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Abstract: In this work, we introduce the notion of a (weak) proportional Caputo fractional derivative
of order α ∈ (0, 1) for a continuous (locally integrable) function u : [0, ∞)→ E, where E is a complex
Banach space. In our definition, we do not require that the function u(·) is continuously differentiable,
which enables us to consider the wellposedness of the corresponding fractional relaxation problems
in a much better theoretical way. More precisely, we systematically investigate several new classes of
(degenerate) fractional solution operator families connected with the use of this type of fractional
derivatives, obeying the multivalued linear approach to the abstract Volterra integro-differential
inclusions. The quasi-periodic properties of the proportional fractional integrals as well as the
existence and uniqueness of almost periodic-type solutions for various classes of proportional Caputo
fractional differential inclusions in Banach spaces are also considered.

Keywords: fractional differential equations; proportional fractional integrals; proportional Caputo
fractional derivatives; abstract Volterra integro-differential inclusions; almost periodic-type functions
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1. Introduction and Preliminaries

Fractional calculus and fractional differential equations have received much attention
during the last five decades or so. The dynamics of certain processes appearing in physics,
biology, chemistry, population dynamics, ecology and pharmacokinetics, e.g., can be
adequately modeled with the help of fractional differential equations. The theory of
fractional calculus is the theory of derivatives and integrals with non-integer order, unifying
and generalizing the concepts of integer differentiation and integration [1–3].

Applications in nonlinear oscillations of earthquakes and the modeling of many
phenomena in engineering, biology and physics, such as seepage flow in porous media and
fluid dynamic traffic model (see [4,5]) are only few examples emphasizing the importance
and applicability of this theory in studying complex dynamical systems. It would be really
difficult to summarize here all applications of fractional calculus and fractional differential
equations.

The proportional Caputo fractional derivative is a relatively new type of fractional
derivative extending the classical Caputo fractional derivative. In 2017, F. Jarad et al. [6]
(see also [7]) introduced this notion, which has many advantages when compared with
the notion of the classical Caputo fractional derivative. This concept clearly enables one
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to consider some broader applications in modeling of various phenomena appearing in
natural and technical sciences; see, e.g., [8–15].

As already mentioned in the abstract, we introduce here the notion of a (weak) propor-
tional Caputo fractional derivative of order α ∈ (0, 1) for a continuous (locally integrable)
function u : [0, ∞) → E, where E is a complex Banach space. The main novelty of our
research study lies in the fact that we do not require the continuous differentiability of
function function u(·) in our definition. This enables one to analyze the well-posedness of
the associated fractional relaxation problems in a much better theoretical way.

Therefore, we provide here a new theoretical concept of the proportional Caputo
fractional derivatives. More to the point, we consider various classes of abstract (degener-
ate) fractional solution operator families connected with the use of proportional Caputo
fractional derivatives; in contrast with a great number of previous research studies, we fol-
low the multivalued linear operators approach to the abstract Volterra integro-differential
inclusions here. We also analyze the existence and uniqueness of almost periodic-type solu-
tions for various classes of proportional Caputo fractional differential inclusions in Banach
spaces as well as the quasi-periodic properties of the proportional fractional integrals (see
also [16–20]).

Let us recall that the class of of almost periodic functions was introduced by the Danish
mathematician H. Bohr around 1924–1926 and later reconsidered by many other authors
(cf. [20–24] for more details on the subject). Let I = R or I = [0, ∞), and let f : I → X
be continuous, where (X, ‖ · ‖) is a complex Banach space. Given ε > 0, we call τ > 0
an ε-period for f (·) if and only if ‖ f (t + τ)− f (t)‖ ≤ ε, t ∈ I. The set consisting of all
ε-periods for f (·) is denoted by ϑ( f , ε). It is said that f (·) is almost periodic if and only if
for each ε > 0 the set ϑ( f , ε) is relatively dense in I, which means that there exists l > 0
such that any subinterval of I of length l meets ϑ( f , ε).

Let f : R→ X be continuous. Then, it is said that f (·) is almost automorphic, if and
only if, for every real sequence (bn) there exist a subsequence (an) of (bn) and a mapping
g : R→ X such that

lim
n→∞

f
(
t + an

)
= g(t) and lim

n→∞
g
(
t− an

)
= f (t), (1)

pointwise for t ∈ R. If this is the case, then f (·) and g(·) are bounded but the limit function
g(·) is not necessarily continuous on R. If the convergence of limits appearing in (1) is
uniform on compact subsets of R, then we say that f (·) is compactly almost automorphic.
By Bochner’s criterion, any almost periodic function is compactly almost automorphic; the
converse statement is not true, in general. We know that an almost automorphic function
f : R→ X is compactly almost automorphic if and only if f (·) is uniformly continuous.

We also need the following generalization of almost periodicity: Let I = R or
I = [0, ∞). Then, a continuous function f : I → X is said to be uniformly recurrent if
and only if there exists a strictly increasing sequence (αn) of positive real numbers such that
limn→+∞ αn = +∞ and limn→+∞ f (t + αn) = f (t), uniformly in t ∈ I. It is well known that
there exists a compactly almost automorphic function f : R→ R, which is not uniformly
recurrent as well as that there exists a bounded, uniformly continuous and uniformly
recurrent function f : R→ R, which is not compactly almost automorphic; for more detail
about these classes of almost periodic functions, we refer the reader to the newly published
research monograph [25] and references cited therein.

The important generalization of uniform recurrence is Poisson stability: A continuous
function f : I → X is said to be Poisson stable if and only if there exists a strictly increasing
sequence (αn) of positive real numbers such that limn→+∞ αn = +∞ and limn→+∞ f (t +
αn) = f (t), uniformly on compact subsets of I. The notion of Poisson stability will be
important in our further work (for more details about the subject, we refer the reader to the
research monograph [26] by B. A. Shcherbakov, as well as to the research articles [27–29],
the forthcoming research article [30] and the list of references cited therein).
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Concerning the qualitative analysis of solutions of the ordinary differential equations
and the partial differential equations, we also recall that the class of (ω, c)-periodic functions
was introduced and investigated by E. Alvarez et al. in [31,32]: Suppose that ω > 0 and
c ∈ C\{0}. Then, a continuous function u : I → X is said to be (ω, c)-periodic [31] if
and only if u(t + ω) = cu(t) for all t ∈ I. If c = 1 [c = −1], then we obtain the class of
ω-periodic functions [ω-antiperiodic functions].

In [33], the authors investigated the existence and uniqueness of (ω, c)-periodic so-
lutions for semilinear evolution equations u′ = Au + f (t, u) in complex Banach spaces,
while in [34], the necessary and sufficient conditions for the existence of (ω, c)-periodic
solutions to a certain type of impulsive fractional differential equations were considered
(see also [25] and references cited therein for more details about (ω, c)-periodic functions
and their applications). Define

Φω,c :=
{

u ∈ Cb(I : X) ; u(ω) = cu(0)
}

,

where Cb(I : X) denotes the Banach space of all bounded continuous functions from I into
X, equipped with the sup-norm. It is clear that any (ω, c)-periodic function u : I → X
belongs to the space Φω,c if |c| ≤ 1 as well as that the converse statement is far from being
generally true; furthermore, Φω,c is a closed linear subspace of Cb(I : X), and therefore, a
Banach space itself when equipped with the sup-norm.

For the sequel, we need to recall the following notion from [25] as well: Let ω > 0 and
c ∈ C\{0}. Then, a continuous function f : [0, ∞)→ X is said to be (ω, c)-almost periodic
[S-asymptotically (ω, c)-periodic] if and only if the function c−·/ω f (·) is almost periodic
[limt→+∞ ‖ f (t + ω)− c f (t)‖ = 0]. If |c| = 1, then we have:

lim
t→+∞

‖ f (t + ω)− c f (t)‖ = c lim
t→+∞

∥∥c−
t+ω

ω f (t + ω)− c−
t
ω f (t)

∥∥,

so that a continuous function f : [0, ∞)→ X is S-asymptotically (ω, c)-periodic if and only
if the function c−·/ω f (·) is S-asymptotically ω-periodic, that is, S-asymptotically (ω, c)-
periodic with c = 1. Furthermore, if |c| ≥ 1, then we have that the function c−·/ω f (·) is
S-asymptotically ω-periodic if the function f (·) is S-asymptotically (ω, c)-periodic. Al-
though we will not use this fact in the sequel, let us only note that, if |c| ≥ 1 and a
continuous function f : [0, ∞) → X is both, S-asymptotically (ω, c)-periodic and (ω, c)-
almost periodic, then f (·) is necessarily (ω, c)-periodic function; this can be shown with
the help of substitution c−(·/ω) f (·), ([35], Proposition 2) and the corresponding statement
with c = 1.

The structure and main ideas of this paper can be briefly described as follows. In
Section 1.1, we recollect some necessary definitions and results from the theory of multival-
ued linear operators; we also consider (degenerate) solution operator families subgenerated
by multivalued linear operators here. Section 2 investigates the proportional fractional
integrals and the proportional Caputo fractional derivatives of vector-valued functions.
The main theoretical results are given in Section 3, where we study the abstract proportional
fractional differential inclusions in Banach spaces (for simplicity, we will not consider the
solution operator families in locally convex spaces here; see [36] for more details about this
topic).

Solution operator families for the abstract fractional Cauchy problems (DFP)ζ
R and

(DFP)ζ
L are investigated in Section 3.1; a few relevant applications to the abstract Volterra

integro-differential inclusions are given in Section 3.2. Further on, some results about the
existence and uniqueness of (ω, c)-periodic-type solutions for some special classes of the
semilinear proportional Caputo fractional differential equations are given in Section 4.

In Section 5.1, we consider the quasi-periodic properties of proportional fractional
integrals and observe that the quasi-periodic properties of Riemann–Liouville (Caputo)
fractional derivatives established in the research studies [35,37] by I. Area, J. Losada and J.
J. Nieto hold for the vector-valued functions. We apply these results in the continuation of
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Section 5, where we prove the nonexistence of (ω, c)-periodic solutions of the semilinear
fractional Cauchy problem (17) and the nonexistence of Poisson stable-like solutions of the
same problem.

The final section of paper is reserved for the final remarks and observations about the
introduced notion and obtained results. In this paper, we will consider the proportional
fractional integrals, the proportional Caputo fractional derivatives of order α ∈ (0, 1),
and the corresponding abstract fractional relaxation inclusions with the proportional Ca-
puto fractional derivatives, only. The proportional Caputo fractional derivatives of order
α > 1, and the corresponding abstract fractional oscillation inclusions will be considered
elsewhere.

Before proceeding to Section 1.1, we briefly explain the notation and terminology
used in this paper. By (E, ‖ · ‖) and (X, ‖ · ‖) we denote two complex Banach spaces (since
no confusion seems likely, we denote the norms in these spaces by the same symbols);
I = [0, ∞), ω > 0 and c ∈ C\{0}. By L(E, X) we denote the space consisting of all
continuous linear mappings from E into X; L(E) ≡ L(E, E). If A is a closed linear operator
acting on X, then the domain, kernel space and range of A will be denoted by D(A), N(A)
and R(A), respectively.

Given α ∈ (0, π] in advance, set Σα := {z ∈ C \ {0} : | arg(z)| < α}. The Gamma
function is denoted by Γ(·), and the principal branch is always used to take the powers;
the convolution-like mapping ∗ is given by f ∗ g(t) :=

∫ t
0 f (t − s)g(s) ds. Put gζ(t) :=

tζ−1/Γ(ζ) and 0ζ := 0 (ζ > 0, t > 0). The symbol supp( f ) denotes the support of a
function f (·). We employ the following condition on a vector-valued function k(·) :

(P1) k(·) is Laplace transformable, i.e., k ∈ L1
loc([0, ∞) : X) and there exists β ∈ R such that

k̃(λ) := L(k(t))(λ) := limb→∞
∫ b

0 e−λtk(t) dt :=
∫ ∞

0 e−λtk(t) dt exists for all λ ∈ C
with <λ > β. Put abs(k) :=inf{<λ : k̃(λ) exists}.
Assume that α ∈ (0, 1) and T ∈ (0, ∞]. Then, the Riemann–Liouville fractional integral

Jα
t of order α is defined by

Jα
t f (t) :=

(
gα ∗ f

)
(t), f ∈ L1([0, T) : X), t ∈ [0, T).

The Caputo fractional derivative Dα
t u(t) is defined for those continuous functions u ∈

C([0, T) : X) for which g1−α ∗ (u(·)− u(0)) ∈ C1([0, T) : X), by

Dα
t u(t) :=

d
dt

[
g1−α ∗

(
u(·)− u(0)

)]
, t ∈ [0, T).

In a slightly weakened concept, we define the Caputo fractional derivative Dα
t,wu(t) for

those functions u : [0, T)→ X for which u|(0,T)(·) ∈ C((0, T) : X), u(·)− u(0) ∈ L1((0, T) :
X) and g1−α ∗ (u(·)− u(0)) ∈W1,1((0, T) : X), by

Dα
t,wu(t) :=

d
dt

[
g1−α ∗

(
u(·)− u(0)

)]
, t ∈ (0, T).

Here, W1,1((0, T) : X) denotes the usual Sobolev space of order 1; see, e.g., [38] and
references cited therein. Note that, for a given function u|(0,T)(·) ∈ C((0, T) : X), there
exists only one value u(0) such that g1−α ∗ (u(·)− u(0)) ∈W1,1((0, T) : X).

Remark 1. It is clear that Dα
t [Const.] = 0 for any α ∈ (0, 1) so that we must replace the word

“nonzero” in the formulation of ([35], Corollary 2) with the word “nonconstant” in order to retain
its validity. We will use this fact later on.

1.1. Multivalued Linear Operators and Solution Operator Families Subgenerated by Them

In this subsection, we provide a brief overview of definitions and results about multi-
valued linear operators and (degenerate) (a, k)-regularized C-resolvent families subgen-
erated by them. For more details about the subject, we refer the reader to the research
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monographs [39] by R. Cross, [40] by A. Favini, A. Yagi and [36] by M. Kostić. A multi-
valued mapping A : E → P(E) is said to be a multivalued linear operator (MLO in E, or
simply, MLO) if and if the following holds:

(i) D(A) := {x ∈ X : Ax 6= ∅} is a linear submanifold of E;
(ii) Ax +Ay ⊆ A(x + y), x, y ∈ D(A) and λAx ⊆ A(λx), λ ∈ C, x ∈ D(A).

We know that, for every x, y ∈ D(A) and for every λ, η ∈ C with |λ|+ |η| 6= 0,
we have λAx + ηAy = A(λx + ηy). Furthermore, A0 is a linear manifold in E and
Ax = f + A0 for any x ∈ D(A) and f ∈ Ax. Define R(A) := {Ax : x ∈ D(A)}.
The set A−10 := N(A) := {x ∈ D(A) : 0 ∈ Ax} is called the kernel of A. The inverse
A−1 is defined by D(A−1) := R(A) and A−1y := {x ∈ D(A) : y ∈ Ax}. It can be proven
simply that A−1 is an MLO in E, as well as that N(A−1) = A0 and (A−1)−1 = A.

Suppose now that A, B are two MLOs in E. Then, its sum A + B is defined by
D(A + B) := D(A) ∩ D(B) and (A + B)x := Ax + Bx, x ∈ D(A + B). It is clear that
A+ B is an MLO in E. The product of A and B is defined by D(BA) := {x ∈ D(A) :
D(B) ∩ Ax 6= ∅} and BAx := B(D(B) ∩ Ax). We have that BA is an MLO in E and
(BA)−1 = A−1B−1. The inclusion A ⊆ B means that D(A) ⊆ D(B) and Ax ⊆ Bx for all
x ∈ D(A). The scalar multiplication of an MLO A with a complex number number z ∈ C,
zA for short, is defined by D(zA) := D(A) and (zA)(x) := zAx, x ∈ D(A).

We say that an MLO operator A is closed if and only if for any nets (xτ) in D(A) and
(yτ) in E such that yτ ∈ Axτ for all τ ∈ I we have that the preassumptions limτ→∞ xτ = x
and limτ→∞ yτ = y imply x ∈ D(A) and y ∈ Ax.

We need the following lemma [36]:

Lemma 1. Suppose thatA is a closed MLO in E, Ω is a locally compact and separable metric space,
as well as that µ is a locally finite Borel measure defined on Ω. Let f : Ω→ E and g : Ω→ E be
µ-integrable and let g(x) ∈ A f (x), x ∈ Ω. Then,

∫
Ω f dµ ∈ D(A) and

∫
Ω g dµ ∈ A

∫
Ω f dµ.

Let A be an MLO in E, C ∈ L(E) be injective and CA ⊆ AC. Then the C-resolvent set
of A, ρC(A) for short, is defined as the union of those complex numbers λ ∈ C for which

(i) R(C) ⊆ R(λ−A);
(ii) (λ−A)−1C is a single-valued linear continuous operator on E.

The operator λ 7→ (λ−A)−1C is called the C-resolvent ofA (λ ∈ ρC(A)); the resolvent
set of A is defined by ρ(A) := ρI(A), R(λ : A) ≡ (λ−A)−1 (λ ∈ ρ(A)), where I denotes
the identity operator on E. The basic properties of C-resolvent sets of single-valued linear
operators continue to hold [36].

Of concern is the following abstract degenerate Volterra inclusion:

Bu(t) ⊆ A
∫ t

0
a(t− s)u(s)ds +F (t), t ∈ [0, τ), (2)

where 0 < τ ≤ ∞, a ∈ L1
loc([0, τ)), a 6= 0, F : [0, τ) → P(E), and A : X → P(E), B : X →

P(E) are two given mappings (possibly non-linear). We need the following notion:

Definition 1 (cf. [36], Definition 3.1.1(i)).

(i) A function u ∈ C([0, τ) : X) is said to be a pre-solution of (2) if and only if (a ∗ u)(t) ∈ D(A)
and u(t) ∈ D(B) for t ∈ [0, τ), as well as (2) holds.

(ii) A solution of (2) is any pre-solution u(·) of (2) satisfying additionally that there exist functions
uB ∈ C([0, τ) : E) and ua,A ∈ C([0, τ) : E) such that uB(t) ∈ Bu(t) and ua,A(t) ∈
A
∫ t

0 a(t− s)u(s)ds for t ∈ [0, τ), as well as

uB(t) ∈ ua,A(t) +F (t), t ∈ [0, τ).
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(iii) A strong solution of (2) is any function u ∈ C([0, τ) : X) satisfying that there exist two
continuous functions uB ∈ C([0, τ) : E) and uA ∈ C([0, τ) : E) such that uB(t) ∈ Bu(t),
uA(t) ∈ Au(t) for all t ∈ [0, τ), and

uB(t) ∈ (a ∗ uA)(t) +F (t), t ∈ [0, τ).

In the remainder of this subsection, we will analyze multivalued linear operators as
subgenerators of (a, k)-regularized (C1, C2)-existence and uniqueness families and (a, k)-
regularized C-resolvent families. Unless specified otherwise, we assume that 0 < τ ≤ ∞,
k ∈ C([0, τ)), k 6= 0, a ∈ L1

loc([0, τ)), a 6= 0, A : E → P(E) is an MLO, C1 ∈ L(X, E),
C2 ∈ L(E) is injective, C ∈ L(E) is injective and CA ⊆ AC.

We need the following notion (see., e.g., [36], Definition 3.2.1, Definition 3.2.2):

Definition 2.

(i) It is said that A is a subgenerator of a (local, if τ < ∞) mild (a, k)-regularized (C1, C2)-
existence and uniqueness family
(R1(t), R2(t))t∈[0,τ) ⊆ L(X, E) × L(E) if and only if the mappings t 7→ R1(t)y, t ≥ 0
and t 7→ R2(t)x, t ∈ [0, τ) are continuous for every fixed x ∈ E and y ∈ X, as well as the
following conditions hold:( t∫

0

a(t− s)R1(s)y ds, R1(t)y− k(t)C1y

)
∈ A, t ∈ [0, τ), y ∈ X and (3)

t∫
0

a(t− s)R2(s)y ds = R2(t)x− k(t)C2x, whenever t ∈ [0, τ) and (x, y) ∈ A. (4)

(ii) Let (R1(t))t∈[0,τ) ⊆ L(X, E) be strongly continuous. Then, it is said thatA is a subgenerator
of a (local, if τ < ∞) mild (a, k)-regularized C1-existence family (R1(t))t∈[0,τ) if and only if
(3) holds.

(iii) Let (R2(t))t∈[0,τ) ⊆ L(E) be strongly continuous. Then, it is said that A is a subgenerator of
a (local, if τ < ∞) mild (a, k)-regularized C2-uniqueness family (R2(t))t∈[0,τ) if and only if
(4) holds.

Definition 3. Suppose that 0 < τ ≤ ∞, k ∈ C([0, τ)), k 6= 0, a ∈ L1
loc([0, τ)), a 6= 0,

A : E→ P(E) is an MLO, C ∈ L(E) is injective and CA ⊆ AC. Then, it is said that a strongly
continuous operator family (R(t))t∈[0,τ) ⊆ L(E) is an (a, k)-regularized C-resolvent family with a
subgenerator A if and only if (R(t))t∈[0,τ) is a mild (a, k)-regularized C-uniqueness family having
A as subgenerator, R(t)C = CR(t) and R(t)A ⊆ AR(t) (t ∈ [0, τ)).

If τ = ∞, then (R(t))t≥0 is said to be exponentially bounded (bounded) if and only if
there exists ω ∈ R (ω = 0) such that the family {e−ωtR(t) : t ≥ 0} is bounded; the infimum
of such numbers is said to be the exponential type of (R(t))t≥0. The above notion can be
simply understood for the classes of mild (a, k)-regularized C1-existence families and mild
(a, k)-regularized C2-uniqueness families.

The integral generator of a mild (a, k)-regularized C2-uniqueness family (R2(t))t∈[0,τ)
(mild (a, k)-regularized (C1, C2)-existence and uniqueness family (R1(t), R2(t))t∈[0,τ)) is
defined by

Aint :=

{
(x, y) ∈ X× X : R2(t)x− k(t)C2x =

∫ t

0
a(t− s)R2(s)y ds, t ∈ [0, τ)

}
;

we define the integral generator of an (a, k)-regularized C-resolvent family (R(t))t∈[0,τ) in
the same way.
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For simplicity, we will assume that any (a, k)-regularized C-resolvent family consid-
ered below is likwise a mild (a, k)-regularized C-existence family (subgenerated by A). We
refer the reader to [36,41] for several simple conditions ensuring this property.

2. Proportional Fractional Integrals and Proportional Caputo Fractional Derivatives

First, we recall the definition of proportional fractional integral of a locally integrable
function u : [0, ∞)→ X (see [6]):

(
0 Iα,ζ u

)
(t) :=

1
ζαΓ(α)

t∫
0

e
ζ−1

ζ (t−s)
(t− s)α−1u(s) ds, t ≥ 0, α ≥ 0, ζ ∈ (0, 1].

If the function u : [0, ∞)→ X is differentiable and its first derivative is locally integrable,
then we define its proportional Caputo fractional derivative by(

c
0Dα,ζu

)
(t) :=

(
0 I1−α,ζ(D1,ζ u

))
(t)

:=
1

ζ1−αΓ(1− α)

t∫
0

e
ζ−1

ζ (t−s)
(t− s)−α

(
D1,ζ u

)
(s) ds,

for t ≥ 0, α ∈ (0, 1), ζ ∈ (0, 1],

where (
D1,ζu

)
(t) :=

(
Dζu

)
(t) := (1− ζ)u(t) + ζu′(t).

For ζ = 1, the proportional Caputo fractional derivative is reduced to the classical Caputo
fractional derivative. Additionally, for ζ ∈ (0, 1] and α ∈ (0, 1), we note that(

0 Iα,ζ(c
0Dα,ζu

))
(t) = u(t)− u(0)e

ζ−1
ζ t, t ≥ 0 (5)

and (
c
0Dα,ζ(

0 Iα,ζ u
))

(t) = u(t), t ≥ 0. (6)

For our further work, it will be important to observe that the proportional Caputo
fractional derivatives of order α can be defined even for a continuous (locally integrable)
function u : [0, ∞)→ X (for example, it is not so satisfactory to consider the well-posedness
of the fractional relaxation problem (DFP)ζ

R below for the continuously differentiable func-
tions; see Definition 5 below). In actual fact, if the function u : [0, ∞)→ X is differentiable
and its first derivative is locally integrable, then we have:

(
c
0Dα,ζ u

)
(t) := ζα−1(1− ζ)

t∫
0

e
ζ−1

ζ (t−s)g1−α(t− s)u(s) ds

+ ζα

t∫
0

e
ζ−1

ζ (t−s)g1−α(t− s)u′(s) ds := I(t) + I I(t), t ≥ 0.

The term I(t) is clearly definable for any continuous (locally integrable) function u :
[0, ∞)→ X. Concerning the term I I(t), we manipulate as follows: Clearly,

e
1−ζ

ζ t I I(t) = ζα
(

g1−α ∗ e
1−ζ

ζ ·u′(·)
)
(t), t ≥ 0,
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so that the partial integration implies(
gα ∗ e

1−ζ
ζ · I I(·)

)
(t) = ζα

(
g1 ∗ e

1−ζ
ζ ·u′(·)

)
(t)

= ζα

(
e

1−ζ
ζ ·u(·)− u(0)− 1− ζ

ζ

∫ ·
0

e
1−ζ

ζ su(s) ds

)
(t), t ≥ 0.

Convoluting with g1−α(·), we find that, for every t ≥ 0,

(
g1 ∗ e

1−ζ
ζ · I I(·)

)
(t) = ζα

[
g1−α ∗

(
e

1−ζ
ζ ·u(·)− u(0)− 1− ζ

ζ

∫ ·
0

e
1−ζ

ζ su(s) ds

)]
(t),

so that

I I(t) = ζαe
ζ−1

ζ t d
dt

[
g1−α ∗

(
e

1−ζ
ζ ·u(·)− u(0)− 1− ζ

ζ

∫ ·
0

e
1−ζ

ζ su(s) ds

)]
(t), t ≥ 0. (7)

Although Equation (7) can be used to provide the definition of the proportional Caputo
fractional derivatives of order α for any locally integrable function u(·), we will restrict
ourselves to the following notion:

Definition 4. Let T ∈ (0, ∞].

(i) Suppose that u ∈ C([0, T) : X). The proportional Caputo fractional derivative Dα,ζ
t u(t) is

defined provided g1−α ∗ (e
1−ζ

ζ ·u(·)− u(0)− 1−ζ
ζ

∫ ·
0 e

1−ζ
ζ su(s) ds) ∈ C1([0, T) : X), by

Dα,ζ
t u(t) := ζα−1(1− ζ)

t∫
0

e
ζ−1

ζ (t−s)g1−α(t− s)u(s) ds

+ ζαe
ζ−1

ζ t d
dt

[
g1−α ∗

(
e

1−ζ
ζ ·u(·)− u(0)− 1− ζ

ζ

∫ ·
0

e
1−ζ

ζ su(s) ds

)]
(t), t ∈ [0, T).

(ii) We define the proportional Caputo fractional derivative Dα,ζ
t,wu(t) for those functions u :

[0, T)→ X for which u|(0,T)(·) ∈ C((0, T) : X), e
1−ζ

ζ ·u(·)− u(0)− 1−ζ
ζ

∫ ·
0 e

1−ζ
ζ su(s) ds ∈

L1((0, T) : X) and g1−α ∗ (e
1−ζ

ζ ·u(·)− u(0)− 1−ζ
ζ

∫ ·
0 e

1−ζ
ζ su(s) ds) ∈ W1,1((0, T) : X),

by

Dα,ζ
t,wu(t) := ζα−1(1− ζ)

t∫
0

e
ζ−1

ζ (t−s)g1−α(t− s)u(s) ds

+ ζαe
ζ−1

ζ t d
dt

[
g1−α ∗

(
e

1−ζ
ζ ·u(·)− u(0)− 1− ζ

ζ

∫ ·
0

e
1−ζ

ζ su(s) ds

)]
(t), t ∈ (0, T).

For ζ = 1, our proportional Caputo fractional derivatives reduce to Dα
t u(t) and

Dα
t,wu(t). Furthermore, suppose that 1 > α > β > 0; then, immediately from Definition 4, it

follows that the existence of fractional derivative Dα,ζ
t u(t) (Dα,ζ

t,wu(t)) implies the existence

of fractional derivative Dβ,ζ
t u(t) (Dβ,ζ

t,wu(t)).

Remark 2. Denote A(t) = [g1−α ∗ (e
1−ζ

ζ ·u(·)− u(0)− 1−ζ
ζ

∫ ·
0 e

1−ζ
ζ su(s) ds)](t), t ∈ [0, T) and

B(t) = [g1−α ∗ (e
1−ζ

ζ ·u(·)− u(0))](t), t ∈ [0, T). Since
∫ t

0 e
1−ζ

ζ su(s) ds = (g1 ∗ e
1−ζ

ζ ·u(·))(t),
t ≥ 0, we have the following: Suppose that u ∈ C([0, T) : X), resp. u ∈ L1([0, T) : X). Then,
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A ∈ C1([0, T) : X), resp. A ∈ W1,1((0, T) : X), if and only if B ∈ C1([0, T) : X), resp.
B ∈W1,1((0, T) : X). It is also worth noting that, for a given function u|(0,T)(·) ∈ C((0, T) : X),

there exists only one value u(0) such that g1−α ∗ (e
1−ζ

ζ ·u(·) − u(0) − 1−ζ
ζ

∫ ·
0 e

1−ζ
ζ su(s) ds) ∈

W1,1((0, T) : X).

It is worth noting that Definition 4(ii) can be used to compute the value of the fractional
derivative Dα,ζ

t,wga(t) under certain assumptions:

Example 1. Suppose that 0 < α < a < 1 and 0 < ζ < 1. Define u(t) := ga(t) for t > 0 and

u(0) := 0. In order to compute X(t) = (d/dt)[g1−α ∗ e
1−ζ

ζ ·u(·)](t), t > 0, we integrate this
equality, convolve the obtained equality with gα(t) and differentiate the obtained equality after this;

it follows that e
1−ζ

ζ tga(t) = (gα ∗ X)(t), t > 0. Applying the Laplace transform, we obtain

X̃(λ) =
λα(

λ + ζ−1
ζ

)a , <λ >
1− ζ

ζ
,

so that X(t) is locally integrable on [0, ∞) and, more precisely,

X(t) = ta−α−1E a
1,a−α(−at), t > 0,

where

Eγ
α,β(z) =

∞

∑
k=0

Γ(k + γ)

Γ(γ)Γ(αk + β)

zk

k!
, z ∈ C

is the generalized Mittag–Leffler function [42]. Therefore,

Dα,ζ
t,wu(t) = ζα−1(1− ζ)

t∫
0

e
ζ−1

ζ (t−s)g1−α(t− s)ga(s) ds

+ ζαe
ζ−1

ζ tta−α−1E a
1,a−α(−at)− ζαe

ζ−1
ζ t 1− ζ

ζ

(
g1−α ∗ e

1−ζ
ζ ·ga(·)

)
(t), t > 0.

It is predictable that the equalities (5) and (6) continue to hold in our new framework:

Proposition 1. Suppose that u ∈ C([0, T) : X), resp. u ∈ L1
loc([0, T) : X). Then, the follow-

ing holds:

(i) If Dα,ζ
t u(t), resp. Dα,ζ

t,wu(t) is well-defined, then we have[
0 Iα,ζ

(
Dα,ζ

t,wu
)]

(t) = u(t)− u(0)e
ζ−1

ζ t, for t ∈ [0, T), resp., for a.e. t ∈ (0, T). (8)

(ii) We have [
Dα,ζ

t,w

(
0 Iα,ζ u

)]
(t) = u(t), for t ∈ [0, T), resp., for a.e. t ∈ (0, T). (9)
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Proof. The proofs of both statements follows from the relative simple but tedious compu-
tations; for the sake of completeness, we will prove only (ii). By our definitions, we need to
show that

ζα−1(1− ζ)
(

e
ζ−1

ζ ·g1−α(·) ∗ ζ−αe
ζ−1

ζ ·gα(·) ∗ u
)
(t)

+ ζαe
ζ−1

ζ t d
dt

[
g1−α ∗

[(
e

1−ζ
ζ ·ζ−αe

ζ−1
ζ ·gα(·) ∗ u

)
− 1− ζ

ζ

(
g1 ∗

(
e

1−ζ
ζ ·ζ−αe

ζ−1
ζ ·gα(·) ∗ u

))]]
(t) = u(t),

for t ∈ [0, T), resp., for a.e. t ∈ (0, T). Since (g1−α ∗ gα)(t) = g1(t), t > 0, it can be proven
simply that

ζα−1(1− ζ)
(

e
ζ−1

ζ ·g1−α(·) ∗ ζ−αe
ζ−1

ζ ·gα(·) ∗ u
)
(t) =

1− ζ

ζ

(
e

ζ−1
ζ · ∗ u

)
(t),

for t ∈ [0, T), resp. for a.e. t ∈ (0, T). Since

e
1−ζ

ζ t
(

e
ζ−1

ζ ·gα(·) ∗ u
)
(t) =

(
gα ∗

[
e

1−ζ
ζ ·u(·)

])
(t),

for t ∈ [0, T), resp. for a.e. t ∈ (0, T), the previous equality and a simple calculation shows
that we need to deduce that(

e
ζ−1

ζ · ∗ u
)
(t) = e

ζ−1
ζ t
(

e
1−ζ

ζ · ∗ u
)
(t),

for t ∈ [0, T), resp. for a.e. t ∈ (0, T). However, this is a trivial equality.

Using the operational properties of the Laplace transform (see, e.g., [43], Section 1.6,
p. 36), we can simply prove that the Laplace transform of the proportional Caputo fractional
derivative Dα,ζ

t,wu(t) can be computed by

D̃α,ζ
t,wu(λ) = ζα−1(1− ζ)

(
λ +

1− ζ

ζ

)α−1

ũ(λ)

+ ζα

(
λ +

1− ζ

ζ

)α[
ũ(λ)− u(0)

λ + 1−ζ
ζ

− 1− ζ

ζ

ũ(λ)

λ + 1−ζ
ζ

]
, <λ > max

(
0, abs(u)

)
, (10)

provided that the function u(t) satisfies (P1).

Remark 3. Observe that we cannot generally expect the validity of Equation (10) for <λ >

max( ζ−1
ζ , abs(u)) since we need to apply ([43], Corollary 1.6.6) here.

3. Abstract Proportional Caputo Fractional Differential Inclusions

Of concern are the following proportional Caputo fractional differential inclusions:{
(DFP)ζ

R : Dα,ζ
t Bu(t) ∈ Au(t) +F (t), α ∈ (0, 1), ζ ∈ (0, 1], t ≥ 0,

Bu(0) = Bu0,

and {
(DFP)ζ

L : BDα,ζ
t u(t) ∈ Au(t) +F (t), α ∈ (0, 1), ζ ∈ (0, 1], t ≥ 0,

u(0) = u0,
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where F : [0, ∞)→ P(E), A : X → P(E) and B : X → P(E) are given mappings (possibly
non-linear), and B : D(B) ⊆ X → E is a single-valued operator. In the following definition,
we extend the notion introduced recently in ([36], Definition 3.1.1(ii)-(iii)), where we
considered the case ζ = 1 :

Definition 5.

(i) (a) By a p-solution of (DFP)ζ
R, we mean any X-valued function t 7→ u(t), t ≥ 0 such

that the term t 7→ Dα,ζ
t Bu(t), t ≥ 0 is well-defined, u(t) ∈ D(A) for t ≥ 0, and the

requirements of (DFP)ζ
R hold.

(b) A pre-solution of (DFP)ζ
R is any p-solution of (DFP)ζ

R that is continuous for t ≥ 0.
(c) A solution of (DFP)ζ

R is any pre-solution u(·) of (DFP)ζ
R such that there exists a function

uA ∈ C([0, ∞) : E) with uA(t) ∈ Au(t) for t ≥ 0, and Dα,ζ
t Bu(t) ∈ uA(t) + F (t),

t ≥ 0.
(ii) (a) By a pre-solution of (DFP)ζ

L, we mean any continuous X-valued function t 7→ u(t),
t ≥ 0 such that the term t 7→ Dα,ζ

t u(t), t ≥ 0 is well defined and continuous, as well as
that Dα,ζ

t u(t) ∈ D(B) and u(t) ∈ D(A) for t ≥ 0, and (DFP)ζ
L holds.

(b) A solution of (DFP)ζ
L is any pre-solution u(·) of (DFP)ζ

L such that there exist functions
uα,B ∈ C([0, ∞) : E) and uA ∈ C([0, ∞) : E) such that uα,B(t) ∈ BDα,ζ

t u(t) and
uA(t) ∈ Au(t) for t ≥ 0, as well as that uα,B(t) ∈ uA(t) +F (t), t ≥ 0.

Similarly as above, we can introduce the notion of a (pre-)solution of the problems
(DFP)ζ

R and (DFP)ζ
L on any finite interval [0, τ) or [0, τ], where 0 < τ < ∞. We assume

henceforth that A and B are multivalued linear operators. Before proceeding further, we
will only notice that we cannot consider the abstract Cauchy problems (DFP)ζ

R or (DFP)ζ
L in

full generality by passing to the multivalued linear operators B−1A orAB−1 (see also ([36],
Remark 3.1.2) for more details concerning this issue with ζ = 1) as well as that we will
revisit the Ljubich’s uniqueness criterium ([36], Theorem 3.1.6) for the abstract Cauchy
problems with proportional Caputo fractional derivatives elsewhere.

3.1. Solution Operator Families for (DFP)ζ
R and (DFP)ζ

L

In this subsection, we analyze various types of solution operator families for the
abstract fractional Cauchy problems (DFP)ζ

R and (DFP)ζ
L with B = B = I. For the begin-

ning, let us consider the abstract proportional Caputo inclusion (DFP)ζ
R with the function

F (t) = f (t) being single-valued, X = E and the initial value u0 replaced therein with the
initial value Cu0, where C ∈ L(E) is injective. Applying (9) and Lemma 1, we find

u(t)− e
ζ−1

ζ tCu0 ∈ ζ−αA
∫ t

0
e

ζ−1
ζ (t−s)gα(t− s)u(s) ds

+ ζ−α
∫ t

0
e

ζ−1
ζ (t−s)gα(t− s) f (s) ds, t ≥ 0.

If f ≡ 0, the above justifies the introduction of the following solution operator families for
(DFP)ζ

R :

Definition 6. Suppose that a(t) and k(t) are given by

a(t) := ζ−αe
ζ−1

ζ tgα(t), t > 0 and k(t) :=
(

e
ζ−1

ζ · ∗ k0

)
(t), t ≥ 0, (11)

where k0(t) is the Dirac delta distribution δ(t) or k0 ∈ L1
loc([0, ∞)) [recall that δ̃ = 1]. Then,

a mild (α, ζ, k0, C1)-existence family (R1(t))t∈[0,τ) ⊆ L(X, E) (a mild (α, ζ, k0, C2)-uniqueness
family (R2(t))t∈[0,τ) ⊆ L(E); an (α, ζ, k0, C)-resolvent family (R(t))t∈[0,τ) ⊆ L(E)) subgener-
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ated by A is nothing else but a mild (a, k)-regularized C1-existence family subgenerated by A
(mild (a, k)-regularized C2-uniqueness family subgenerated by A; (a, k)-regularized C-resolvent
family subgenerated by A). The integral generator of a mild (α, ζ, k0, C2)-uniqueness family
(R2(t))t∈[0,τ) ⊆ L(E) [an (α, ζ, k0, C)-resolvent family (R(t))t∈[0,τ) ⊆ L(E)] is defined to be
the integral generator of the corresponding mild (a, k)-regularized C2-uniqueness family [(a, k)-
regularized C-resolvent family].

Observe here that the Titchmarsh convolution theorem yields that k(t) is not identically
equal to the zero function as well as that a simple argumentation shows that the function
k(t) is continuous for t ≥ 0. In Definition 6, we assume that the operators C and C2 are
injective; for more details about the situation in which some of these operators is possible
non-injective, we refer the reader to ([36], SubSection 3.2.2).

Immediately from Definition 6, it follows that we can apply ([36], Proposition 3.2.3,
Proposition 3.2.8, Theorem 3.2.9) and Equation ([36], (274)) to deduce several important
structural properties of the introduced solution operator families for the problems (DFP)ζ

R
and (DFP)ζ

L; the properties of subgenerators of solution operator families for these problems
can be clarified following the corresponding analysis from ([36], Section 3.2). An application
of ([36], Proposition 3.2.13) is possible provided that k0(t) is the Dirac delta distribution;
we will only state here the following particular consequences of ([36], Theorem 3.2.4,
Theorem 3.2.5):

Theorem 1. Suppose A is a closed MLO in X, C1 ∈ L(X, E), C2 ∈ L(E), C2 is injective, the
kernels a(t) and k(t) are given through (11) and ω ≥ max(0, abs(|k|)).
(i) Let (R1(t))t≥0 be strongly continuous and let the family {e−ωtR1(t) : t ≥ 0} be equicon-

tinuous. Then, (R1(t))t≥0 is a mild (α, ζ, k0, C1)-existence family with a subgenerator
A if and only if for every λ ∈ C with <λ > ω and k̃0(λ) 6= 0, we have R(C1) ⊆
R(I − ζ−α(λ− ((ζ − 1)/ζ))−αA) and

k̃0(λ)
C1y

λ− ζ−1
ζ

∈
(

I − ζ−α
(

λ− ζ − 1
ζ

)−α
A
) ∫ ∞

0
e−λtR1(t)y dt, y ∈ X.

(ii) Let (R2(t))t≥0 be strongly continuous and let the family {e−ωtR2(t) : t ≥ 0} be equicontin-
uous. Then, (R2(t))t≥0 is a mild (α, ζ, k0, C1)-uniqueness family with a subgenerator A if
and only if for every λ ∈ C with <λ > ω and k̃0(λ) 6= 0, the operator I − ζ−α(λ− ((ζ −
1)/ζ))−αA is injective and

k̃0(λ)
C2x

λ− ζ−1
ζ

=
∫ ∞

0
e−λt[R2(t)x− (a ∗ R2)(t)y]dt, whenever (x, y) ∈ A.

Theorem 2. Let (R(t))t≥0 ⊆ L(E) be a strongly continuous operator family such that there exists
ω ≥ max(0, abs(|k|)) satisfying that the family {e−ωtR(t) : t ≥ 0} is bounded. Suppose that A
is a closed MLO in E and CA ⊆ AC.

(i) Assume that A is a subgenerator of the global (α, ζ, k0, C1)-resolvent family (R(t))t≥0 satis-
fying (3) for all x = y ∈ E. Then, for every λ ∈ C with <λ > ω and k̃0(λ) 6= 0, the operator
I− ζ−α(λ− ((ζ − 1)/ζ))−αA is injective, R(C) ⊆ R(I− ζ−α(λ− ((ζ − 1)/ζ))−αA), as
well as

ζα k̃0(λ)

(
λ− ζ − 1

ζ

)α−1[
ζα

(
λ− ζ − 1

ζ

)α

−A
]−1

Cx

=
∫ ∞

0
e−λtR(t)x dt, x ∈ E, <λ > ω0, k̃0(λ) 6= 0, (12)
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{
ζα

(
λ− ζ − 1

ζ

)α

: <λ > ω, k̃0(λ) 6= 0

}
⊆ ρC(A) (13)

and R(s)R(t) = R(t)R(s), t, s ≥ 0.
(ii) Assume (12) and (13). Then, A is a subgenerator of the global (α, ζ, k0, C1)-resolvent family

(R(t))t≥0 satisfying (3) for all x = y ∈ E and R(s)R(t) = R(t)R(s), t, s ≥ 0.

Keeping in mind the last two statements, we can simply clarify the complex charac-
terization theorem and the real characterization theorem for the generation of solution
operator families for the problems (DFP)ζ

R and (DFP)ζ
L; see also ([36], Theorem 3.2.10,

Theorem 3.2.12). Differential and analytical properties of solution operator families for
the problems (DFP)ζ

R and (DFP)ζ
L can be clarified following the corresponding analysis

from ([36], SubSection 3.2.1); for the sequel, we need the following notion:

Definition 7.

(i) Suppose thatA is an MLO in X. Let θ ∈ (0, π] and let (R(t))t≥0 be an (α, ζ, k0, C)-resolvent
family (R(t))t∈[0,τ) ⊆ L(E) subgenerated by A. Then, it is said that (R(t))t≥0 is an analytic
(α, ζ, k0, C)-resolvent family of angle θ, if and only if there exists a function R : Σθ → L(E),
which satisfies that, for every x ∈ E, the mapping z 7→ R(z)x, z ∈ Σθ is analytic as well
as that:

(a) R(t) = R(t), t > 0 and
(b) limz→0,z∈Σγ R(z)x = R(0)x for all γ ∈ (0, θ) and x ∈ E.

(ii) Let (R(t))t≥0 be an analytic (α, ζ, k0, C)-resolvent family of angle θ ∈ (0, π]. Then, it is said
that (R(t))t≥0 is an exponentially bounded, analytic (α, ζ, k0, C)-resolvent family of angle
θ, resp. bounded analytic (α, ζ, k0, C)-resolvent family of angle θ, if and only if for every
γ ∈ (0, θ), there exists ωγ ≥ 0, resp. ωγ = 0, such that the family {e−ωγ<zR(z) : z ∈
Σγ} ⊆ L(E) is bounded. We will identify R(·) and R(·) henceforth.

Basically, the following result is the first original result of this section; it can be simply
formulated for the class of analytic (α, ζ, k0, C)-resolvent families, as well:

Theorem 3. Suppose that the kernels a(t) and k(t) are given by (11), (R1(t))t∈[0,τ) ⊆ L(X, E)
[(R2(t))t∈[0,τ) ⊆ L(E); (R(t))t∈[0,τ) ⊆ L(E)] and k1(t) := e(1−ζ)t/ζ k(t), t ≥ 0. Then,
(R1(t))t∈[0,τ) [(R2(t))t∈[0,τ); (R(t))t∈[0,τ)] is a mild (gα, k1)-regularized C1-existence family [a
mild (gα, k1)-regularized C2-uniqueness family; a (gα, k1)-regularized C-resolvent family] subgener-
ated by ζ−αA if and only if (e(ζ−1)t/ζ R1(t))t∈[0,τ) [(e(ζ−1)t/ζ R2(t))t∈[0,τ); (e(ζ−1)t/ζ R(t))t∈[0,τ)]
is a mild (α, ζ, k0, C1)-existence family [a mild (α, ζ, k0, C2)-uniqueness family (R2(t))t∈[0,τ); an
(α, ζ, k0, C)-resolvent family (R(t))t∈[0,τ)] subgenerated by A.

Proof. The proof is simple, and we present it only for the mild (α, ζ, k0, C1)-existence
families. We know that, for every y ∈ X and t ∈ [0, τ), we have(∫ t

0
gα(t− s)R1(s)y, R1(t)y− e

1−ζ
ζ tk(t)C1y

)
∈ ζ−αA.

However, this is equivalent to saying that, for every y ∈ X and t ∈ [0, τ), we have(∫ t

0
e

ζ−1
ζ tgα(t− s)R1(s)y, e

ζ−1
ζ tR1(t)y− k(t)C1y

)
∈ ζ−αA,
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i.e., that, for every y ∈ X and t ∈ [0, τ), we have(∫ t

0
ζ−αe

ζ−1
ζ (t−s)gα(t− s)e

ζ−1
ζ sR1(s)y, e

ζ−1
ζ tR1(t)y− k(t)C1y

)
∈ A.

This simply implies the required statement.

Remark 4. Keeping in mind Theorem 3, we can also consider some applications of degenerate
(a, k)-regularized C-resolvent families from ([36], Section 2.2, SubSection 2.3.3) to the abstract
fractional Cauchy inclusions with the proportional fractional Caputo derivatives. We will skip all
details concerning this issue here.

Now, we will state and prove the following analogue of ([36], Proposition 3.2.15(i)):

Proposition 2. Suppose that the kernels a(t) and k(t) are given through (11), a closed MLO A is
a subgenerator of an (α, ζ, k0, C)-regularized resolvent family (R(t))t∈[0,τ), C−1 f ∈ C([0, τ) : E),
u0 ∈ E,

b(t) := ζα
(

e
ζ−1

ζ ·g1−α ∗ k0

)
(t), t ∈ (0, τ), (14)

and

u(t) := R(t)u0 +
∫ t

0
R(t− s)C−1 f (s) ds, t ∈ [0, τ). (15)

Then, u(t) is a unique solution of the abstract Cauchy inclusion (2) with B ≡ I and F (t) =
k(t)Cu0 + (k ∗ f )(t), t ∈ [0, τ). If, moreover, u0 ∈ D(A) and there exists a function fA ∈
C([0, τ) : E) such that fA(t) ∈ AC−1 f (t), t ∈ [0, τ), then u(t) is a unique strong solution of (2)
with B ≡ I and F (t) = k(t)Cu0 + (k ∗ f )(t), t ∈ [0, τ).

Proof. The uniqueness of solutions follows from ([36], Proposition 3.2.8(ii)). To prove the
existence of solutions, observe first that u ∈ C([0, τ) : E) and a ∗ b = k. Due to our standing
assumptions, we have R(t)u0 − k(t)Cu0 ∈ A(a ∗ R)(t)u0, t ∈ [0, τ). Moreover, Lemma 1
implies that (

R ∗ C−1 f
)
(t)− (k ∗ f )(t) ∈ A

(
a ∗ R ∗ C−1 f

)
(t), t ∈ [0, τ).

This simply implies the first statement with uB = u and ua,A = u−F ; cf. Definition 1(ii).
Suppose now that u0 ∈ D(A) and there exists a function fA ∈ C([0, τ) : E) with the
prescribed properties. Then, there exists v0 ∈ E such that (u0, v0) ∈ A and therefore
(R(t)u0, R(t)v0) ∈ A for all t ∈ [0, τ). Then, u(t) is a strong solution of (2) with B ≡ I and
F (t) = k(t)Cu0 + (k ∗ f )(t), t ∈ [0, τ) since we can take the function

uA(t) = R(t)v0 +
∫ t

0
R(t− s) fA(s) ds, t ∈ [0, τ)

in the third part of Definition 1 (we need to apply Lemma 1 once more here).

Remark 5. We feel it is our duty to say that we made a small mistake by stating that the solutions of
fractional Cauchy problems constructed in ([41], Proposition 2.1.32 and [36], Proposition 3.2.15) are
continuously differentiable on the interval (0, τ), which is not true in general. Consider, for example,
the situation of ([41], Proposition 2.1.32(i)). Let E := l1, the Banach space of norm-summable
numerical sequences (xk) equipped with the norm ‖(xk)‖ := ∑∞

k=1 |xk|, let 0 < α < 1, and let a
closed linear operator Aα on E be defined through D(Aα) := {(xk) ∈ E : ∑∞

k=1 k|xk| < +∞} and
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Aα(xk) := (eiαπ/2kxk), (xk) ∈ D(Aα). Then, E. Bazhlekova has proved, in ([38], Example 2.24),
that the operator Aα generates a bounded (gα, I)-regularized resolvent family (Sα(t))t≥0, given by

Sα(t)
(

xk
)

:=
(

Eα

(
eiαπ/2ktα

)
xk

)
, t ≥ 0,

(
xk
)
∈ E,

as well as that the operator Aα + I does not generate an exponentially bounded (gα, I)-regularized
resolvent family; here, Eα(z) denotes the Mittag–Leffler function (see [38,41] for the notion used
below). Suppose now that (xk) ∈ D(Aα) and ∑∞

k=1 k(1−α)/α|xk| = +∞. If the mapping t 7→
Sα(t)(xk), t > 0 is differentiable at some point t > 0, then we must have

d
dt

Sα(t)
(
xk
)
=
(

tα−1Eα,α
(
eiαπ/2ktα

)
xk

)
.

Due to the asymptotic expansion formula for the Mittag–Leffler functions (see, e.g., ([41], Theo-
rem 1.3.1, (17)-(19)), we have∣∣∣∣∣tα−1Eα,α

(
eiαπ/2ktα

)∣∣∣∣∣ ∼ 1
α

tα−1

∣∣∣∣∣(eiαπ/2ktα
)(1−α)/α

∣∣∣∣∣ ∼ 1
α

k(1−α)/α,

as k→ +∞. This would imply ∑∞
k=1 k(1−α)/α|xk| < +∞, which is a contradiction. Therefore, the

mapping t 7→ Sα(t)(xk), t > 0 is not differentiable at any point t > 0.

The interested reader may try to formulate some analogues of ([36], Proposition
3.2.15(ii)) in our new framework; we continue by stating the following result:

Theorem 4. Suppose that the requirements of Proposition 2 hold with k0(t) = δ(t) being the
Dirac delta distribution, u0 ∈ D(A) and the existence of a function fA ∈ C([0, τ) : E) such
that fA(t) ∈ AC−1 f (t), t ∈ [0, τ). Then, the function u(t), given by (15), is a solution of the
abstract fractional Cauchy problem (DFP)ζ

R with B = I and F (t) = (b ∗ f )(t), t ∈ [0, τ), where
the function b(t) is given by (14).

Proof. By Definition 5(i), it suffices to prove that the fractional derivative Dα,ζ
t u(t) is well

defined as well as that

Dα,ζ
t u(t) = R(t)v0 +

(
R ∗ fA

)
(t) + (b ∗ f )(t), t ∈ [0, τ). (16)

Keeping in mind our consideration from Remark 2, we have that Dα,ζ
t u(t) is well defined if

and only if

g1−α ∗
[
e

1−ζ
ζ ·
(

R(·)u0 +
(

R ∗ C−1 f
)
(·)
)
− Cu0

]
(·) ∈ C1([0, τ) : E).

Due to Theorem 3, we have that (e
1−ζ

ζ tR(t))t∈[0,τ) is a (gα, k1)-regularized C-resolvent fam-

ily with a subgenerator ζ−αA. Since k1(0) = k(0) = 1, we have e
1−ζ

ζ tR(t)u0 − Cu0 =

ζ−α
∫ t

0 gα(t − s)e
1−ζ

ζ sR(s)v0 ds, where v0 ∈ Au0 is chosen arbitrarily. This simply im-
plies that

g1−α ∗ e
1−ζ

ζ ·
[

R(·)u0 − Cu0

]
(·) ∈ C1([0, τ) : E);

therefore, we need to prove that

g1−α ∗ e
1−ζ

ζ ·
(

R ∗ C−1 f
)
(·) ∈ C1([0, τ) : E).
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We have [
g1−α ∗ e

1−ζ
ζ ·
(

R ∗ C−1 f
)
(·)
]
(t)

=
∫ t

0
g1−α(t− s)e

1−ζ
ζ s
∫ s

0

[
k(s− r) f (r)

+ ζ−α
∫ s−r

0
gα(s− r− v)e

ζ−1
ζ (s−r−v)R(v) fA(r) dv

]
dr ds

=
∫ t

0
g1−α(t− s)

∫ s

0
e

1−ζ
ζ r f (r) dr ds

+ ζ−α

(
g1−α ∗ gα ∗

[
e

1−ζ
ζ ·R(·)

]
∗
[
e

1−ζ
ζ · fA

])
(t)

=
∫ t

0
g2−α(t− s)e

1−ζ
ζ s f (s) ds

+ ζ−α

(
g1 ∗

[
e

1−ζ
ζ ·R(·)

]
∗
[
e

1−ζ
ζ · fA

])
(t), t ∈ [0, τ),

where we applied the partial integration for the first addend in the last equality. In view of
the obtained formula, we have:

d
dt

[
g1−α ∗ e

1−ζ
ζ ·
(

R ∗ C−1 f
)
(·)
]
(t) =

∫ t

0
g1−α(t− s)e

1−ζ
ζ s f (s) ds

+ζ−α

([
e

1−ζ
ζ ·R(·)

]
∗
[
e

1−ζ
ζ · fA

])
(t), t ∈ [0, τ),

which implies that the fractional derivative Dα,ζ
t u(t) is well defined. Since the both sides of

Equation (16) are well defined, its equality is equivalent with the corresponding equality
obtained by convoluting the both sides of (16) with a(t). This is equivalent to saying that
u(t) is a strong solution of the associated Volterra inclusion (2), as easily approved, so that
an application of Proposition 2 completes the proof.

As a consequence of the last theorem, we have that the solution of the abstract frac-
tional inclusion (DFP)ζ

R with B = I can be expected, in the usually considered situation,
only if the function F (t) belongs to the range of convolution transform b ∗ ·, where the
function b(t) is given by (14). It is clear that Theorem 4 gives us rise to define, under
certain logical assumptions, the mild solution of the abstract fractional Cauchy inclusion
(α ∈ (0, 1), ζ ∈ (0, 1])(DFP)ζ

R,s : Dα,ζ
t u(t) ∈ Au(t) +

∫ t

0
b(t− s) f (s, u(s)) ds, t ∈ [0, τ),

u(0) = Cu0,

as any continuous function u : [0, τ)→ E such that

u(t) = R(t)u0 +
∫ t

0
R(t− s)C−1 f (s, u(s)) ds, t ∈ [0, τ).

We will analyze the qualitative properties of solutions of the abstract semilinear Cauchy
inclusion (DFP)ζ

R,s elsewhere.
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3.2. Some Applications to the Abstract Volterra Integro-Differential Inclusions

It is clear that Theorem 3, Proposition 2 and Theorem 4 can be applied to the various
classes of the abstract Volterra integro-differential inclusions and the abstract fractional
Cauchy inclusions with the proportional Caputo fractional derivatives:

1. (cf. [36], Example 3.2.23) Suppose that 0 < α < 1, the closed linear operators A
and B satisfy the condition ([40], (3.14)) with α = 1 and some real constants 0 < β ≤ 1,
γ ∈ R and c, C > 0 (in our notation, we have A = L and B = M). Then, we know
that the multivalued linear operator AB−1 generates an exponentially bounded, analytic
(g1, g1+σ)-regularized I-resolvent family of angle Σarcctan(1/c), provided that σ > 1− β.

The subordination principle then implies (see, e.g., ([44], Theorem 3.9) and [36]) that
AB−1 generates an exponentially bounded, analytic (gα, g1+ασ)-regularized I-resolvent
family of angle θ ≥ min((π/2), (π/2)(α−1 − 1)) for any σ > 1 − β; the value of this
angle can be probably increased using the argumentation contained in the proof of ([44],
Theorem 3.10); however, we will not discuss this question here. For example, we can
consider the well-posedness of the abstract Volterra integral inclusions associated with the
following Poisson heat equation in the space E = Lp(Ω):

(P)b :


∂
∂t [m(x)v(t, x)] = ∆v− bv, t ≥ 0, x ∈ Ω;
v(t, x) = 0, (t, x) ∈ [0, ∞)× ∂Ω,
m(x)v(0, x) = u0(x), x ∈ Ω,

where Ω is a bounded domain in Rn, b > 0, m(x) ≥ 0 a.e. x ∈ Ω, m ∈ L∞(Ω) and
1 < p < ∞. Let B be the multiplication in Lp(Ω) with m(x) and let A = ∆− b act with
the Dirichlet boundary conditions; these operators satisfy the general requirements of this
example described above. Set A := ζα AB−1.

Then, Theorem 3 implies that the multivalued linear operatorA generates an exponen-
tially bounded, analytic (α, ζ, k0, I)-resolvent family of angle θ ≥ min((π/2), (π/2)(α−1 −
1)) for any σ > 1− β; here k0(t) = e

ζ−1
ζ tgασ(t), t > 0, b(t) = ζαe

ζ−1
ζ tg1−α+ασ(t), t > 0,

and k(t) = e
ζ−1

ζ tg1+ασ(t), t > 0. Then, Proposition 2 is applicable for any u0 ∈ E and
f ∈ C([0, τ) : E). We can similarly apply Proposition 2 to the certain classes of the abstract
Volterra integral inclusions with the almost sectorial operators (cf. [36,41] and references
cited therein).

2. (cf. [41], Section 2.5) In this part, we briefly explain how we can apply our theoretical
results in the analysis of the abstract fractional Cauchy problems with the proportional
Caputo fractional derivatives and the abstract differential operators generating fractional
resolvent families (cf. also [36], SubSection 3.10.1). Suppose that the requirements of
([41], Theorem 2.5.3) are satisfied with α ∈ (0, 1). Then, there exists an injective operator
C ∈ L(E) such that the single-valued linear operator P(A) generates an exponentially
bounded (gα, C)-regularized resolvent family. In our concrete situation, we have that

k0(t) = δ(t) is the Dirac delta distribution and b(t) = ζαe
ζ−1

ζ tg1−α(t), t > 0.
Due to Theorem 3, the operator ζαP(A) generates an exponentially bounded (α, ζ, δ, C)-

regularized resolvent family. If u0 ∈ D(P(A)) and the function t 7→ C−1 f (t), t ∈ [0, τ)
is continuous, then Theorem 4 implies that there exists a unique solution of the abstract
fractional Cauchy problem (DFP)ζ

R with B = I, A = ζαP(A) and F (t) = (b ∗ f )(t),
t ∈ [0, τ).

As the many research studies performed thus far, it is clear how we can use this
result in the analysis of the abstract fractional Cauchy problems in Lp-spaces with the
proportional Caputo fractional derivatives and the abstract differential (non-elliptic, in
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general) differential operators in Lp-spaces with the constant coefficients; for example, we
can consider the well-posedness of the following abstract fractional Cauchy problem:Dα,ζ

t u(t, x) = ζαe
i(2−α)π

2 ∆u(t, x) + ζα
(

e
ζ−1

ζ · ∗ f
)
(t), α ∈ (0, 1), ζ ∈ (0, 1], t ≥ 0,

u(0) =
(

I − ∆
)−γu0,

provided that 1 < p < ∞ and γ ≥ n|(1/p)− (1/2)|/α (see also [41], Example 2.5.6).

3. Concerning the classes of mild (α, ζ, k0, C1)-existence families and the mild
(α, ζ, k0, C2)-uniqueness families, we will only emphasize that Theorems 3 and 4 can be
successfully applied in the analysis of the fractional heat equation with the proportional
Caputo fractional derivative in the space E := { f ∈ C(R) : lim|x|→∞ ex2

f (x) = 0}; see the
final part of ([41], Section 2.8) for more details.

In our new framework, some other applications can be given using ([41], Theorem
2.3.1(ii), Theorem 2.3.3, Remark 2.5.4(ii), Example 2.6.39).

4. Suppose that k0(t) = δ(t), the Dirac Delta distribution and consider the situation
of Theorem 3; then, k1(t) ≡ 1. If the corresponding (gα, 1)-regularized C-resolvent family
(R1(t))t≥0 subgenerated by ζ−αA exists and satisfies that ‖R1(t)‖ ≤ Meωt, t ≥ 0 for some
real numbers M > 0 and ω ∈ [0, (1− ζ)/ζ), then the corresponding (α, ζ, δ, C)-regularized
resolvent family (R(t))t≥0 subgenerated by A is exponentially decaying. Therefore, Propo-
sition 2 and Theorem 4 can be successfully applied in the analysis of the existence and
uniqueness of asymptotically almost periodic (automorphic) type solutions of the corre-
sponding abstract Volterra integral inclusions and the abstract fractional Cauchy inclusions
with the proportional Caputo fractional derivatives; see., e.g., [45], Lemma 2.13, [46],
Lemma 4.1 and [20], Propositions 2.6.13, 2.7.5, 2.11.10, 3.5.4.

4. Almost Periodic Type Solutions of Semilinear Proportional Caputo Fractional
Differential Equations

Let α ∈ (0, 1) and ζ ∈ (0, 1]. In this section, we continue the investigation of R.
Agarwal, S. Hristova and D. O’Regan [12] by studying the almost periodic-type solutions
of the following proportional Caputo fractional differential equation with A ≡ 0:{

c
0Dα,ζu(t) = f (t, u(t)), α ∈ (0, 1), ζ ∈ (0, 1], t ≥ 0,

u(0) = u0.
(17)

By a mild solution of (17), we mean any continuous function u : [0, ∞)→ X such that (see
also [12], Lemma 3):

u(t) = u0e
ζ−1

ζ t
+

1
ζαΓ(α)

t∫
0

e
ζ−1

ζ (t−s)
(t− s)α−1 f (s, u(s)) ds, t ≥ 0. (18)

We will occasionally use the following conditions:

(C1) The function f : I × X → X is continuous,∫ ω

0
f (ω− s, x)e

ζ−1
ζ ssα−1 ds = 0, x ∈ X, (19)

and, for every bounded subset B of X, we have supt≥0;x∈B ‖ f (t, x)‖ < +∞.
(C2) There exists a finite real constant L f > 0 such that

‖ f (t, u)− f (t, v)‖ ≤ L f ‖u− v‖ for all t ≥ 0 and u, v ∈ X.

(C3) c = e
ζ−1

ζ ω.
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Then, we have the following (by the proof of the Banach contraction principle, the
unique solution of (17) may be approximated by means of the iterative sequence given by
the operator T defined below):

Proposition 3. Let (C1)–(C3) hold and let L f < (1− ζ)α. Then, there exists a unique solution
u ∈ Φω,c of (17).

Proof. The solution of (17) is given by (18). We define the operator T : Φω,c → Φω,c by

(Tu)(t) := u0e
ζ−1

ζ t
+

1
ζαΓ(α)

t∫
0

e
ζ−1

ζ (t−s)
(t− s)α−1 f (s, u(s)) ds, t ≥ 0.

Let us show that T is well defined. Thus, let u ∈ Φω,c. Then, a straightforward computation
involving conditions (19) and (C3) shows that (Tu)(ω) = c(Tu)(0). We have that Tu(·) is
a bounded function since we assumed that, for every bounded subset B of X, we have
supt≥0;x∈B ‖ f (t, x)‖ < +∞ and

[
Γ(α)

]−1
∫ ∞

0
e

ζ−1
ζ (t−s)

(t− s)α−1 ds =
[
(1− ζ)/ζ

]−α
< +∞;

moreover, it is elementary to prove that Tu(·) is a continuous function. Therefore, T is well
defined; since we assumed that L f < (1− ζ)α, it can be simply shown that the mapping T
is a contraction, which implies that Equation (17) has a unique solution u ∈ Φω,c due to the
Banach contraction principle.

We continue by providing the following illustrative example:

Example 2. Suppose that X = C and f (t, x) = f1(t) f2(x), where f1 ∈ Cb([0, ∞) : X) and f2(·)
is Lipschitz continuous on R with the Lipschitz constant L f2 > 0 satisfying ‖ f1‖∞L f2 < (1− ζ)α.
If ∫ ω

0
f1(ω− s)e

ζ−1
ζ ssα−1 ds = 0,

then Proposition 3 can be simply applied.

It is clear that the proportional fractional integrals, the proportional Caputo fractional
derivatives and the abstract Cauchy fractional problem (17) can be considered for the
functions defined on the finite interval [0, ω]. Define Ψω,c := {u ∈ C[0, ω] : u(ω) = cu(0)};
then Ψω,c is a Banach space when equipped with the sup-norm.

For the sequel, we need the following well-known result:

Theorem 5 (Schauder fixed-point theorem [47]). Let X be a Banach space and Ω ⊆ X be
a convex, closed and bounded set. If T : Ω → Ω is a continuous operator such that T(Ω) is
pre-compact, then T has at least one fixed point in Ω.

Consider the following conditions:

(C1)’The function f : [0, ω]× X → X is continuous and∫ ω

0
f (ω− s, x)e

ζ−1
ζ ssα−1 ds = 0, x ∈ X.

(C4) There exist real constants C1, C2 > 0 such that

‖ f (t, u)‖ ≤ C1‖u‖+ C2 for all t ∈ [0, ω] and u ∈ X.
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In the subsequent result, we apply the Schauder fixed-point theorem to prove the
existence of a solution u ∈ Ψω,c of the problem (17) on [0, ω]:

Theorem 6. Let the conditions (C1)’ and (C3)–(C4) hold and let

Iω :=
∫ ω

0
e

ζ−1
ζ ssα−1 ds.

If
C1 Iω < ζαΓ(α),

then the proportional Caputo fractional differential Equation (17) has at least one solution u ∈ Ψω,c
on [0, ω].

Proof. Define Bm := {u ∈ Ψω,c : ‖u‖ ≤ m}, where

m

(
1− C1 Iω

ζαΓ(α)

)
>
∥∥u0

∥∥+ C2 Iω

ζαΓ(α)
.

Let T be the operator defined as in the proof of Proposition 3. For every t ∈ [0, ω] and
u ∈ Bm, we have

‖(Tu)(t)‖ ≤ ‖u0‖+
1

ζαΓ(α)

t∫
0

e
ζ−1

ζ (t−s)
(t− s)α−1‖ f (s, u(s))‖ ds

≤ ‖u0‖+
1

ζαΓ(α)

t∫
0

e
ζ−1

ζ (t−s)
(t− s)α−1(C1‖u(s)‖+ C2

)
ds

≤ ‖u0‖+
1

ζαΓ(α)
(C1‖u‖+ C2)Iω < m.

Thus, ‖Tu‖ ≤ m and T(Bm) ⊆ Bm.
Now, we will prove that the operator T is continuous on Bm. Let (un) be a sequence in

Bm such that un → u on Bm, when n→ ∞. Since f (t, x) is a continuous function, we have
f (s, un(s))→ f (s, u(s)), when n→ ∞. Hence,

e
ζ−1

ζ (t−s)
(t− s)α−1 f (s, un(s))→ e

ζ−1
ζ (t−s)

(t− s)α−1 f (s, u(s)), as n→ ∞.

By (C4), we have

t∫
0

∥∥∥e
ζ−1

ζ (t−s)
(t− s)α−1 f (s, un(s))− e

ζ−1
ζ (t−s)

(t− s)α−1 f (s, u(s))
∥∥∥ ds

≤ 2(C1m + C2)

t∫
0

e
ζ−1

ζ (t−s)
(t− s)α−1 ds ≤ 2(C1m + C2)Iω < +∞.

Now, by the Lebesgue dominated convergence theorem, we have

t∫
0

∥∥∥e
ζ−1

ζ (t−s)
(t− s)α−1 f (s, un(s))− e

ζ−1
ζ (t−s)

(t− s)α−1 f (s, u(s))
∥∥∥ ds→ 0,

as n→ ∞. This simply implies that the operator T is continuous on Bm.



Symmetry 2022, 14, 1941 21 of 27

Next, we prove that the operator T is pre-compact. For any 0 ≤ s1 ≤ s2 and u ∈ Bm,
we have∥∥(Tu)(s1)− (Tu)(s2)

∥∥ ≤ ‖u0‖ ·
∣∣∣e ζ−1

ζ s1 − e
ζ−1

ζ s2
∣∣∣

+

∥∥∥∥∥ 1
ζαΓ(α)

s1∫
0

e
ζ−1

ζ (s1−s)
(s1 − s)α−1 f (s, u(s)) ds

− 1
ζαΓ(α)

s2∫
0

e
ζ−1

ζ (s2−s)
(s2 − s)α−1 f (s, u(s)) ds

∥∥∥∥∥
≤ ‖u0‖ ·

∣∣∣e ζ−1
ζ s1 − e

ζ−1
ζ s2
∣∣∣

+
1

ζαΓ(α)

s1∫
0

(
e

ζ−1
ζ (s1−s)

(s1 − s)α−1 − e
ζ−1

ζ (s2−s)
(s2 − s)α−1

)
‖ f (s, u(s))‖ ds

+
1

ζαΓ(α)

s2∫
s1

e
ζ−1

ζ (s2−s)
(s2 − s)α−1‖ f (s, u(s))‖ ds

≤ ‖u0‖ ·
∣∣∣e ζ−1

ζ s1 − e
ζ−1

ζ s2
∣∣∣

+
C1m + C2

ζαΓ(α)

s1∫
0

(
e

ζ−1
ζ (s1−s)

(s1 − s)α−1 − e
ζ−1

ζ (s2−s)
(s2 − s)α−1

)
ds

+
C1m + C2

ζαΓ(α)

s2∫
s1

e
ζ−1

ζ (s2−s)
(s2 − s)α−1 ds

≤ ‖u0‖ ·
∣∣∣e ζ−1

ζ s1 − e
ζ−1

ζ s2
∣∣∣

+
C1m + C2

ζαΓ(α)

s1∫
0

(
e

ζ−1
ζ (s1−s)

(s1 − s)α−1 − e
ζ−1

ζ (s2−s)
(s2 − s)α−1

)
ds

+
C1m + C2

ζαΓ(α + 1)
(
s2 − s1

)α → 0,

as s1 → s2, independently of u ∈ Bm; here, we can apply the dominated convergence
theorem for the second addend. Therefore, T(Bm) is equicontinuous. Since T(Bm) is
uniformly bounded, the Arzelá–Ascoli theorem (see, e.g., [48]) implies that T(Bm) is pre-
compact. Using Schauder’s fixed-point theorem, we finally obtain that the proportional
Caputo fractional differential Equation (17) has at least one solution u ∈ Ψω,c.

5. Nonexistence of (ω, c)-Periodic Solutions of (17) and Nonexistence of Poisson
Stable-Like Solutions of (17)

In this section, we consider the nonexistence of (ω, c)-periodic solutions of (17) and
the nonexistence of Poisson-stable-like solutions of (17). Before doing this, we will continue
and slightly extend the results of I. Area, J. Losada and J. J. Nieto [35,37] concerning the
quasi-periodic properties of the Riemann–Liouville fractional integrals (see also I. Area,
J. Losada, J. J. Nieto [49] and J. M. Jonnalagadda [50] for the discrete analogues). For
simplicity, we will not thoroughly analyze the quasi-periodic properties of proportional
Caputo fractional derivatives.
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5.1. On Quasi-Periodic Properties of Proportional Fractional Integrals

Let us consider first the statement of Proposition 3 with f (t, x) ≡ f (t), t ≥ 0. If
(C3) holds, then the existence of a unique nonzero (ω, c)-periodic solution of (17) can be
expected only if ∫ t+ω

t
f (t + ω− s)e

ζ−1
ζ ssα−1 ds = 0, t ≥ 0,

i.e., ∫ ω

0
f (ω− s)e

ζ−1
ζ (t+s)

(t + s)α−1 ds = 0, t ≥ 0, (20)

which is a restrictive assumption. In ([37], Theorem 1), the authors have proven that the
validity of (20) with ζ = 1 and f ∈ L1

loc([0, ∞) : R) being a nonzero ω-periodic function
implies that the Riemann–Liouville integral Jα

t f (t) = (0 Iα,1 f )(·) cannot be an ω-periodic
function for any α ∈ (0, 1); moreover, the authors have proven, in ([37], Section 4), that
(0 Iα,1 f )(·) cannot be ω′-periodic for any α ∈ (0, 1) and ω′ > 0 (see also ([37], Corollary 2)
for a fractional derivative analogue of the first-mentioned result). Therefore, it is logical to
ask whether these results continue to hold for an arbitrary value of parameter ζ ∈ (0, 1).

Before considering this issue, we would like to state and prove a new theoretical
result about the quasi-periodic properties of the Riemann–Liouville fractional integrals of
essentially bounded ω-periodic functions. Suppose that α ∈ (0, 1), ω > 0 and f : [0, ∞)→
X is a non-zero essentially bounded ω-periodic function. Then, ([35], Lemma 3) continues
to hold for f (·), as it can be simply verified, so that the function Jα

t f (·) is S-asymptotically
ω-periodic (cf. [51] for the notion). If we suppose that the function Jα

t f (·) is Poisson stable,
this would imply by ([51], Lemma 3.1) that the function Jα

t f (·) is ω-periodic. This will be
used in the proof of the following proper extension of ([35], Theorem 9), which has been
formulated in a slightly different manner as Theorem 2.3.48 of [25]:

Theorem 7. Suppose that α ∈ (0, 1), ω > 0 and f : [0, ∞)→ X is a non-zero essentially bounded
ω-periodic function. Then, Jα

t f (·) cannot be Poisson stable (a restriction of an almost automorphic
function to the non-negative real line).

Proof. We will first consider the Poisson stable functions. Suppose that Jα
t f (·) is Poisson

stable and x∗ ∈ X∗ is an arbitrary functional. Let 〈x∗, f (·)〉 = a(·) + ib(·), where a(·) and
b(·) are real-valued functions. Then, the function Jα

t 〈x∗, f (·)〉 = Jα
t a(·) + i Jα

t b(·) is Poisson
stable because Jα

t 〈x∗, f (·)〉 = 〈x∗, Jα
t f (·)〉, which further implies that the functions Jα

t a(·)
and Jα

t b(·) are Poisson stable. Since a(·) and b(·) are essentially bounded functions of
period ω, the above discussion implies that Jα

t a(·) and Jα
t b(·) are periodic functions of

period ω. Then, we can apply ([37], Theorem 1) in order to see that a(·) ≡ b(·) ≡ 0. This
implies 〈x∗, f (·)〉 ≡ 0 and therefore f (·) ≡ 0 since x∗ was arbitrary.

Suppose now that Jα
t f (·) is a restriction of an almost automorphic function to the

non-negative real line. For the remainder of the proof, it is essential to observe that the
statements of ([35], Lemma 1, Theorem 5) hold not only for continuous periodic functions
but also for essentially bounded periodic functions (let us only note here that the functions
ϕn(t) and Φn(t) defined at the beginning of the proof of ([35], Theorem 5) are continuous
for any essentially bounded T-periodic function f (t), as a simple computation shows.

Keeping in mind our assumptions, we obtain now that the functions Jα
t a(·) and

Jα
t b(·) are asymptotically ω-periodic on the non-negative real line so that there exist two

continuous ω-periodic functions ga,b : R→ R and two continuous functions ψa,b : [0, ∞)→
R vanishing at plus infinity so that Jα

t a(t) = ga(t) + ψa(t), t ≥ 0 and Jα
t b(t) = gb(t) + ψb(t),

t ≥ 0. This is impossible because the almost automorphic function Jα
t a(·)− ga(·) [Jα

t b(·)−
gb(·)] cannot vanish at plus infinity on account of the supremum formula ([20], Lemma
3.9.9). Therefore, a(·) ≡ b(·) ≡ 0, 〈x∗, f (·)〉 ≡ 0, and therefore f (·) ≡ 0.
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Applying the trick used in the first part of the proof and the well known fact that
a weakly bounded set in a locally convex space is bounded, we may conclude that the
statements of ([37], Theorem 1, Corollary 2 and [35], Lemma 2, Lemma 3; Proposition
1, Proposition 2; Theorem 2, Theorem 3, Theorem 4 and Theorem 8) hold in the vector-
valued case (concerning the above-mentioned statements from [35], it seems plausible that
the continuity of function f (·) in their formulations can be replaced with the essential
boundedness). It is clear that ([35], Corollary 1) cannot be reformulated even for the
complex-valued functions and, regarding the main structural results established in [35,37],
it remains to be considered whether the statements of ([35], Theorem 5, Theorem 6 and
Theorem 7) hold in the vector-valued case. We will analyze this question elsewhere.

Let us come back now to the question proposed at the end of the first paragraph of
this subsection. First, we prove that the statements of ([37], Theorem 1) and Theorem 7 can
be simply transferred to the proportional Caputo fractional integrals. More precisely, we
have the following:

Theorem 8. Let ζ ∈ (0, 1), α ∈ (0, 1) and (C3) hold.

(i) Suppose that f : [0, ∞)→ R is a non-zero locally integrable (ω, c)-periodic function. Then,
the function (0 Iα,ζ f )(·) cannot be (ω, c)-periodic.

(ii) Suppose that f : [0, ∞)→ X is a non-zero essentially bounded (ω, c)-periodic function. Then,

the function e
1−ζ

ζ ·(0 Iα,ζ f )(·) cannot be Poisson stable (a restriction of an almost automorphic
function to the non-negative real line).

(iii) Suppose that f : [0, ∞)→ X is a non-zero essentially bounded (ω, c)-periodic function. Then,

the function e
1−ζ

ζ ·(0 Iα,ζ f )(·) is S-asymptotically ω-periodic.

Proof. We will prove only (i). The function g(t) := e
1−ζ

ζ t f (t), t ≥ 0 is nonzero, locally
integrable and ω-periodic, as easily shown. An application of ([37], Theorem 1) shows that

the function t 7→
∫ t

0 gα(t− s)e
1−ζ

ζ s f (s) ds, t ≥ 0 cannot be ω-periodic, i.e., the function t 7→

e
ζ−1

ζ t ∫ t
0 gα(t− s)e

1−ζ
ζ s f (s) ds, t ≥ 0 cannot be (ω, c)-periodic. This implies the required.

Remark 6. We cannot use (iii) in order to prove that the function (0 Iα,ζ f )(·) is S-asymptotically
(ω, c)-periodic since |c| < 1.

Using the same substitution, we can simply transfer the statements of ([35], Theorem 2,
Theorem 5, Theorem 8) and Theorem 7 for the proportional fractional integrals. Details can
be left to the interested readers.

In what follows, we continue the general analysis of Section 5. Let (C3) hold. We prove
that the solution u(t) of the fractional Cauchy problem (17), which is given by (18), cannot

be (ω, c)-periodic provided that u(t) is not a constant multiple of the function e
ζ−1

ζ t, as well
as the function f (t, x) is continuous and satisfies

f (t + ω, cx) = c f (t, x), t ≥ 0, x ∈ X. (21)

Suppose the contrary and consider the function v(t) := e(1−ζ)t/ζ u(t), t ≥ 0. Then, v(t) is a
nonconstant ω-periodic function since

v(t + ω) = e(1−ζ)t/ζ e(1−ζ)ω/ζ u(t + ω) = e(1−ζ)t/ζ e(1−ζ)ω/ζ cu(t) = v(t), t ≥ 0;

moreover, we have:

v(t) = u0 +
∫ t

0
gα(t− s)

[
ζ−αe

1−ζ
ζ s f (s, u(s))

]
ds, t ≥ 0.
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This implies

Dα
t v(t) =

d
dt

[
g1−α ∗

(
v(·)− u0

)]
= ζ−αe

1−ζ
ζ t f (t, u(t)), t ≥ 0.

On the other hand, using (21), we have

f (t + ω, u(t + ω)) = f (t + ω, cu(t)) = c f (t, u(t)), t ≥ 0,

so that the mapping t 7→ f (t, u(t)), t ≥ 0 is (ω, c)-periodic, and consequently, the mapping

t 7→ ζ−αe
1−ζ

ζ t f (t, u(t)), t ≥ 0 is ω-periodic. This contradicts ([37], Corollary 2) (see also
Remark 1) and yields the required conclusion.

We can similarly prove that the function e(1−ζ)·/ζ u(·) cannot be Poisson stable (a
restriction of an almost automorphic function to the non-negative real line), which strongly
justifies the consideration of our results from Section 4.

6. Conclusions and Final Remarks

In this research article, we reconsidered the notion of the proportional Caputo frac-
tional derivative of order α ∈ (0, 1) and provided a new theoretical concept of the propor-
tional Caputo fractional derivative of order α for the functions that are not continuously
differentiable, in general. We investigated the existence and uniqueness of almost periodic-
type solutions for various classes of proportional Caputo fractional differential inclusions in
Banach spaces and explored the basic properties of the fractional solution operator families
connected with the use of this type of fractional derivatives; the considered fractional
solution operator families are subgenerated by multivalued linear operators and can be
degenerate in the time variable. In addition to the above, several questions, observations
and open problems are proposed.

Let us finally note the following:

1. Of concern is the following generalization of (20):∫ ω

0
a(t + s) f (ω− s) ds = 0, t ≥ 0, (22)

with a ∈ L1
loc([0, ∞) : C) and f ∈ L1

loc([0, ω) : X). It could be of importance to find
some sufficient conditions on the kernel a(t) ensuring that the assumption (22) implies
f (t) = 0 for a.e. t ∈ [0, ω]. For general non-constant kernels a(t), this is not true as the
following simple counterexample shows:

Example 3. Suppose that a(t) = f (t) = 1 for 0 ≤ t < ω/2 and a(t) = f (t) = 0 for
ω/2 ≤ t ≤ ω. Then, (22) holds but it is not true that f (t) = 0 for a.e. t ∈ [0, ω]; moreover,
0 ∈ supp(a) ∩ supp( f ).

2. In this paper, we did not consider the Caputo fractional proportional derivatives
with respect to another functions and the abstract fractional inclusions with this type
of fractional derivatives. For more detail on the subject, we refer the reader to the
research articles [52–54] and the list of references quoted therein.

3. The Hilfer generalized proportional fractional derivatives have been also introduced
and analyzed in the existing literature (see, e.g., the paper [55] by I. Ahmed et al).
Concerning the Hadamard proportional fractional integral inequalities, we can recom-
mend for the reader [56–58] and the references cited therein.
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