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Abstract: One of the most prevalent cancers in women is breast cancer. The mortality rate related to
this disease can be decreased by early, accurate diagnosis to increase the chance of survival. Infrared
thermal imaging is one of the breast imaging modalities in which the temperature of the breast tissue
is measured using a screening tool. The previous studies did not use pre-trained deep learning
(DL) with deep attention mechanisms (AMs) on thermographic images for breast cancer diagnosis.
Using thermal images from the Database for Research Mastology with Infrared Image (DMR-IR),
the study investigates the use of a pre-trained Visual Geometry Group with 16 layers (VGG16) with
AMs that can produce good diagnosis performance utilizing the thermal images of breast cancer.
The symmetry of the three models resulting from the combination of VGG16 with three types of
AMs is evident in all its stages in methodology. The models were compared to state-of-art breast
cancer diagnosis approaches and tested for accuracy, sensitivity, specificity, precision, F1-score, AUC
score, and Cohen’s kappa. The test accuracy rates for the AMs using the VGG16 model on the breast
thermal dataset were encouraging, at 99.80%, 99.49%, and 99.32%. Test accuracy for VGG16 without
AMs was 99.18%, whereas test accuracy for VGG16 with AMs improved by 0.62%. The proposed
approaches also performed better than previous approaches examined in the related studies.

Keywords: breast cancer; thermography; deep learning; VGG16; attention mechanisms; machine
learning; detection; diagnosis; artificial intelligence

1. Introduction

Human diseases have increasingly grown due to environmental or personal factors
despite various diagnoses and preventative strategies. The most prevalent disease in the
world is cancer, characterized by erratic cell growth that spreads to other body organs.
Breast, prostate, lung, skin, and pancreatic cancers have all been reported. Cancer is one of
the causes of losing many lives [1].

The likelihood of survival has increased with the introduction of early diagnosis and
treatment techniques for breast cancer. The patient is screened utilizing several imaging
modalities as one of the extensively practiced medical techniques to identify breast cancer.
Imaging modalities screening includes mammography, ultrasound, magnetic resonance
imaging (MRI), computed tomography imaging (CT), and thermal imaging. Results from
these modalities rely on several circumstances; it is advised to use multiple methods to
check the results because they each have unique techniques and instruments.

The most popular method of detecting breast cancer is mammography. Although it
is the gold standard, mammography has several risks for patients. Due to the fact that it
poses less danger than mammography, thermography has generated interest recently [2].

Skin lesions and temperature are the main inputs for digital infrared thermal imaging;
thus, it has not yet replaced other modalities as the primary method of finding early
breast cancer [3]. Nevertheless, encouraging findings suggest that radiologists can use it in
conjunction with mammography to determine the condition of the breast for an accurate
evaluation and diagnosis of breast cancer [3]. Compared to mammography, it has not been
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utilized as frequently; although, it has shown good outcomes of early diagnosis. It also
offers several benefits because it is painless, safe, non-invasive, and affordable.

The accuracy of breast cancer screening and diagnosis using machine learning (ML)
and deep learning (DL) approaches has increased recently. Due to the encouraging out-
comes obtained when DL algorithms for breast cancer screening were coupled with deep
AMs, deep attention approaches have also gained increased attention in this sector [4].
As a result, there is a higher chance that the performance of the used approaches will be
improved since notable regions of the image are given additional attention rather than
treating all batches as equally important.

Despite the advancements in breast cancer diagnosis, additional study is required to
investigate various modalities and improve detection accuracy when utilizing DL algo-
rithms with deep AMs, and to further the area of breast cancer detection, this research
intends to do so. This study’s primary goal is to offer a trustworthy and efficient approach
based on AMs and DL to identify breast cancer utilizing thermal imaging, assisting medi-
cal professionals in establishing a more thorough and credible screening of breast cancer
tumors. Moreover, poor and developing countries will benefit from improved diagnostic
techniques using thermal imaging due to it being inexpensive, which enhances the quality
of life in those areas.

The contributions were mentioned in this research study as follows:

• This research study presents accurate models of breast cancer detection based on the
pre-trained model VGG16 and AMs using thermographic images.

• This research study evaluates the performance of VGG16 with and without AMs to
determine the effect of AMs on the performance of VGG16.

• This research study compares the proposed models with related studies.

Following is the arrangement of the remaining sections of this article. The background
overview of the DL approaches is given in Section 2. A brief overview of deep AMs is
provided in Section 3. The related works of breast cancer detection are reviewed in the
following section. The suggested approaches are covered in Section 5, along with the
experiment design and assessment procedure. The experimental findings are discussed
in Section 6. The conclusions of this paper, including the main findings, limitations, and
future directions, are presented in Section 7.

2. Deep Learning and Convolutional Neural Network (CNN)

A subset of artificial intelligence (AI) called machine learning (ML) enables com-
puters to automatically learn from experiments and get better without explicitly being
programmed. We can divide AI inventions into two groups: conventional ML and DL.
Conventional ML methods rely on system learning from training data to construct a trained
model. A more sophisticated class of ML algorithms called DL exceeded the performance
of conventional ML methods [5].

DL algorithms efficiently handle vast data as opposed to small data. In the literature,
many DL method categories have been used. Convolutional neural networks are one of the
major DL algorithms (CNNs).

Regarding image-based classification and recognition for supervised learning, a CNN
is a powerful and prevalent DL technique. DL has generally transformed computer vision
by deploying superhuman accuracy techniques for a variety of jobs and applications. There
have been several prominent methods for classifying and processing images that have
enhanced performance, particularly in the medical industry.

In recent years, CNN has experienced rapid growth and the development of several
architectures, such as VGG16, which is considered one of the most famous of CNN. The
VGG16 architecture comprises five blocks of convolutional layers followed by three fully
connected layers and the finally 1000 fully connected softmax layer. The VGG16 model has
the drawback of being expensive to assess and requiring a large amount of memory and
parameters. There are over 138 million parameters in VGG16. The fully connected layers
include the majority of these characteristics (123 million in total) [6].
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3. Deep Attention Mechanisms

Typically, when performed on images, ML approaches assign each image patch identi-
cal weight without paying particular “attention” to significant parts. The most prominent
portions of the image are highlighted when AMs and ML are combined, raising the like-
lihood that the productivity of the techniques used will be enhanced. The performance
of the dynamically generated outcome can be improved by using the AMs to highlight
the essential segments of the inputs, and thereby enhance the capacity to extract the most
pertinent information for each outcome segment and repress, or even disregard utterly,
unrelated information [7]. We shall briefly explore each of the three basic categories of AMs.

• Soft Attention: The categorical distribution is computed through a set of elements,
then the weights are generated by the resulting probabilities. The probabilities that
result represent the importance of each element and are utilized as weights to gen-
erate a context-aware encoding that is the weighted sum of all elements. Due to the
interdependence between the mechanism and the purpose of the deep neural network,
it determines how much focus should be given to each input element by giving each
element a weight between zero and one [8].

• Hard Attention: A subset of elements are selected from the input sequence. The
weight allotted to an input element in hard AMs can be zero or one, forcing the
approach to concentrate only on the critical elements and ignore the rest. Due to the
input elements being either observed or not, the goal is non-differentiable [9].

• Self-Attention: The interdependence of the mechanism’s input elements is estimated
because it permits the input to interact with the other “self” and identify what it should
focus on more. One of the essential benefits of the self-attention layer against hard and
soft mechanisms is its parallel computing capability for a lengthy input. To verify that
all the same input elements are being paid attention to, this mechanism layer performs
straightforward and efficiently parallelizable matrix calculations [9].

4. Related Work

A review of recent research on utilizing thermal imaging for breast cancer screening is
presented in this section.

Several recent investigations have been carried out, employing ML and DL to diagnose
breast cancer from mammograms.

The U-net structure inspired the authors’ novel CNN design of the two datasets of
CBIS-DDSM mass and macrocalcification mammography [10], which included 692 mass
and 603 macrocalcification images. The model has a 94.31% accuracy.

The BC-DROID approach allowed for one-step automated detection and classification
using a CNN [11]. The approach was trained using 10,480 whole mammograms derived
from DDSM data, with a detection accuracy of 90%, classification accuracy of 93.5%, and
an AUC of 92.315%.

In [12], a grayscale co-occurrence matrix and a grayscale run-length matrix were
extracted and fed two inputs to a hybrid CNN and RNN model called CRNN for mammo-
graphic breast cancer detection. The results and AND operation outcomes of the classifier
achieved a diagnostic accuracy of 90.59%, which exceeded conventional models.

Recent years have seen more studies into utilizing thermal imaging to detect and
classify breast cancer due to the quick development of infrared cameras. Several studies
have used ML and DL algorithms on thermal imaging data.

The authors of [13] categorized 1052 thermograms from the University Hospital at
The Federal University of Pernambuco. They employed a variety of models, including
the Bayes network, naive Bayes, J48 decision tree, SVM, random forest (RF), multi-layer
perceptron (MLP), ELM, and random tree (RT). The findings indicated that MLP performed
well when compared to the other classifiers, with an accuracy of 73.38%, a kappa value
of 0.6007, a sensitivity of 78%, and a specificity of 88%. The accuracy was enhanced to
76.01% by employing a 10-fold cross-validation procedure with a kappa index of 0.6402.
The overall efficiency of the system was 83%.
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The performance of SVM, ANN, DT, and KNN classifiers in diagnosing thermal images
from the DBT-TU-JU and DMR-IR datasets was improved [14] using the features SSigFS,
FStat, and STex. The performance of the classifiers in the two databases was compared: in
the DBT-TU-JU dataset, SVM-RBF and ANN acquired the greatest accuracy of 84.29%, while
in the DMR-IR dataset, ANN and SVM-linear earned the maximum accuracy of 87.50%.

On the other side, DL algorithms, particularly a CNN, have been applied to thermal
images and have demonstrated competitive performance in breast diagnosis. A CCN
was used for the first time to classify thermal images and was optimized using the Bayes
optimization technique [15]. The accuracy was 98.05% using 1116 images taken from the
DMI dataset. The model outperformed previous studies that utilized the same dataset with
different features and classifiers on a larger number of images.

Authors of a different study [16] used a DCNN model to detect breast cancer using
thermal images. They transformed 680 thermal images from a Visual Lab-IR dataset to
grayscale before pre-processing, segmenting, and classifying them. They attained a 95.8%
prediction accuracy. They surpassed the study in [17], which had a 93.30% accuracy with
50 thermograms. Furthermore, compared to a study published in 2012 [18] that employed
the DT and fuzzy classifiers, it reached the most fantastic average accuracy of 93.30%,
indicating a substantial increase by DCNN.

The combining of GVF breast segmentation and CNN classification was studied by the
authors in [19] as a potential method for detecting breast cancer. They utilized 63 images
from the DMR-IR dataset as samples of normal and abnormal breasts. Using a two-fold
cross-validation methodology, the model was assessed. It performed better than tree
random forest (TRF), MLP, and Bayes Network, achieving 100% accuracy, sensitivity, and
specificity.

For the purpose of early breast cancer detection, the authors of [20] used a multi-input
classifier model based on CNNs that integrates thermal images from various viewpoints
with the personality and clinical data of 287 patients. They analyzed the performance of
seven models, and the findings showed that the M.4ncd model had the highest accuracy
(97%) and the best specificity (100%) and sensitivity (83%) values. The M.4ncd model
performed better in AUC ROC and specificity metrics compared to the findings of other
literature research.

Using static and dynamic protocols, CNNs were trained to categorize thermal im-
ages [21]. There were 300 thermal images in the DMR-IR dataset that were classified using
the static protocol. The dynamic methodology was used to classify 2740 images. In both
protocols, the suggested technique produced competitive results. The dynamic protocol
obtained 95% accuracy for color images and 92% for grayscale, while the static protocol
obtained 98% accuracy for color images and 95% for grayscale. It performed better than
other techniques used on the same dataset.

Deep transfer learning models are used for transmission to classify medical images.
In [22], the authors suggested training a visual geometry group 16 (VGG16) model to
classify normal or abnormal breast thermal images with the help of a static and dynamic
DMR-IR dataset of 1345 images with multi-view and single view. For the first time, con-
ventional frontal, left-, and right-view breast thermal images from the Mastology Research
database are sequenced with an infrared image to produce multi-view thermal images.
This approach improves the system’s accuracy by providing a more comprehensive and
informative thermal temperature. Using multi-view images, VGG16 achieves an encour-
aging test accuracy of 99% on the dynamic breast imaging test dataset. To compare the
VGG16 model performance with other deep transfer learning models, VGG19, ResNet50V2,
and inceptionV3 were trained and tested to achieve test accuracy of 95%, 94%, and 89%,
respectively. This indicates that the VGG16 model outperformed the other models even
though these models are more complex and provide better results in other medical imaging
classification tasks.
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The studies that employed thermal imaging to diagnose breast cancer showed that,
when compared to other imaging techniques, thermal imaging had positive outcomes.
They were also combined with ML and DL techniques.

As we can see, the prior research that was evaluated accorded all patches of an image
the same weight or “attention” and did not pay especially important consideration to any
of the more prominent regions. On the other hand, focusing extra attention on important
regions of the breast image may improve the model’s performance and detection outcomes.

The authors of [23] enhanced CNNs by using a novel SE-Attention mechanism to
categorize 18,157 gathered mammograms and create a new benchmarking dataset. The
model outperformed prior research with an accuracy of 92.17%.

In conclusion, the presented concise overview of the relevant study indicated that DL
with deep AMs had not been utilized on thermal images for diagnosing breast cancer, as
shown in Table 1.

On the other hand, based on the studies mentioned in the preceding, breast cancer
diagnosis in thermal imaging has demonstrated encouraging accuracy outcomes when
compared to other methods. This has motivated us to investigate the impact of integrat-
ing DL approaches with AMs in diagnosing breast cancer using thermal imaging in our
previous study [24].

In our work [24], we applied CNN with self, soft, and hard AMs on the DMR-IR
dataset of thermographic images for breast cancer diagnosis. The model was trained on
4146 images and achieved test accuracy of 99.46%, 99.34%, 99.32%, and 84.92% for hard,
soft, self, and CNN alone without AMs, respectively. The CNN model with AMs showed
results that outperformed many of the studies discussed in related work.

The promising results achieved with CNN have encouraged us to explore different
types of AMs using the same methodology with pre-trained DL methods, namely VGG16,
in detecting breast cancer in thermal images and comparing the results with those achieved
with CNN in our previous study.

Table 1. Breast cancer detection and classification studies.

Ref. Approaches Imaging
Modalities Datasets Results

[10] U-Net CNN Mammography
CBIS-DDSM mass images

CBIS-DDSM
microcalcification images

Acc = 94.31%

[11] CNN Mammography DDSM Acc = 93.5%
AUC= 0.92315

[12] CNN-RNN Mammography Mammogram image dataset
Acc = 90.59%
Sn = 92.42%
Sp = 89.88%

[13]

Bayes Network
Naïve Bayes

SVM
Knowledge Tree J48

MLP
RF
RT

ELM

Thermal
University Hospital of the

Federal University
of Pernambuco

Acc = 76.01%

[14]

SVM
KNN

DT
ANN

Thermal DBT-TU-JU
DMR-IR

Acc = 84.29%
Acc = 87.50%
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Table 1. Cont.

Ref. Approaches Imaging
Modalities Datasets Results

[15] CNNs-Bayes
optimization algorithm Thermal DMI Acc: 98.95%

[16] DCNNs Thermal DMR-IR
Acc = 95.8%
Sn = 99.40%
Sp = 76.3%

[17] DNN Thermal DMR-IR Conf (Sick) = 78%
Conf (Healthy) = 94%

[18]

DT
Fuzzy Sugeno
Naïve Bayes

k-Nearest Neighbor
Gaussian Mixture Model

Probabilistic Neural Network

Thermal
Singapore General

Hospital-NEC-Avio Thermo
TVS2000 MkIIST System

Acc = 93.30%
Sn = 86.70%
Sp = 100%

[19] CNNs-GVF Thermal DMR-IR
Acc = 100%
Sn = 100%
Sp = 100%

[20] Multi-input CNN Thermal DMR-IR

Acc = 97%
Sn = 83%

Sp = 100%
AUC = 0.99

[21] CNNs Thermal DMR-IR

Acc(color) = 98%
Acc(grayscale) = 95%

Acc(color) = 95%
Acc(grayscale) = 92%

[22] VGG16 Thermal DMR-IR

Acc = 99%
Sn = 98.04%
Sp = 100%

Prec = 100%
F1-score = 99.01%

[23] CNNs + SE-Attention Mammography New Benchmarking dataset Acc = 92.17%

[24] CNNs + AMs Thermal DMR-IR

Acc = 99.49%
Sn = 99.71%
Sp = 99.71%

Prec = 99.28%
F1-score = 99.49%

AUC = 0.999

(Accuracy = Acc, Sensitivity = Sn, Specificity = Sp, Precision = Prec, and Area Under Curve = AUC).

5. Materials and Methods

This section shows how we achieved our aims and objectives in practice. An exper-
imental study method was used to address the following research question: “To what
degree may DL approaches using deep AMs improve performance for the task of breast
cancer diagnosis in thermography images?”

Our suggested technique uses AMs and the VGG16 methodology to enhance breast
cancer diagnosis and classification utilizing thermal images via five components: pre-
processing, feature extraction, bidirectional long short-term memory (BLSTM), AMs, and
image classification. The stages in the suggested technique are illustrated in Figure 1.
Following that, we will go over these steps in further detail.
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5.1. Dataset

According to our review of the studies on the use of thermal images to diagnose
breast cancer, DMR-IR, which includes static and dynamic protocols, was the most used
thermal image dataset [25]. Images are captured at the University Hospital of UFPE (Brazil)
and recorded into a database with other details, such as age, family history, exam date,
and patient preparation. The Brazilian Ministry of Health’s ethical committee approved
the acquisition procedure and storage of images. Some influential aspects are considered
when taking thermographic images to detect breast cancer, such as examination room
conditions, instructions that the patient must adhere to, and capture positions. To prevent
physiological changes in the body that could occur in an uncontrolled setting, the image
must be captured in a controlled environment. The patient must be informed to avoid
things that contribute to changes in an uncontrolled setting, such as exercises, deodorants,
cosmetics, lotions, caffeine, alcohol, and smoking, as well as removing any jewelry and
preventing exposure to the sun. The room’s temperature must be between 18 and 25 ◦C to
obtain a thermal image and 40% to 75% humidity. Any source of heat or wind, as well as
sunshine, must be excluded from the area. The FLIR SC-620 thermal camera at a resolution
of 640 × 480 with a thermal sensitivity of 45 mk was used to capture thermal images of
287 volunteer women, ranging in age from 29 to 85 years old. The dynamic protocol is often
taken in patches of 20 each, while the static protocol is obtained from five different angles.
The diagnostic has been prior confirmed via mammography, ultrasound, and biopsies.
In addition, the radiologist has thoroughly authenticated these thermal images and their
associated annotations.

5.2. Data Pre-Processing

We utilized DMR-IR datasets that included segmented grayscale images. At this
stage, we pre-processed the images via cropping, normalizing, and resizing. These thermal
images were after pre-processing from their original 640 × 480 dimensions to the VGG16
model’s default input size of 224 × 224. To reduce overfitting, all images were augmented
in the following stage to offer a larger dataset for training.

After pre-processing the dataset, we used a stratified 10-fold cross-validation technique
to divide it into training and testing sets. The data were split into ten roughly equal
segments, with one segment serving as a roughly equal test set.

5.3. Feature Extraction

Pattern recognition that discriminates between cancer and healthy breasts requires
feature extraction. Pre-trained models are superior to recently created from-scratch CNN
architectures in accuracy and efficiency, particularly for classification purposes. It is con-
sidered that the pre-trained VGG16 model represents a developed version of the Alex Net
neural network, so we investigated VGG16 in our study for feature extraction. The transfer
learning techniques using VGG16 were pre-trained on the ImageNet dataset to extract
features. When loading a VGG16 model, we set the “include_top” parameter to False, in
which case the fully connected output layers of the model used to make predictions are
not loaded, which are replaced by the following layers below, significantly reducing the
number of necessary parameters. In addition, we freeze the convolutional base before build-
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ing and training the model to prevent losing any of the data they include in subsequent
training rounds.

5.4. Bidirectional Long Short-Term Memory Layer

We employed a BLSTM network to extract long-term information from spatial features,
which are widely acknowledged to have spatial features in images. A bidirectional LSTM
was used to extract temporal features from forward and backward order in order to fully
use the past and future context information of a sequence in classification.

5.5. Attention Mechanisms Layer

Using the output from the BLSTM, we generated a variety of attention values that
indicated the importance of the feature vector. We applied three AMs separately in this
layer, using similar procedures as in the layers preceding and following. The three AMs
were self-attention (SL), soft attention (SF), and hard attention (HD).

• SL layer: Using an attention approach that considers the context of each timestamp
when processing sequential data. It is implemented in this study by the package
Keras-self-attention with multiplicative type, using the following formulae [26]:

et, t′ = σ
(

xT
t Waxt′ + ba

)
• SF layer: It uses a low weight to multiply the associated feature map to discard

unimportant regions. As a result, an area with high attention maintains its original
value, whereas an area with low attention drifts closer to 0 (and becomes dark in the
visualization). To calculate a weight αi for covering each sub-section of an image, we
utilize the hidden state C = ht − 1 from the previous time step. To determine how
much attention is being paid, we create a score si using the formula [27]:

si = tanh(WcC + WxXi) = tanh(Wchc−1 + Wxxi)

We feed si through a softmax for normalization to obtain the weight αi.

αi = softmax(s1, s2, . . . si)

Using softmax, we can calculate a weighted average for xi by using αi, which adds up to 1.

Z = ∑
i
αixi

• HD layer: The weight applied to an input portion is either 0 or 1; this causes the model
to concentrate only on the critical elements while disregarding others. The outcome
is that the input parts are either observed or not, making the goal non-differentiable.
Instead of utilizing a weighted average as in SF [27], HD is computed using αi as a
sample rate to select one xi as the input to the next layer.

Z ∼ xi,αi

5.6. Fully Connected Layer

The output from the layers above was flattened and given to the fully connected layer.
We merged all the information gained from the network’s previous layers to classify the
input image.

5.7. Sigmoid Layer

A sigmoid function was utilized to transform the output of the fully connected layer
into binary (0 or 1), which can be interpreted as classification probabilities.
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5.8. Classification Layer

In the network, this was the last layer. By utilizing the classification probabilities
produced by each input’s sigmoid, the layer classified each input into one of the two
classes (normal or cancer). The trained network performed the test dataset classification
after training.

Three AM approaches, SF, SL, and HD with VGG16, were developed, which we called
VGG16-SL, VGG16-HD, and VGG16-SF. For comparison and to pinpoint the effect of the
AMs on the VGG16 performance, we evaluated a VGG16 without them. All layers except
the BLSTM and AMs were applied in the VGG16 model without AMs, whereas all layers
were applied in the VGG16 models with AMs, as shown in Figure 1.

5.9. Model Evaluation

The main evaluation metrics were utilized to assess and compare the effectiveness
of the various generated models for detecting breast cancer using AMs and deep neural
networks in thermal breast images: accuracy, specificity, sensitivity, precision, F1-score, and
others. The following formulae are provided for these metrics [28]:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Specificity =
TN

TN + FP
(2)

Sensitivity(also known as Recall) =
TP

TP + FN
(3)

Precision =
TP

TP + FP
(4)

F1− score = 2
Precision × Recall
Precision + Recall

(5)

where TP, TN, FP, and FN indicate true positive, true negative, false positive, and false
negative, respectively.

Accuracy is expressed as a percentage of all instances that were properly classified.
Even while it is simple to grasp, it can be deceptive, particularly when there is an imbalance
in class. The percentage of negative events is called specificity. Precision measures how
many accurately positively labeled (abnormal) instances there are compared to all posi-
tively classified cases. The percentage of positive (abnormal) instances that were correctly
classified as positive is known as sensitivity (recall). However, the F1-score is a more
accurate measure of the classifier’s performance. Integrating the two competing measures
of precision and recall summarizes the predictive performance of a model [28].

The AUC ROC, which has a value range between 0.5 and 1, measures the model’s
ability to distinguish across classes. It evaluates the model’s diagnostic performance in the
context of medicine.

Values closer to 1 denote good test findings, while values closer to 0.5 denote poor test
findings [20]. Furthermore, the constructed models were evaluated against the state-of-the-
art studies covered in Section 4, Related Work.

6. Results

On the DMR-IR dataset of thermal images, we compared the performances of the
developed approaches employing SF, SL, and HD AMs with a VGG16, resulting in four
different approaches (VG16, VGG16-SF, VGG16-SL, and VGG16-HD). We contrasted the
four approaches’ produced findings with the state-of-the-art approaches discussed in the
Related Work section to assess our proposed approaches against competing approaches.

The succeeding parts in this section are structured as follows: The experiments are
briefly described in Section 6.1. The results of the classification are described in Section 6.2.
The comparison of recent technologies will be made in Section 6.3.
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6.1. Experimental Settings

Based on the dynamic protocol using the DMR-IR dataset, the proposed approaches
were trained for diagnosing breast cancer based on thermal images. The dataset includes
1542 thermal images of 56 patients’ breasts, with 762 of them representing breasts that are
cancerous and 780 of them healthy cases. A training set of 1302 thermal images and a testing
set of 240 thermal images were each split from the dataset. We used image augmentation
techniques, such as rotation and brightness change, to increase the training dataset size
to overcome the issue of the small dataset size. We rotated the original images 90 degrees.
We adjusted the images’ brightness, a color augmentation technique, so that the resulting
image was lighter than the original images. As a result, we had two augmented copies of
each original image. Information regarding the dataset is provided in Table 2.

Table 2. Dataset details.

Dataset Size Abnormal Breasts Normal Breasts

DMR-IR-Original 1542 762 780

DMR-IR-Augmented 2604 1284 1320

Total 4146 2046 2100

As inputs (images) and outputs (labels) of training and test sets were combined, the
approaches were trained and tested using a 10-fold cross-validation method. The source
data were divided into 10 relatively equal, disjointed segments after stratified sampling.
The performance of approaches was tested using a subset of the test sets, which amounted
to 415 thermal images and labels, and training sets, which amounted to 3731 thermal
images and labels.

The initialization parameters of the approaches were obtained by pretraining of these
networks using a binary class of the DMR-IR dataset. We employed the ReLU and sigmoid
activation functions, and we trained all AMs using the Adam optimizer. Periodic learning
was employed to further increase the accuracy of the image classification findings. The
four approaches had a learning rate of 0.001. For the fitting models, the batch size was set
to 64 and the number of epochs to 50.

6.2. Classification Results

Through experiments, proposed models employing the VGG16 model with/without
the soft, self, and hard AMs were used to classify thermal images of breast cancer (VGG16,
VGG16-SF, VGG16-SL, and VGG16-HD). We resized all images to 224× 224 pixels, which is
the default input size of the VGG16 model. In the majority of situations, downsampling an
image to its default size on standard architectures is effective to achieve higher accuracy [29].

To further guarantee that each image was examined in both the test and training sets,
we employed stratified 10-fold cross-validation. It also reduced the overfitting-related
generalization problems. On the DMR-IR dataset, the proposed models’ performances
were assessed, and the outcomes were compared to identify the most accurate model.

Each model’s accuracy, sensitivity, specificity, Cohen’s kappa, and AUC ROC scores
are estimated. Table 3 shows the average results of the VGG16 with/without AMs to
observe the effect on the performance of the VGG16 model.
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Table 3. Model classification results.

Models Accuracy (%) Specificity (%) Sensitivity
(Recall) (%) Precision (%) F1-Score (%) AUC Cohen’s Kappa

VGG16 99.18% 98.48% 99.85% 98.55% 99.20% 0.999 0.983

VGG16-SL 99.49% 99.56% 99.42% 99.57% 99.49% 0.994 0.989

VGG16-HD 99.80% 99.75% 99.85% 99.76% 99.80% 0.999 0.996

VGG16-SF 99.32% 99.46% 99.19% 99.48% 99.33% 0.999 0.986

Three AM models with the VGG16 also exhibited convergence in the results. The
VGG16-HD indicated that using hard attention with the VGG16 had a higher effect in
all metrics.

We found that the use of AMs with the VGG16 model had an improvement effect on
VGG16 performance in several metrics, such as accuracy, specificity, precision, and F1-score,
while VGG16 achieves a higher result in sensitivity than VGG16-SF and VGG16-SL. In
contrast, it has a similar result to VGG16-HD. Nevertheless, the VGG16-SF and VGG16-SL
achieved impressive and encouraging results. Sensitivity is a crucial factor in medical
applications, as we know; thus, the findings of the suggested model were promising.

In addition, we provided the average AUC ROC of 10-fold cross-validation results,
where the AUC score shows the model’s ability to differentiate between classes—in our
situation, normal and cancer. The VGG16 models with/without the three AMs obtained
values that were close to 0.999, while the VGG16-SL was 0.994. In Figure 2, the ROC curves
of four approaches for each fold are shown, as is the AUC findings and average. A mighty
statistic that can be used to assess intra- and inter-rater reliability is Cohen’s kappa. It can
have values between −1 and +1, similar to correlation coefficients, where 0 represents the
degree of agreement expected by chance and 1 represents perfect agreement between the
raters. A standardized value can be interpreted similarly across various research in all
correlation statistics, including the kappa. To understand the kappa result, Cohen advised
using the following scale: values ≤ 0 denoting no agreement, and 0.01–0.20 denoting none
to slight, 0.21–0.40 denoting fair, 0.41–0.60 denoting moderate, 0.61–0.80 denoting substan-
tial, and 0.81–1.00 denoting almost perfect agreement [30]. Using 10-fold cross-validation,
we provided the aggregate Cohen’s kappa scores. The VGG16 models with/without the
three AMs showed excellent results in this metric, with scores ranging from 0.983 to 0.996
for all models, which indicated almost perfect agreement.

Each fold included 204 normal and 210 cancer images in the aggregate confusion
matrix after 10-fold cross-validation of actual and predicted labels, as illustrated in Figure 3.
For the VGG16, the 2015 normal breast class images were correctly classified, with 31 mis-
classifications, and in the cancer class, the 2097 images were correctly classified, with
3 images misclassified. In contrast, for the VGG16-SL, 2037 normal breast class images
were correctly classified, and 9 were misclassified, while in the cancer class, 2088 images
were classified correctly, with 12 misclassified. For the VGG16-HD, 2041 normal breast
images were correctly classified with 5 misclassified, and 2087 cancer images were correctly
classified, and 3 were misclassified. In the VGG16-SF confusion matrix, 2035 images in
the normal breast class were correctly classified, while 11 were incorrectly classified. Of
the 2083 images in the cancer class, 2083 were correctly classified, while 17 were incor-
rectly classified.

Figure 4 displays the four tables of the classification report along with the classification
results for the VGG16, VGG16-SF, VGG16-SL, and VGG16-HD in terms of accuracy, recall,
precision, F1-score, and support, where support is the number of samples.



Symmetry 2023, 15, 582 12 of 18

Symmetry 2023, 15, x FOR PEER REVIEW 11 of 18 
 

 

Table 3. Model classification results. 

Models 
Accuracy 

(%) 

Specificity 

(%) 

Sensitivity 

(Recall) 

(%) 

Precision (%) F1-Score (%) AUC 
Cohen’s 

Kappa 

VGG16 99.18% 98.48% 99.85% 98.55% 99.20% 0.999 0.983 

VGG16-SL 99.49% 99.56% 99.42% 99.57% 99.49% 0.994 0.989 

VGG16-HD 99.80% 99.75% 99.85% 99.76% 99.80% 0.999 0.996 

VGG16-SF 99.32% 99.46% 99.19% 99.48% 99.33% 0.999 0.986 

Three AM models with the VGG16 also exhibited convergence in the results. The 

VGG16-HD indicated that using hard attention with the VGG16 had a higher effect in all 

metrics. 

We found that the use of AMs with the VGG16 model had an improvement effect on 

VGG16 performance in several metrics, such as accuracy, specificity, precision, and F1-

score, while VGG16 achieves a higher result in sensitivity than VGG16-SF and VGG16-SL. 

In contrast, it has a similar result to VGG16-HD. Nevertheless, the VGG16-SF and VGG16-

SL achieved impressive and encouraging results. Sensitivity is a crucial factor in medical 

applications, as we know; thus, the findings of the suggested model were promising. 

In addition, we provided the average AUC ROC of 10-fold cross-validation results, 

where the AUC score shows the model’s ability to differentiate between classes—in our 

situation, normal and cancer. The VGG16 models with/without the three AMs obtained 

values that were close to 0.999, while the VGG16-SL was 0.994. In Figure 2, the ROC curves 

of four approaches for each fold are shown, as is the AUC findings and average. A mighty 

statistic that can be used to assess intra- and inter-rater reliability is Cohen’s kappa. It can 

have values between −1 and +1, similar to correlation coefficients, where 0 represents the 

degree of agreement expected by chance and 1 represents perfect agreement between the 

raters. A standardized value can be interpreted similarly across various research in all 

correlation statistics, including the kappa. To understand the kappa result, Cohen advised 

using the following scale: values ≤ 0 denoting no agreement, and 0.01–0.20 denoting none 

to slight, 0.21–0.40 denoting fair, 0.41–0.60 denoting moderate, 0.61–0.80 denoting sub-

stantial, and 0.81–1.00 denoting almost perfect agreement [30]. Using 10-fold cross-vali-

dation, we provided the aggregate Cohen’s kappa scores. The VGG16 models with/with-

out the three AMs showed excellent results in this metric, with scores ranging from 0.983 

to 0.996 for all models, which indicated almost perfect agreement. 

  
(A) (B) 

Symmetry 2023, 15, x FOR PEER REVIEW 12 of 18 
 

 

  
(C) (D) 

Figure 2. ROC curves of models for breast cancer. The ROC curve of the VGG16 model (A); the ROC 

curve of VGG16-SL model (B); the ROC curve of VGG16-HD model (C); the ROC curve of VGG16-

SF model (D). 

Each fold included 204 normal and 210 cancer images in the aggregate confusion ma-

trix after 10-fold cross-validation of actual and predicted labels, as illustrated in Figure 3. 

For the VGG16, the 2015 normal breast class images were correctly classified, with 31 mis-

classifications, and in the cancer class, the 2097 images were correctly classified, with 3 

images misclassified. In contrast, for the VGG16-SL, 2037 normal breast class images were 

correctly classified, and 9 were misclassified, while in the cancer class, 2088 images were 

classified correctly, with 12 misclassified. For the VGG16-HD, 2041 normal breast images 

were correctly classified with 5 misclassified, and 2087 cancer images were correctly clas-

sified, and 3 were misclassified. In the VGG16-SF confusion matrix, 2035 images in the 

normal breast class were correctly classified, while 11 were incorrectly classified. Of the 

2083 images in the cancer class, 2083 were correctly classified, while 17 were incorrectly 

classified. 

  
(A) (B) 

Figure 2. ROC curves of models for breast cancer. The ROC curve of the VGG16 model (A); the ROC
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As a conclusion and summary of the findings, we can see from Table 3 and Figures 2–4,
that early detection of breast cancer by thermal imaging utilizing VGG16 and the suggested
AMs has been proven successful. Due to the lack of AMs, the VGG16 had the highest false
alarm rate among all models, with a classification rate of 99.18% and a low false alarm rate
of 0.81%. In contrast, the VGG16-HD had the lowest false alarm rate among all the models,
with a classification rate of 99.80% and a low false alarm rate of 0.19%, while the VGG16-SL
had a classification rate of 99.49% and the low false alarm rate of 0.50%. The VGG16-SF
classification rate was 99.32%, while its low false alarm rate was 0.67%. The accuracy
achieved using the VGG16 models, with/without the three AMs, made it apparent that
superb results were obtained in all suggested models. Based on our findings, the proposed
models achieved the highest accuracy, where hard attention comes first, then self-attention,
soft attention, and finally, the VGG16 model.
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6.3. Comparison with Recent Methods

In this section, we will compare our results in our proposed method of VGG16 with
AMs with the most recent study on breast cancer detection, which was based on the same
pre-trained model of VGG16 [22]. In addition, in our previous study [24], we investigated
the use of CNN with AMs to detect breast cancer using thermographic images and it
outperformed the reviewed models in the literature. Thus, we will compare the results of
our previous work with the performance of our proposed method of VGG16 with AMs.

6.3.1. Comparison with Other Pre-Trained VGG16 Model

According to our review of the literature, a recent study [22] was conducted using the
same pre-trained model of VGG16 on thermal images for breast cancer detection. Thus, we
found it necessary to compare our results with those achieved in that study.

Deep multi-view VGG16 achieved the highest accuracy on the dynamic DMR-IR
dataset. Their results showed the highest accuracy obtained through multi-view (99%),
specificity (100%), sensitivity (98.04%), precision (100%), and F1-score (99.01%). Moreover,
when the model was tested on a single-view (frontal), it achieved lower results: accuracy
(94%), specificity (92.31), sensitivity (95.83%), precision (92%), and F1-score (93.88%), see
Table 4.

On the other hand, in our proposed approach, all models developed (tested on a
single view “frontal”) achieved higher accuracy than the multi- and single-view in their
study. Where VGG16-HD was the highest with 99.80% accuracy, 99.85% sensitivity, 99.80%
F1-score, and competitive results in specificity and precision.

Based on the results in Table 4, AMs showed their ability to improve the performance
of the pre-trained VGG16 model, which contributes to enhancing the detection ability of
breast cancer using thermal images with more accuracy.

6.3.2. Comparison with Convolutional Neural Network (CNN) Models

In this subsection, we will discuss and compare the results achieved in our previous
work with CNN [24] on the same dataset. Table 4 shows the performance results of
CNN [24] and VGG16 with and without AMs.

Table 4. Comparison with recent models.

Approaches Accuracy Specificity Sensitivity (Recall) Precision F1-Score AUC Cohen’s Kappa

Recent study [22]: Deep multi-view VGG16 on thermal images

VGG16-
Multi-View 99% 100% 98.04% 100% 99.01% - -

VGG16-
Frontal View 94% 92.31% 95.83% 92% 93.88% - -

Our previous work [24]: CNN with and without AM on thermal images

CNN 84.92% 89.61% 89.61% 90.23% 83.91% 0.851 0.69

CNN-SL 99.32% 99.52% 99.52% 99.14% 99.32% 0.999 0.98

CNN-HD 99.49% 99.71% 99.71% 99.28% 99.49% 0.999 0.98

CNN-SF 99.34% 99.21% 99.21% 99.52% 99.36% 0.999 0.98

Proposed approach: VGG16 pre-trained DL method with and without AM on thermal images

VGG16 99.18% 98.48% 99.85% 98.55% 99.20% 0.999 0.983

VGG16-SL 99.49% 99.56% 99.42% 99.57% 99.49% 0.994 0.989

VGG16-HD 99.80% 99.75% 99.85% 99.76% 99.80% 0.999 0. 996

VGG16-SF 99.32% 99.46% 99.19% 99.48% 99.33% 0.999 0.986
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As we can see, VGG16 showed a significant improvement over CNN in all metrics.
CNN without AMs achieved an accuracy 84.92%, specificity 89.61%, sensitivity 89.61%,
precision 90.23%, F1-score 83.91%, AUC 0.851, Cohen’s kappa 0.69; while VGG16 without
AMs has achieved higher numbers, see Figure 5A.
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Figure 5. Charts for comparison of CNN and VGG16 results with/without AMs. VGG16 and CNN
model (A); VGG16-SL and CNN-SL model (B); VGG16-HD and CNN-HD model (C); VGG16-SF and
CNN-SF model (D).

On the other hand, SL with CNN provides an accuracy of 99.32%, a specificity and a
sensitivity of 99.52%, a precision of 99.14%, an F1-score of 99.32%, an AUC of 0.999, and a
Cohen’s kappa of 0.98. VGG16 achieved convergence performance with CNN when using
SL. Furthermore, VGG16-SL shows improvement in some metrics, such as accuracy and
precision, see Figure 5B.

The use of AMs demonstrated a significant improvement in CNN performance. HD
shows the highest performance with CNN with an accuracy of 99.34%, a specificity of
99.21%, a precision of 99.52%, an F1-score of 99.36%, an AUC of 0.999, and a Cohen’s
kappa of 0.98. The performance of the HD with VGG16 outperformed CNN, as shown in
Figure 5C.

The results present a convergence in performance between CNN and VGG16 with SF,
see Figure 5D.

We infer from the comparison presented in this subsection that VGG16 achieves
superior performance over CNN without AMs and when used with HD, while there is a
convergence in the performance of VGG16 and CNN with SF and SL. Consequently, the
AMs provides an impressive improvement in the performance of CNN and VGG16.

The results showed an improvement in the performance of the AMs models, with the
pre-trained model VGG16 proving better than the CNN model, as Table 4 shows, and this
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is due to the fact that the pre-trained models have the ability to perform better, as they are
trained on a large dataset (Imagenet) and with more computing resources.

We conclude from the experiments conducted in this paper, that the three AMs (self,
hard, and soft) have the ability to improve the performance of the CNN and VGG16
models, as they help focus on the most prominent regions, which contributed to raising
the accuracy of the diagnostic thermal images of breast cancer. Moreover, the pre-trained
models (VGG16) performed better than simple CNN, encouraging the experience of other
pre-trained models in breast cancer detection. From our point of view, the small size
of the dataset is one of the limitations of this study, which we tried to address using
augmentation techniques. In addition, we believe that experimenting with the proposed
models and generalizing them on a larger dataset and for other types of cancers will support
our findings.

7. Conclusions

Three AM models with a VGG16 were proposed to apply to thermal imaging images
for the diagnosis of breast cancer. Our argument demonstrated how the VGG16 model
performed better with AMs in several metrics. Nevertheless, the VGG16 provided great
results in sensitivity and precision. Moreover, several related studies were presented and
compared with our proposed models, showing outperformed results. The test accuracy
results of the suggested models for diagnosing breast cancer were 99.18% for VGG16, 99.49%
for self-attention, 99.80% for hard attention, and 99.32% for soft attention. Compared to
recent studies that have used the same pre-trained VGG16 model on the same DMR-IR
dataset [22], our proposed model outperformed their results, even though we used a single-
view image (frontal). In contrast, they used a multi-view (frontal, left, right), providing more
information. In addition, when compared to our previous work on CNNs [24] on the same
dataset, which, in turn, has outperformed the reviewed models in the literature, our VGG16
model with and without AMs has achieved better results than the counterpart models with
CNN. The limited availability of thermal breast imaging datasets is a limitation of our
investigation. Additionally, the dataset size is small, and these problems were resolved
in our work utilizing augmentation methods. As a result, a future extension of this study
would involve experimenting with datasets of huge sizes by combining different datasets
and investigating various augmentation methods. The suggested models will be assessed
in further work using various biomedical imaging datasets. Another future work direction
would be exploring the use of other pre-trained DL models with and without AMs and on
multiple datasets.
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