inspired by [33], we designed a new model with the network seen structure in Figure 1.
The model consists of two parts: a feature extraction network, and scene parsing network.
It uses ERFNet for feature extraction, further extracts features using ACM, and uses PSPNet
for feature fusion and scene parsing. ERFNet and PSPNet form our baseline network. RGB
images of size H×W× 3 and depth images of size H×W× 1 are network inputs, and
the fused features are acquired by the encoder and fed into the decoder. The output size is
H×W×C, where we set C = 2 as representing the number of semantic categories.
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In the following sections, we describe in detail how our model is designed and how
the method achieves segmentation in a semi-supervised situation.

3.1. Feature Extraction

Specifically, an efficient residual factorized network (ERFNet) can be divided into two
symmetric branches: the RGB branch, and the depth branch. They have roughly the same
process: image resolution decrease via down-sampling. Despite the fact that some detail is
lost in the down-sampling operation, the net consumption can be decreased by reducing
the resolution of the feature map. The down-sampling operation carries out convolution,
with a step size of two and average pooling in parallel. After down-sampling, the network
uses a non-bottleneck connection layer. It uses a pair of 1 × 3 and 3 × 1 convolutional
kernels connected in series, which reduces the number of parameters in the network, while
maintaining the extraction capability. At the same time, for the smooth working of the
gradient backward-propagation, the non-bottleneck connection layer is connected using
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residuals, by adding the original input to the final output feature map. We chose the
activate function ReLU [34], to give the resulting decomposition layer an inherently low
computational cost and simplicity.

From these symmetric processes, we get two feature maps, RGB and depth, respec-
tively. To facilitate subsequent processing, both feature maps have the same dimensions.

3.2. Attention Complementary Model

As Figure 2 shows, in some special scenes (e.g., mines, poorly lit rooms), the RGB
images and the depth images contain distinct information. In order to collect as many
features as possible from RGB images and depth images, we introduce a module that
allows the network to concentrate on more information-rich regions, which is known as
the attention complementary module (ACM); with the structure shown in Figure 3.
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Suppose input feature map A = [A1, · · · , Ac] ∈ RC×H×W, a global average pooling is
first performed to obtain output Z ∈ RC×H×W, where C indicates the number of channels
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and H, W indicate the height and width of the feature map, separately. The k(k ∈ [1, C])
channel of Z can be expressed as:

Zk =
1

H×W

H

∑
i

W

∑
j

Ak(i, j) (1)

Z is subsequently restructured to make use of as many channels as Z with a 1× 1
convolutional layer. This 1× 1 convolutional layer is capable of exploiting the correlation
between channels to derive the distribution of appropriate weights for these channels. The
activation function sigmoid is used to process the convolution outcome, constraining the
value of the weight vector V ∈ RC×1×1 to values between 0 and 1. Finally, we take the
outer product of A and V. The outcome U ∈ RC×H×W can be denoted as:

u = A⊗ σ[Φ(Z)] (2)

where ⊗ denotes the outer product, σ denotes the S-shaped function, and Φ denotes the
1× 1 convolution. In this way, the feature map A is transmuted into a new feature map U
containing more valid information.

3.3. Pyramid Scene Parsing

At the heart of PSPNet is the fusion of multiple features. The contextual information
in the feature maps cannot be fully and appropriately used if the up-sampling layer is
directly connected. Therefore, we apply a PSPNet, to operate in parallel on the feature
maps extracted by the ACMs.

Four convolutional layers of different step sizes are deployed on the input. Convolu-
tional layers with smaller step sizes can acquire detailed information, while convolutional
layers with larger step sizes can learn abstract information. These convolutions are then
resized using bilinear up-sampling, and the result is overlaid into a new feature extraction
layer. This layer is connected to a subsequent up-sampling process. The detailed network
design is shown in Figure 4. The feature extraction layer down-samples 1/2, 1/4, and 1/8,
respectively. There is also a branch that calculates the global feature vector by taking the
average of each channel. Global feature vectors and the outputs of the 1/2, 1/4, and 1/8
feature layers are individually learned and stacked by additional convolutional layers, to
form the final output. Reducing the number of channels in each convolutional result layer
facilitates the integration and compression of information in the network, while leaving
the information content unchanged. The activate function ReLU [34] here avoids gradient
vanishing during backpropagation.
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3.4. Semi-Supervised Training

SSL is a learning method that combines supervised learning with unsupervised learn-
ing. SSL aims to make more accurate predictions with the aid of unlabeled data and some
labeled data; in contrast to supervised learning, which only requires labeled data, and
unsupervised learning, which only requires unlabeled data. Our method combines the
pseudo-labeling method and the self-training method. The pseudo-labeling method relies
on the high confidence of the pseudo-labels, which can be added to the training dataset
as labeled data. The self-training algorithm uses the model’s confident predictions to
generate pseudo-labels of unlabeled data, adding more training data by using existing
labeled data. Before the training, a temporary label will be given to the unprocessed data
using a histograms of oriented gradients (HOG) algorithm [35] and the depth data. The
pseudo-label given by this method works better than the label given directly using the
HOG algorithm, and better labels will be beneficial to the training of the network [36]. The
training process can be divided into three steps with this approach:

1. We give a temporary annotation to the RGB-D, which uses the depth and the HOG
operator. It should be noted that this step is only performed on the unprocessed data
and it is not the final result.

2. When the input image has a label, this is a fully supervised process and will not be
repeated here. The SSL uses the previously labeled results as input for the network,
and the network will feed the images several more times and repeat the training
accompanied by a variant label.

3. In the process of repeated training, the output results will be compared with the
temporarily labeled one again and again. Corrections will be made based on the
depth data, to produce a new label for the image. This action will also be carried out
several times.

4. Experiments and Results

To test the performance of the method, a series of experiments were conducted on a
dataset containing 205 blast-hole images. All images in this dataset were captured from
real mine scenes using a real-time acquisition system with a binocular stereo depth camera.
The experimental setup is illustrated in Figure 5, and includes the explosive charging
equipment and an end effector equipped with a Stereolabs industrial camera (ZED 2i,
mode: 1080p, resolution: 3840 × 1080). We cropped each image to 512 × 512, to obtain the
final dataset. The images of the blast-holes were taken by the real-time collection system,
which is integrated with an industrial binocular stereo depth camera, and analyzed using
the method above.
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Figure 5. The experimental setup for blast-hole detection. (a) Blast-holes, (b) explosive charging end
effecter, (c) ZED2i binocular camera, (d) explosive charging equipment.
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4.1. Semi-Supervised Semantic Labeling and Training

There are three main stages in assigning labels to the data, HOG detection, depth-
based correction, and edge extraction [37]. In Figure 6, a comparison is made between our
method, HOG [35], and the edge drawing parameter free algorithm (EDCircles) [12]. The
diagram shows, from left to right, the RGB, the ground truth, the HOG, the EDCircles,
and our method. From (1), the results contain too many non-porous pixels in HOG, even
if the target was detected. (2) and (3) took the non-hole target into account, whereas our
method did not. In addition, the EDCircles showed a missed detection in (3), and the
annotation in (1) is not comprehensive. Good results were achieved by all the methods
in (2), similar to the ground truth. In general, our method has fewer non-porous pixel
points within the target region, which is more accurate for labeling and more conducive
to subsequent network training. The reasons for this problem were speculated to be as
follows: 1. Inconsistent edges in RGB and depth images caused label imperfections [38].
2. Some holes are located right at the border of the image, resulting in inaccurate detection
and consequent effects on the label [39]. 3. Systematic error of the Canny operator for edge
detection and contour extraction [37]. Fortunately, these labels were not the final results.
The labeled data would be introduced into the model for training, to further optimize the
semantic labels.
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Figure 6. Comparison of the effectiveness of various methods for labeling a blast-hole. Comparison
of the effectiveness of various methods for the labeled blast-hole. (1): The input sample contains
less noise and shadows, and the hole is clear and intact; (2): the input sample contains a lot of noise;
(3): the input sample contains shadows, and the blast-hole is at the edge.

The implementation of the network was based on the public platform Pytorch [40]
+CUDA and CuDNN backend. We trained the model in the Windows 10 operating system
with an Intel(R) Xeon(R) Gold 6248R CPU @ 3.0 GHz, 192 GB of RAM, and a single Tesla
V100 NVlink GPU with 32 GB of RAM. Inspired by [15], we used a poly learning rate
strategy, where the current learning rate was equal to the base learning rate multiplied by(

1− epoch
maxepoch

)power
. The base learning rate was set to 0.01, epoch is the number of iterations,

and maxepoch is the maximum of iterations; power controls the shape of the curve, and
we set it to 0.9. We used a momentum of 0.9 and a weight decay of 0.0001. During the
experiments, we noticed that a suitably large crop-size can produce a good performance,
and that batching of the batch size in the normalization was very important too. The batch
size was set to 16 for training, due to GPU limitations.
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4.2. Evaluation Indices and Architecture

We obtained 205 images for training, validation, and testing. The evaluation of the
segmentation effect was performed using two main indicators: intersection over union
(IoU) [41] and Dice [42]. Their function expressions were, respectively: Gi denotes the
ground truth pixel of hole i, Pj denotes the predicted pixel of hole j.

IoU =
|Gi ∩ Pi|
|Gi ∪ Pi|

(3)

Dice =
2× |Gi ∩ Pi|
|Gi|+ |Pi|

(4)

To facilitate the segmentation, and based on the symmetric encoder–decoder archi-
tecture of SegNet [43], we designed our networks inspired by ENet [44], ERFNet [17], and
PSPNet [18]. A detailed description of the overall structure is given in Table 1. Out-F:
number of feature maps at layer’s output. Out-Res: output resolution for an input size of
512 × 512. RGB and depth feature fusion are accomplished in the encoder, and residual
layers are also stacked in it. In general, there are two cases of residual layers used in
advanced networks [44,45]: bottleneck designs, and non-bottleneck designs. Here we
chose Non-bottleneck-1D, a redesigned residual layer based on a non-bottleneck that uses
the 1D factor of the convolution kernel to exploit the efficiency of bottlenecks and the
learning ability of non-bottlenecks in a good trade-off. It can efficiently use the minimum
amount of residual layers to extract feature maps and achieve semantic segmentation. In
order to gather more contextual information, while minimizing the sacrificing of learned
features, we introduced the pyramid pooling module of PSPNet [18] to harvest different
sub-regional representations, which form the final feature representation by up-sampling
and concatenating layers.

Table 1. Layer Disposal of Our Proposed Network. ‘Out-F’: Number of Feature Maps at Layer’s
Output, ‘Out-Res’: Output Resolution for an Input Size of 512 × 512.

Layer Type Out-F Out-Res

EN
C

O
D

ER

0 Scaling 3 512 × 512
1 Down-sampler block 16 256 × 256
2 Down-sampler block 64 256 × 256

3–7 5× Non-bt-1D 64 128 × 128
8 Down-sampler block 128 128 × 128
9 Non-bt-1D (dilated 2) 128 128 × 128
10 Non-bt-1D (dilated 4) 128 128 × 128
11 Non-bt-1D (dilated 6) 128 128 × 128
12 Non-bt-1D (dilated 8) 128 128 × 128
13 Non-bt-1D (dilated 2) 128 128 × 128
14 Non-bt-1D (dilated 4) 128 128 × 128
15 Non-bt-1D (dilated 6) 128 128 × 128
16 Non-bt-1D (dilated 8) 64 256 × 256
17 ACM fuses 64 256 × 256

D
EC

O
D

ER

18a Original feature map 128 256 × 256
18b Pooling and convolution 32 256 × 256
18c Pooling and convolution 32 128 × 128
18d Pooling and convolution 32 64 × 64
18e Pooling and convolution 32 32 × 32
18 Up-sampler and concatenation 256 256 × 256
19 Convolution 2 256 × 256
20 Up-sampler 2 512 × 512
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4.3. Segmentation Accuracy with Blast-Hole

We began our test with different proportions of labeled and unlabeled training data;
1/8, 1/4, 1/2, and 1 represent the proportion of labeled images in the dataset, respectively,
and the rest of the images were unlabeled. The images with labels were selected randomly,
to ensure the objectivity and fairness of the results. We compared the proposed method
with FCN [14], U-Net [46], ENet [44], PSPNet [18], ERFNet [17], ACNet [22], Swin Trans-
former [47], ERF-PSPNet [48], and SegNet [43], and the results are presented in Table 2.
When using 1/8, 1/4, 1

2 , and 1 scaled labeled blast-holes, we predicted IoU values of 0.810,
0.867, 0.923, 0.945, and Dice values of 0.849, 0.904, 0.958, 0.981, respectively. It can be seen
that the accuracy of segmenting the blast-holes with our SSL method exceeded that of
the other methods, and our method was less dependent on data labeling, making it more
suitable for practical applications.

Table 2. Intersection over Union (IoU) and Dice index under different methods and different label settings.

Method

Labeled Data

1/8 1/4 1/2 Full

IoU Dice IoU Dice IoU Dice IoU Dice

FCN 0.482 0.614 0.672 0.762 0.726 0.813 0.839 0.879
U-Net 0.498 0.647 0.668 0.781 0.731 0.804 0.844 0.880
ENet 0.521 0.647 0.738 0.829 0.801 0.850 0.916 0.954

PSPNet 0.524 0.650 0.741 0.833 0.807 0.848 0.928 0.967
ERFNet 0.530 0.673 0.745 0.830 0.798 0.860 0.921 0.958
ACNet 0.538 0.699 0.729 0.843 0.813 0.889 0.918 0.956

Swin Transformer 0.543 0.703 0.744 0.853 0.825 0.903 0.925 0.960
ERF-PSPNet 0.540 0.661 0.763 0.856 0.832 0.912 0.937 0.976

SegNet 0.502 0.661 0.671 0.801 0.748 0.829 0.853 0.891
Ours 0.810 0.849 0.867 0.904 0.923 0.958 0.945 0.981

Owing to limitations, we were only able to capture a restricted number of images
of the holes, which made the training more difficult. The symmetric encoder–decoder
architecture we adopted has the advantage of a small number of training parameters,
which compensates well for this shortcoming. On the one hand, our proposed method
employs unlabeled blast-hole images in the model training, and these images can generate
additional supervised signals to train the model. On the other hand, the introduced ACM
allows us to extract features from RGB-D data at a dynamic scale, whereas this scale is
fixed for the other methods, which allows us to extract more features for segmentation.
The results shown in Table 2 indicate that our method was significantly less dependent on
the labeled data and outperformed the others for the same settings. For specific analysis,
Figure 7 shows the pixel-wise level results presented by the various approaches when
training the network with 1/4 annotated data; from left to right, RGB image, depth image,
annotation, PSPNet, ERFNet, ERF-PSPNet, and our approach. The detection results in the
first line are approximately the same, with only PSPNet showing a false detection in the
second line. PSPNet, ERFNet, and ERF-PSPNet all show an erroneous detection in the
fourth, and the third line even shows a missed check. The reasons for these situations are
threefold in our analysis: 1. The effect of noise, occlusion, and shadows on RGB images
on the network [38]. 2. The information content of RGB and depth is unequal, the ratio is
fixed for feature extraction [22]. 3. Different training effects on the model during SSL [49].
On the one hand, our approach produces more accurate segmentation results by extending
the idea of SSL to RGB-D semantic segmentation. On the other hand, it shows that using
RGB-D data for scene perception in this uniform framework can solve the problem of
unequal information and inconsistent background distribution between RGB and depth.
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Figure 7. Qualitative examples of the segmentation of our captured image produced by our approach
compared with the ground-truth annotation, PSPNet [18], ERFNet [17], and ERF-PSPNet [33]. From
left to right: (a) RGB image, (b) depth image, (c) annotation, (d) PSPNet, (e) ERFNet, (f) ERF-PSPNet,
(g) our approach.

5. Conclusions

In this paper, we present an SSL method for the segmentation of blast-holes. Compared
with the common semantic segmentation models in the state-of-the-art, our approach
focuses on improving the capacity of the model to extract features from RGB-D data
and reducing the reliance of the model on labeled data. We propose introducing ACM
into the symmetric encoder–decoder framework design, to reduce the loss of details in
feature extraction. An SSL approach using pseudo-labeling and self-training is suggested
to train the model with unlabeled data, which reduces the model’s dependence on labeling.
Experiments showed that our segmentation achieved an IoU of 0.810, 0.867, 0.923, 0.945,
with 1/8, 1/4, 1/2, and full labeled data ratios. A balance was reached between accuracy
and reliance on the label. This indicates its suitability for blast-hole detection in explosive
loading applications.

Future works will involve in-depth experiments regarding the power consumption of
the model and compression techniques (e.g., weight sharing) to further reduce the computa-
tional resources of the model. In addition, we would like to deploy this work on FPGA and
extend it to other tasks, such as crack detection and urban mesh semantic segmentation.
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