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1. Introduction

For convex functions the following double inequality has great significance in the
literature and is known as the Hermite-Hadamard’s inequality [1,2]:

Let χ: I −→ R, ∅ 6= I ⊆ R be a convex function, then

χ

(
κ1 +κ2

2

)
≤ 1

κ2 −κ1

κ2∫
κ1

χ(ν)dν ≤ χ(κ1) + χ(κ2)

2
, (1)

for all κ1,κ2 ∈ I with κ1 < κ2. The inequality (1) holds in reversed direction if χ is concave.
f Dragomir defined the following mappings H, F: [0, 1]→ R

H(κ) =
1

κ2 −κ1

∫ κ2

κ1

χ

(
κν + (1− κ)

(
κ1 +κ2

2

))
dν

and
F(κ) =

1

(κ2 −κ1)
2

∫ κ2

κ1

∫ κ2

κ1

χ(κν + (1− κ)ω̃)dνdω̃,

where χ: [κ1,κ2] → R is a convex function and obtained some refinements between the
middle and the left most terms in [3] for (1).

Theorem 1 ([3]). Let χ: [κ1,κ2]→ R be a convex function on [κ1,κ2]. Then

(i) H is convex on [κ1,κ2].
(ii) The following hold:

inf
κ∈[0,1]

H(κ) = H(0) = χ

(
κ1 +κ2

2

)
sup

κ∈[0,1]
H(κ) = H(1) =

1
κ2 −κ1

∫ κ2

κ1

χ(ν)dν.

(iii) H increases monotonically on [0, 1].

Theorem 2 ([3]). Let χ: [κ1,κ2]→ R be a convex function on [κ1,κ2]. Then
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(i) F
(

κ + 1
2

)
= F

(
1
2 − κ

)
for all κ ∈

[
0, 1

2

]
.

(ii) F is convex on [κ1,κ2].
(iii) The following hold:

sup
κ∈[0,1]

F(κ) = F(1) = χ(0) =
1

κ2 −κ1

∫ κ2

κ1

χ(ν)dν

and

inf
κ∈[0,1]

F(κ) = F
(

1
2

)
=

1

(κ2 −κ1)
2

∫ κ2

κ1

∫ κ2

κ1

F
(

ν + ω̃

2

)
dνdω̃.

(iv) The inequality

F
(
κ1 +κ2

2

)
≤ F

(
1
2

)
is valid.

(v) χ increases monotonically on
[

1
2 , 1
]

and decreases monotonically on
[
0, 1

2

]
.

(vi) We have the inequality H(κ) ≤ F(κ) for all κ ∈ [0, 1].

Yang and Hong [4] provided an improvement between the middle and the right-most
term by defining the following mapping P: [0, 1]→ R

P(κ) =
1

2(κ2 −κ1)

∫ κ2

κ1

[
χ

((
1 + κ

2

)
κ2 +

(
1− κ

2

)
ν

)
+χ

((
1 + κ

2

)
κ1 +

(
1− κ

2

)
ν

)]
dν,

where χ: [κ1,κ2]→ R is a convex function.

Theorem 3 ([4]). Let χ: [κ1,κ2]→ R be a convex function on [κ1,κ2]. Then

(i) P is convex on [κ1,κ2].
(ii) P increases monotonically on [0, 1].
(iii) The following hold

inf
κ∈[0,1]

P(κ) = P(0) =
1

κ2 −κ1

∫ κ2

κ1

χ(ν)dν

and

sup
κ∈[0,1]

P(κ) = P(1) =
χ(κ1) + χ(κ2)

2
.

Fejér [5], established the following double inequality as a weighted generalization of (1):

χ

(
κ1 +κ2

2

) κ2∫
κ1

ϕ(ν)dν ≤ 1
κ2 −κ1

κ2∫
κ1

χ(ν)ϕ(ν)dν ≤ χ(κ1) + χ(κ2)

2

κ2∫
κ1

ϕ(ν)dν, (2)

where χ: I −→ R, ∅ 6= I ⊆ R, κ1,κ2 ∈ I with κ1 < κ2 is any convex function and ϕ:
[κ1,κ2]→ R is a non-negative integrable with ϕ(κ1 +κ2 − ν) = ϕ(ν).

These inequalities have many extensions and generalizations, see [6–34].
Teseng et al. [35] refined inequalities (2) by defining the following mappings on [0, 1]:

I(κ) =
1
2

κ2∫
κ1

[
χ

(
κ

ν +κ1

2
+ (1− κ)

κ1 +κ2

2

)
+ χ

(
κ

ν +κ2

2
+ (1− κ)

κ1 +κ2

2

)]
ϕ(ν)dν,
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J(κ) =
1
2

κ2∫
κ1

[
χ

(
κ

ν +κ1

2
+ (1− κ)

3κ1 +κ2

4

)
+ χ

(
κ

ν +κ2

2
+ (1− κ)

κ1 + 3κ2

4

)]
ϕ(ν)dν,

M(κ) =
1
2

κ1+κ2
2∫

κ1

[
χ

(
κκ1 + (1− κ)

ν +κ1

2

)
+ χ

(
κ
κ1 +κ2

2
+ (1− κ)

ν +κ2

2

)]
ϕ(ν)dν

+
1
2

κ2∫
κ1+κ2

2

[
χ

(
κ
κ1 +κ2

2
+ (1− κ)

ν +κ1

2

)
+ χ

(
κκ2 + (1− κ)

ν +κ2

2

)]
ϕ(ν)dν

and

N(κ) =
1
2

κ2∫
κ1

[
χ

(
κκ1 + (1− κ)

ν +κ1

2

)
+ χ

(
κκ2 + (1− κ)

ν +κ2

2

)]
ϕ(ν)dν,

where χ: [κ1,κ2]→ R is a convex function and ϕ: [κ1,κ2]→ R is a non-negative integrable
with ϕ(κ1 +κ2 − ν) = ϕ(ν).

By applying the result given below,

Lemma 1 ([35]). Let χ : [κ1,κ2]→ R be a convex function and let κ1 ≤ ω̃1 ≤ ν1 ≤ ν2 ≤ ω̃2 ≤
κ2 with ν1 + ν2 = ω̃1 + ω̃2. Then

χ(ν1) + χ(ν2) ≤ χ(ω̃1) + χ(ω̃2).

Teseng et al. obtained the following important refinement inequalities.

Theorem 4 ([35]). Let χ: [κ1,κ2] → R be a convex function and ϕ: [κ1,κ2] → R is a non-
negative integrable with ϕ(κ1 +κ2 − ν) = ϕ(ν). Then I is convex, increasing on [0, 1], and for
all κ ∈ [0, 1], the Fejér-type inequalities

χ

(
κ1 +κ2

2

) κ2∫
κ1

ϕ(ν)dν = I(0) ≤ I(κ) ≤ I(1)

=
1
2

κ2∫
κ1

[
χ

(
κ1 + ν

2

)
+ χ

(
ν +κ2

2

)]
ϕ(ν)dν

hold.

Theorem 5 ([35]). Let χ: [κ1,κ2] → R be a convex function and ϕ: [κ1,κ2] → R is a non-
negative integrable with ϕ(κ1 +κ2 − ν) = ϕ(ν). Then J is convex, increasing on [0, 1], and for
all κ ∈ [0, 1], the Fejér-type inequalities

χ
(

3κ1+κ2
4

)
+ χ

(
κ1+3κ2

4

)
2

κ2∫
κ1

ϕ(ν)dν = J(0) ≤ J(κ) ≤ J(1)

=
1
2

κ2∫
κ1

[
χ

(
κ1 + ν

2

)
+ χ

(
ν +κ2

2

)]
ϕ(ν)dν

hold.
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Theorem 6 ([35]). Let χ: [κ1,κ2] → R be a convex function and ϕ: [κ1,κ2] → R is a non-
negative integrable with ϕ(κ1 +κ2 − ν) = ϕ(ν). Then I(κ) ≤ J(κ) on [0, 1].

Theorem 7 ([35]). Let χ: [κ1,κ2] → R be a convex function and ϕ: [κ1,κ2] → R is a non-
negative integrable with ϕ(κ1 +κ2 − ν) = ϕ(ν). Then M is convex, increasing on [0, 1], and for
all κ ∈ [0, 1], the Fejér-type inequalities

1
2

κ2∫
κ1

[
χ

(
κ1 + ν

2

)
+ χ

(
ν +κ2

2

)]
ϕ(ν)dν = M(0) ≤ M(κ)

≤ M(1) =
1
2

κ2∫
κ1

[
χ

(
κ1 +κ2

2

)
+

χ(κ1) + χ(κ2)

2

]
ϕ(ν)dν

hold valid.

Theorem 8 ([35]). Let χ: [κ1,κ2] → R be a convex function and ϕ: [κ1,κ2] → R is a non-
negative integrable with ϕ(κ1 +κ2 − ν) = ϕ(ν). Then M is convex, increasing on [0, 1], and for
all κ ∈ [0, 1], the Fejér-type inequalities

1
2

κ2∫
κ1

[
χ

(
κ1 + ν

2

)
+ χ

(
ν +κ2

2

)]
ϕ(ν)dν = N(0)

≤ N(κ) ≤ N(1) ≤ χ(κ1) + (κ2)

2

κ2∫
κ1

ϕ(ν)dν

hold true.

Theorem 9 ([35]). Let χ: [κ1,κ2] → R be a convex function and ϕ: [κ1,κ2] → R is a non-
negative integrable with ϕ(κ1 +κ2 − ν) = ϕ(ν). Then M(κ) ≤ N(κ) on [0, 1].

One of the generalizations of the convex functions is harmonic functions:

Definition 1 ([36]). Define I ⊆ R\{0} as an interval of real numbers. We say that a function χ
from I to R is considered to be harmonically convex, if

χ

(
νω̃

κν + (1− κ)ω̃

)
≤ κχ(ω̃) + (1− κ)χ(ν) (3)

for all ν, ω̃ ∈ I and κ ∈ [0, 1]. Harmonically concave χ is defined as the inequality in (3) reversed.

Using harmonic-convexity, the Hermite-Hadamard type yields the following result.

Theorem 10 ([36]). Let χ: I ⊆ R\{0} → R be a harmonically convex function and κ1,κ2 ∈ I
with κ1 < κ2. If χ ∈ L([κ1,κ2]), then the inequalities

χ

(
2κ1κ2

κ1 +κ2

)
≤ κ1κ2

κ2 −κ1

∫ κ1

κ2

χ(ν)

ν2 dν ≤ χ(κ1) + χ(κ2)

2
(4)

hold.
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Let χ: [κ1,κ2]→ R be a harmonically convex mapping and let S, U, V: [0, 1]→ R be
defined by

S(κ) =
κ1κ2

κ2 −κ1

∫ κ2

κ1

1
ν2 χ

(
2κ1κ2ν

2κ1κ2κ + (1− κ)ν(κ1 +κ2)

)
dν, (5)

U(κ) =

(
κ1κ2

κ2 −κ1

)2 ∫ κ2

κ1

∫ κ2

κ1

1
ν2ω̃2 χ

(
νω̃

κω̃ + (1− κ)ν

)
dνdω̃ (6)

and

V(κ) =
κ1κ2

2(κ2 −κ1)

∫ κ2

κ1

1
ν2

[
χ

(
2κ2ν

(1 + κ)ν + (1− κ)κ2

)
+χ

(
2κ1ν

(1 + κ)ν + (1− κ)κ1

)]
dν. (7)

The author obtained the refinement inequalities for (4) corresponding to the above mappings:

Theorem 11 ([23]). Let χ: [κ1,κ2]→ R be a harmonically convex function on [κ1,κ2]. Then

(i) S is harmonically convex on [κ1,κ2].
(ii) The following hold:

inf
κ∈[0,1]

S(κ) = S(0) = χ

(
2κ1κ2

κ1 +κ2

)
and

sup
κ∈[0,1]

S(κ) = S(1) =
κ1κ2

κ2 −κ1

∫ κ2

κ1

χ(ν)

ν2 dν.

(iii) S increases monotonically on [0, 1].

Theorem 12 ([23]). Let χ: [κ1,κ2] ⊂ (0, ∞)→ R be a harmonically convex function on [κ1,κ2].
Then

(i) The identity

U
(

κ +
1
2

)
= U

(
1
2
− κ̂

)
holds for all κ ∈

[
0, 1

2

]
.

(ii) U is harmonically convex on [κ1,κ2].
(iii) The identities

inf
κ∈[0,1]

U(κ) = U
(

1
2

)
=

(
κ1κ2

κ2 −κ1

)2 ∫ κ2

κ1

∫ κ2

κ1

1
ν2ω̃2 χ

(
2νω̃

ν + ω̃

)
dνdω̃

and

sup
κ∈[0,1]

U(κ) = U(0) = U(1) =
κ1κ2

κ2 −κ1

∫ κ2

κ1

χ(ν)

ν2 dν

hold.
(iv) The inequality

χ

(
2κ1κ2

κ1 +κ2

)
≤ U

(
1
2

)
holds true.

(v) U increases monotonically on
[

1
2 , 1
]

and decreases monotonically on
[
0, 1

2

]
.

(vi) S(κ) ≤ U(κ) for all κ ∈ [0, 1].
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Theorem 13 ([23]). Let χ: [κ1,κ2]→ R be a harmonically convex function on [κ1,κ2]. Then

(i) V is harmonically convex on [κ1,κ2].
(ii) The following hold:

inf
κ∈[0,1]

V(κ) = V(0) =
κ1κ2

κ2 −κ1

∫ κ2

κ1

χ(ν)

ν2 dν

and

sup
κ∈[0,1]

V(κ) = V(1) =
χ(κ1) + χ(κ2)

2
.

(iii) V increases monotonically on [0, 1].

Harmonic symmetricity of a function is given in the definition below.

Definition 2 ([24]). A function ϕ: [κ1,κ2] ⊆ R\{0} → R is harmonically symmetric with
respect to 2κ1κ2

κ1+κ2
if

ϕ(ν) = ϕ

(
1

1
κ1

+ 1
κ2
− 1

ν

)
holds for all ν ∈ [κ1,κ2].

Fejér type inequalities using harmonic convexity and the notion of harmonic sym-
metricity were presented in Chan and Wu [25].

Theorem 14 ([25]). Let χ: I ⊆ R\{0} → R be a harmonically convex function and κ1,κ2 ∈ I
with κ1 < κ2. If χ ∈ L([κ1,κ2]) and ϕ: [κ1,κ2] ⊆ R\{0} → R is non-negative, integrable and
harmonically symmetric with respect to 2κ1κ2

κ1+κ2
, then

χ

(
2κ1κ2

κ1 +κ2

) ∫ κ1

κ2

ϕ(ν)

ν2 dν ≤
∫ κ1

κ2

χ(ν)ϕ(ν)

ν2 dν ≤ χ(κ1) + χ(κ2)

2

∫ κ1

κ2

ϕ(ν)

ν2 dν. (8)

Chan and Wu [25] also defined some mappings related to (8) and discussed important
properties of these mappings.

Motivated by the studies conducted in [3,4,23,35], we define some new mappings in
connection to (8) and prove new Féjer type inequalities, which indeed provide refinement
inequalities as well.

2. Main Results

We state some important facts which relate harmonically convex and convex functions
and use them to prove the main results of this paper.

Theorem 15 ([26,27]). If [κ1,κ2] ⊂ I ⊂ (0, ∞) and if we consider the function g:
[

1
κ2

, 1
κ1

]
→ R

defined by g(κ) = χ
(

1
κ

)
, then χ is harmonically convex on [κ1,κ2], if and only if g is convex in

the usual sense on
[

1
κ2

, 1
κ1

]
.

Theorem 16 ([26,27]). If I ⊂ (0, ∞) and χ is a convex and non-decreasing function, then χ is
HA-convex and if χ is a HA-convex and non-increasing function, then χ is convex.

Theorem 17 ([26,27]). Let χ: I ⊂ (0, ∞) → R be a HA-convex function and [k, K] ⊂ I◦. Let
ν : Ω→ R be satisfying the bounds

0 < k ≤ ν(κ) ≤ K < ∞ for µ-a.e. κ ∈ Ω
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and w ≥ 0 µ-a.e. on Ω with
∫

Ω wdµ = 1. If χ ◦ ν, 1
ν ∈ Lw(Ω, µ), then

χ

(
1∫

Ω
w
ν dµ

)
≤
∫

Ω
(χ ◦ ν)wdµ.

Let us now define some mappings on [0, 1] related to (8) and prove some refinement inequalities.

I1(κ) =
1
2

κ2∫
κ1

[
χ

(
2κ1κ2ν

κκ2(κ1 + ν) + (1− κ)ν(κ1 +κ2)

)

+χ

(
2κ1κ2ν

κκ1(ν +κ2) + (1− κ)ν(κ1 +κ2)

)]
ϕ(ν)

ν2 dν,

J1(κ) =
1
2

κ2∫
κ1

[
χ

(
4κ1κ2ν

2κκ1(κ2 + ν) + (1− κ)ν(3κ1 +κ2)

)

+χ

(
4κ1κ2ν

2κκ2(κ1 + ν) + (1− κ)ν(3κ2 +κ1)

)]
ϕ(ν)

ν2 dν,

M1(κ) =
1
2

2κ1κ2
κ1+κ2∫
κ1

[
χ

(
2κ2ν

2νκ + (1− κ)(ν +κ2)

)

+χ

(
2κ1κ2ν

κν(κ1 +κ2) + (1− κ)κ2(κ1 + ν)

)]
ϕ(ν)

ν2 dν

+
1
2

κ2∫
2κ1κ2
κ1+κ2

[
χ

(
2κ1κ2ν

κν(κ1 +κ2) + (1− κ)κ1(κ2 + ν)

)

+χ

(
2κ1ν

2νκ + (1− κ)(ν +κ1)

)]
ϕ(ν)

ν2 dν

and

N1(κ) =
1
2

κ2∫
κ1

[
χ

(
2κ2ν

2νκ + (1− κ)(ν +κ2)

)
+ χ

(
2κ1ν

2νκ + (1− κ)(κ1 + ν)

)]
ϕ(ν)

ν2 dν,

where χ: [κ1,κ2] → R is a harmonically convex function and ϕ: [κ1,κ2] → R is a non-
negative integrable and symmetric about ν = 2κ1κ2

κ1+κ2
.

Lemma 2 ([28]). Let χ : [κ1,κ2] → R be a harmonically convex function and let κ1 ≤ ω̃1 ≤
ν1 ≤ ν2 ≤ ω̃2 ≤ κ2 with ν1ν2

ν1+ν2
= ω̃1ω̃2

ω̃1+ω̃2
. Then

χ(ν1) + χ(ν2) ≤ χ(ω̃1) + χ(ω̃2).

Theorem 18. Let χ, ϕ, I1 be defined as above. Then I1 is harmonically convex, increasing on [0, 1]
and the Fejér-type inequalities

χ

(
2κ1κ2

κ1 +κ2

) ∫ κ2

κ1

ϕ(ν)

ν2 dν = I1(0) ≤ I1(κ)

≤ I1(1) =
1
2

∫ κ2

κ1

[
χ

(
2κ1ν

κ1 + ν

)
+ χ

(
2κ2ν

ν +κ2

)]
ϕ(ν)

ν2 dν (9)
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hold for all κ ∈ [0, 1].

Proof. The mapping I1 : [0, 1] → R is harmonically convex if and only if the mapping
Ī1 : [0, 1]→ R defined by

Ī1(κ) =
1
2

1
κ1∫

1
κ2

[
g
(

κ

(
κ1 + ν

2κ1ν

)
+ (1− κ)

(
κ1 +κ2

2κ1κ2

))

+g
(

κ

(
ν +κ2

2κ2ν

)
+ (1− κ)

(
κ1 +κ2

2κ1κ2

))]
ϕ

(
1
ν

)
dν

is convex for a convex mapping g:
[

1
κ2

, 1
κ1

]
→ R. Let κ1, κ2 ∈ [0, 1], α, β ∈ [0, 1] with

α + β = 1, then

Ī1(κ1α + κ2β) =
1
2

1
κ1∫

1
κ2

[
g
(
(κ1α + κ2β)

(
κ1 + ν

2κ1ν

)
+ (1− (κ1α + κ2β))

(
κ1 +κ2

2κ1κ2

))

+g
(
(κ1α + κ2β)

(
ν +κ2

2κ2ν

)
+ (1− (κ1α + κ2β))

(
κ1 +κ2

2κ1κ2

))]
ϕ

(
1
ν

)
dν

=
1
2

1
κ1∫

1
κ2

[
g
(

α

(
κ1

(
κ1 + ν

2κ1ν

)
+ (1− κ1)

(
κ1 +κ2

2κ1κ2

))

+β

(
κ2

(
κ1 + ν

2κ1ν

)
+ (1− κ2)

(
κ1 +κ2

2κ1κ2

)))
+ g
(

α

(
κ1

(
κ1 + ν

2κ2ν

)
+ (1− κ̂1)

(
κ1 +κ2

2κ1κ2

))
+β

(
κ2

(
κ1 + ν

2κ1ν

)
+ (1− κ2)

(
κ1 +κ2

2κ1κ2

)))]
ϕ

(
1
ν

)
dν

≤ α
1
2

1
κ1∫

1
κ2

[
g
(

κ1

(
κ1 + ν

2κ1ν

)
+ (1− κ1)

(
κ1 +κ2

2κ1κ2

))

+g
(

κ1

(
κ1 + ν

2κ2ν

)
+ (1− κ1)

(
κ1 +κ2

2κ1κ2

))]
ϕ

(
1
ν

)
dν

+ β
1
2

1
κ1∫

1
κ2

[
g
(

κ2

(
κ1 + ν

2κ2ν

)
+ (1− κ2)

(
κ1 +κ2

2κ1κ2

))

+g
(

κ2

(
κ1 + ν

2κ2ν

)
+ (1− κ2)

(
κ1 +κ2

2κ1κ2

))]
ϕ

(
1
ν

)
dν = α Ī1(κ1) + β Ī1(κ2).

This proves the harmonic convexity of I1: [0, 1]→ R.
By integrating and making the following assumptions on ϕ, the following identity is true
for [0,1]:

I1(κ) =

2κ1κ2
κ1+κ2∫
κ1

[
χ

(
2κ1κ2ν

2κκ1κ2 + (1− κ)ν(κ1 +κ2)

)

+χ

(
2κ1κ2ν

2κ((κ1 +κ2)ν−κ1κ2) + (1− κ)(κ1 +κ2)ν

)] ϕ
(

κ1ν
2κ1−ν

)
ν2 dν. (10)
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Let κ1, κ2 ∈ [0, 1] with κ1 < κ2. Choosing

ν1 =
2κ1κ2ν

2κ2κ1κ2 + (1− κ2)ν(κ1 +κ2)
,

ν2 =
2κ1κ2ν

2κ2((κ1 +κ2)ν−κ1κ2) + (1− κ2)(κ1 +κ2)ν
,

ω̃1 =
2κ1κ2ν

2κ̂1κ1κ2 + (1− κ1)ν(κ1 +κ2)

and
ω̃2 =

2κ1κ2ν

2κ1((κ1 +κ2)ν−κ1κ2) + (1− κ1)(κ1 +κ2)ν
.

Hence, according to Lemma 2, the inequality

χ

(
2κ1κ2ν

2κ1κ1κ2 + (1− κ1)ν(κ1 +κ2)

)
+ χ

(
2κ1κ2ν

2κ1((κ1 +κ2)ν−κ1κ2) + (1− κ1)(κ1 +κ2)ν

)
≤ χ

(
2κ1κ2ν

2κ2κ1κ2 + (1− κ2)ν(κ1 +κ2)

)
+ χ

(
2κ1κ2ν

2κ2((κ1 +κ2)ν−κ1κ2) + (1− κ2)(κ1 +κ2)ν

)
(11)

holds for all ν ∈
[
κ1, 2κ1κ2

κ1+κ2

]
.

Multiplying (11) by ϕ
(

κ1ν
2κ1−ν

)
, integrating both sides over ν on

[
κ1, 2κ1κ2

κ1+κ2

]
and using (10),

we derive I1(κ1) ≤ I1(κ2). Thus, I1 is increasing on [0, 1] and then the inequality (9)
holds.

Example 1. Let χ(ν) = ν−2, ν ∈ [1, 2], then χ is harmonically convex. Let ϕ(ν) =
(

1
ν −

3
4

)2
,

ν ∈ [1, 2]. It is clear that ϕ is harmonically symmetric with respect to 4
3 . By using the techniques of

integration, we observed the following calculations for 0 ≤ κ ≤ 1:

I1(0) =
(

3
4

)2 ∫ 2

1

1
ν2

(
1
ν
− 3

4

)2
dν =

3
512

,

I1(κ) =
1
2

∫ 2

1

1
ν2

(
1
ν
− 3

4

)2
[(

4ν

2κ(ν + 1) + 3(1− κ)ν

)−2

+

(
4ν

κ(ν + 2) + 3(1− κ)ν

)−2
]

dν =
2κ2 + 45

7680
,

and

I1(1) =
1
2

∫ 2

1

1
ν2

((
4ν

ν + 2

)−2
+

(
2ν

ν + 1

)−2
)(

1
ν
− 3

4

)2
dν =

47
7680

.

The Figure 1 below validates the inequality (9) in Theorem 18.
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Figure 1. The graph of inequality (9) for 0 ≤ κ ≤ 1.

Remark 1. Let ϕ(ν) = κ1κ2
κ2−κ1

, ν ∈ [κ1,κ2] in Theorem 18. Then I1(κ) = S(κ), κ ∈ [0, 1] and
the inequalities (9) take the form

χ

(
2κ1κ2

κ1 +κ2

)
= S(0) ≤ S(κ) ≤ S(1) =

κ1κ2

κ2 −κ1

∫ κ2

κ1

χ(ν)

ν2 dν,

where S is defined by (5).

Theorem 19. Let χ, ϕ, J1 be defined as above. Then J1 is harmonically convex, increasing on [0, 1]
and the Fejér-type inequalities

χ
(

4κ1κ2
κ1+3κ2

)
+ χ

(
4κ1κ2

3κ1+κ2

)
2

∫ κ2

κ1

ϕ(ν)

ν2 dν ≤ J1(0) ≤ J1(κ) ≤ J1(1)

=
1
2

∫ κ2

κ1

[
χ

(
2κ1ν

κ1 + ν

)
+ χ

(
2κ2ν

ν +κ2

)]
ϕ(ν)

ν2 dν (12)

hold for all κ ∈ [0, 1].

Proof. The harmonic convexity of J1 on [0, 1] can be proved similarly as in proving the
harmonic convexity of I1 on [0, 1].
The following identity holds on [0, 1]:

J1(κ) =
∫ 4κ1κ2

3κ1+κ2

κ1

[
χ

(
4κ1κ2ν

4κκ1κ2 + (1− κ)(3κ1 +κ2)ν

)
+ χ

(
4κ1κ2ν

(1− κ)(3κ1 +κ2)ν + κ(2(3κ1 +κ2)ν− 4κ1κ2)

)
+ χ

(
4κ1κ2ν

(1− κ)(3κ1 +κ2)ν + κ(4κ1κ2 + 2(κ2 −κ1)ν)

)

+χ

(
4κ1κ2ν

(1− κ)(κ1 + 3κ2)ν + 4κ((κ1 +κ2)ν−κ1κ2)

)] ϕ
(

κ1ν
2κ1−ν

)
ν2 dν. (13)

Let κ1, κ2 ∈ [0, 1] with κ1 < κ2. Choosing

ν1 =
4κ1κ2ν

4κ2κ1κ2 + (1− κ2)(3κ1 +κ2)ν
,

ν2 =
4κ1κ2ν

(1− κ2)(3κ1 +κ2)ν + κ2(2(3κ1 +κ2)ν− 4κ1κ2)
,

ω̃1 =
4κ1κ2ν

4κ̂1κ1κ2 + (1− κ1)(3κ1 +κ2)ν
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and
ω̃2 =

4κ1κ2ν

(1− κ̂1)(3κ1 +κ2)ν + κ12(2(3κ1 +κ2)ν− 4κ1κ2)
.

By using Lemma 2, we obtain the following inequality:

χ

(
4κ1κ2ν

4κ2κ1κ2 + (1− κ2)(3κ1 +κ2)ν

)
+ χ

(
4κ1κ2ν

(1− κ2)(3κ1 +κ2)ν + κ2(2(3κ1 +κ2)ν− 4κ1κ2)

)
≤ χ

(
4κ1κ2ν

4κ1κ1κ2 + (1− κ1)(3κ1 +κ2)ν

)
+ χ

(
4κ1κ2ν

(1− κ1)(3κ1 +κ2)ν + κ1(2(3κ1 +κ2)ν− 4κ1κ2)

)
(14)

for all ν ∈
[
κ1, 4κ1κ2

3κ1+κ2

]
.

In a similar way, with the choices

ν1 =
4κ1κ2ν

(1− κ2)(3κ1 +κ2)ν + κ2(4κ1κ2 + 2(κ2 −κ1)ν)
,

ν2 =
4κ1κ2ν

(1− κ2)(κ1 + 3κ2)ν + 4κ̂2(κ1ν +κ2ν−κ1κ2)
,

ω̃1 =
4κ1κ2ν

(1− κ1)(3κ1 +κ2)ν + κ1(4κ1κ2 + 2(κ2 −κ1)ν)

and
ω̃2 =

4κ1κ2ν

(1− κ̂1)(κ1 + 3κ2)ν + 4κ1(κ1ν +κ2ν−κ1κ2)

for κ1, κ2 ∈ [0, 1], where κ1 < κ2 and using Lemma 2, we obtain

χ

(
4κ1κ2ν

(1− κ2)(3κ1 +κ2)ν + κ2(4κ1κ2 + 2(κ2 −κ1)ν)

)
+ χ

(
4κ1κ2ν

(1− κ2)(κ1 + 3κ2)ν + 4κ2(κ1ν +κ2ν−κ1κ2)

)
≤ χ

(
4κ1κ2ν

(1− κ1)(3κ1 +κ2)ν + κ1(4κ1κ2 + 2(κ2 −κ1)ν)

)
+ χ

(
4κ1κ2ν

(1− κ1)(κ1 + 3κ2)ν + 4κ1(κ1ν +κ2ν−κ1κ2)

)
, (15)

where for all ν ∈
[
κ1, 4κ1κ2

3κ1+κ2

]
.

Adding (14) and (15), multiplying both sides by
ϕ
( κ1ν

2κ1−ν

)
ν2 and then integrating over[

κ1, 4κ1κ2
3κ1+κ2

]
, we get that J1(κ1) ≤ J1(κ2) for κ1, κ2 ∈ [0, 1], where κ1 < κ2. It is proved that

J1 is increasing on [0, 1] and hence the inequality (12) is proved because of the fact that
J1(0) ≤ J1(κ) ≤ J1(1).

Example 2. Let χ(ν) = ν−2, ν ∈ [1, 2], then χ is harmonically convex. Let ϕ(ν) =
(

1
ν −

3
4

)2
,

ν ∈ [1, 2]. It is clear that ϕ is harmonically symmetric with respect to 4
3 . By using the techniques of

integration, we observed the following calculations for 0 ≤ κ ≤ 1:

J1(0) =
1
2

[(
8
7

)−2
+

(
8
5

)−2
] ∫ 2

1

1
ν2

(
1
ν
− 3

4

)2
dν =

37
6144

,
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J1(κ) =
1
2

∫ 2

1

1
ν2

(
1
ν
− 3

4

)2
[(

8ν

4κ(ν + 1) + 7(1− κ)ν

)−2

+

(
8ν

2κ(ν + 2) + 5(1− κ)ν

)−2
]

dν =
3κ2 + 185

30720
,

and

J1(1) =
1
2

∫ 2

1

1
ν2

[(
4ν

ν + 2

)−2
+

(
2ν

ν + 1

)−2
](

1
ν
− 3

4

)2
dν =

47
7680

.

The Figure 2 below validates the inequality (9) in Theorem 19.
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0.00602

0.00604
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0.00610

0.00612

κ

V
a
lu
e
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Figure 2. The graph of inequality (12) for 0 ≤ κ ≤ 1.

A comparison between I1 and J1 is given in the theorem below:

Theorem 20. Let χ, ϕ, I1, J1 be defined as above. Then I1(κ) ≤ J1(κ) on [0, 1].

Proof. We observe that the following identities hold for all κ ∈ [0, 1] and ν ∈
[
κ1, 2κ1κ2

κ1+κ2

]
:

J1(κ) =
∫ 2κ1κ2

κ1+κ2

κ1

[
χ

(
4κ1κ2ν

4κ1κ2κ + (1− κ)ν(3κ1 +κ2)

)

+χ

(
4κ1κ2ν

4κ(κ2ν +κ1ν−κ1κ2) + (1− κ)(κ1 + 3κ2)

)] ϕ
(

κ1ν
2κ1−ν

)
ν2 dν (16)

and

I1(κ) =

2κ1κ2
κ1+κ2∫
κ1

[
χ

(
2κ1κ2ν

2κκ1κ2 + (1− κ)ν(κ1 +κ2)

)

+χ

(
2κ1κ2ν

2κ((κ1 +κ2)ν−κ1κ2) + (1− κ)(κ1 +κ2)ν

)] ϕ
(

κ1ν
2κ1−ν

)
ν2 dν. (17)

Let

ν1 =
4κ1κ2ν

4κ1κ2κ + (1− κ)ν(3κ1 +κ2)
,

ν2 =
4κ1κ2ν

4κ(κ2ν +κ1ν−κ1κ2) + (1− κ)ν(κ1 + 3κ2)
,

ω̃1 =
2κ1κ2ν

2κκ1κ2 + (1− κ)ν(κ1 +κ2)
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and
ω̃2 =

2κ1κ2ν

2κ((κ1 +κ2)ν−κ1κ2) + (1− κ)(κ1 +κ2)ν

for all κ ∈ [0, 1] and ν ∈
[
κ1, 2κ1κ2

κ1+κ2

]
.

Hence, by Lemma 2, the following inequality holds for all κ ∈ [0, 1] and ν ∈
[
κ1, 2κ1κ2

κ1+κ2

]
:

χ

(
4κ1κ2ν

4κ1κ2κ + (1− κ)ν(3κ1 +κ2)

)
+ χ

(
4κ1κ2ν

4κ(κ2ν +κ1ν−κ1κ2) + (1− κ)ν(κ1 + 3κ2)

)
≤ χ

(
2κ1κ2ν

2κκ1κ2 + (1− κ)ν(κ1 +κ2)

)
+ χ

(
2κ1κ2ν

2κ((κ1 +κ2)ν−κ1κ2) + (1− κ)(κ1 +κ2)ν

)
. (18)

Multiplying both sides by
ϕ
( κ1ν

2κ1−ν

)
ν2 and then integrating over

[
κ1, 2κ1κ2

κ1+κ2

]
, we get that

I1(κ) ≤ J1(κ) for κ ∈ [0, 1].

Example 3. Let χ(ν) = ν−2, ν ∈ [1, 2], then χ is harmonically convex. Let ϕ(ν) =
(

1
ν −

3
4

)2
,

ν ∈ [1, 2]. It is clear that ϕ is harmonically symmetric with respect to 4
3 . By using the techniques of

integration, we observed the following calculations for 0 ≤ κ ≤ 1:

I1(κ) =
1
2

∫ 2

1

1
ν2

(
1
ν
− 3

4

)2
[(

4ν

2κ(ν + 1) + 3(1− κ)ν

)−2

+

(
4ν

κ(ν + 2) + 3(1− κ)ν

)−2
]

dν =
2κ2 + 45

7680

and

J1(κ) =
1
2

∫ 2

1

1
ν2

(
1
ν
− 3

4

)2
[(

8ν

4κ(ν + 1) + 7(1− κ)ν

)−2

+

(
8ν

2κ(ν + 2) + 5(1− κ)ν

)−2
]

dν =
3κ2 + 185

30720
,

The Figure 3 below validates the inequality proved in Theorem 20.
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Figure 3. The graph of inequality proved in Theorem 20 for 0 ≤ κ ≤ 1.

The following result demonstrates how the function attributes of M1 are incorporated:



Symmetry 2023, 15, 1602 14 of 20

Theorem 21. Let χ, ϕ, M1 be defined as above. Then M1 is harmonically convex, increasing on
[0, 1] and Fejér-type inequality

1
2

∫ κ2

κ1

[
χ

(
2κ1ν

κ1 + ν

)
+ χ

(
2κ2ν

ν +κ2

)]
ϕ(ν)

ν2 dν = M1(0)

≤ M1(κ) ≤ M1(1) =
1
2

[
χ

(
2κ1κ2

κ1 +κ2

)
+

χ(κ1) + χ(κ2)

2

] ∫ κ2

κ1

ϕ(ν)

ν2 dν (19)

hold for all κ ∈ [0, 1].

Proof. We can prove the harmonic convexity of M1 on [0, 1] by following the same method
as that of proving the harmonic convexity of M1 on [0, 1] in Theorem 18.
It is easy to observe that the following identity holds for all κ ∈ [0, 1] and ν ∈

[
κ1, 4κ1κ2

3κ1+κ2

]
:

M1(κ) =

4κ1κ2
3κ1+κ2∫
κ1

[
χ

(
κ2ν

κν + (1− κ)κ2

)
+ χ

(
2κ1κ2ν

(3κ1 +κ2)ν− 2(1− κ)κ1κ2 − 2κκ1ν

)

+ χ

(
2κ1κ2ν

2(1− κ)κ1κ2 + (κ2 −κ1)ν + 2κκ1ν

)

+χ

(
κ1κ2ν

(κ1 +κ2 − κκ1)ν− (1− κ)κ1κ2

)] ϕ
(

κ1ν
2κ1−ν

)
ν2 dν.

According to Lemma 2, the following inequalities are valid for all κ1, κ2 ∈ [0, 1] with κ1 < κ2

and ν ∈
[
κ1, 4κ1κ2

3κ1+κ2

]
:

χ

(
κ2ν

κ1ν + (1− κ1)κ2

)
+ χ

(
2κ1κ2ν

(3κ1 +κ2)ν− 2(1− κ1)κ1κ2 − 2κ1κ1ν

)
≤ χ

(
κ2ν

κ2ν + (1− κ2)κ2

)
+ χ

(
2κ1κ2ν

(3κ1 +κ2)ν− 2(1− κ2)κ1κ2 − 2κ2κ1ν

)
(20)

χ

(
2κ1κ2ν

2(1− κ1)κ1κ2 + (κ2 −κ1)ν + 2κ1κ1ν

)
+ χ

(
κ1κ2ν

(κ1 +κ2 − κ1κ1)ν− (1− κ1)κ1κ2

)
≤ χ

(
2κ1κ2ν

2(1− κ2)κ1κ2 + (κ2 −κ1)ν + 2κ2κ1ν

)
+ χ

(
κ1κ2ν

(κ1 +κ2 − κ2κ1)ν− (1− κ2)κ1κ2

)
. (21)

Adding (20) and (21) and multiplying both sides of the resulting inequality by
ϕ
( κ1ν

2κ1−ν

)
ν2 and

then integrating over
[
κ1, 4κ1κ2

3κ1+κ2

]
, we get that M1(κ1) ≤ M1(κ2) for κ1, κ2 ∈ [0, 1] with

κ1 < κ2. Hence, M1 is increasing on [0, 1] and thus the inequalities (19) follow.

Example 4. Let χ(ν) = ν−2, ν ∈ [1, 2], then χ is harmonically convex. Let ϕ(ν) =
(

1
ν −

3
4

)2
,

ν ∈ [1, 2]. It is clear that ϕ is harmonically symmetric with respect to 4
3 . By using the techniques of

integration, we observed the following calculations for 0 ≤ κ ≤ 1:

M1(0) =
1
2

[(
8
7

)−2
+

(
8
5

)−2
] ∫ 2

1

1
ν2

(
1
ν
− 3

4

)2
dν =

37
6144

,
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M1(κ) =
1
2

4
3∫

1

[(
4ν

2νκ + (1− κ)(ν + 2)

)−2
+

(
4ν

3κν + 2(1− κ)(1 + ν)

)−2
]( 1

ν −
3
4

)2

ν2 dν

+
1
2

2∫
4
3

[(
4ν

3κν + (1− κ)(2 + ν)

)−2
+

(
2ν

2νκ + (1− κ)(ν + 1)

)−2
]( 1

ν −
3
4

)2

ν2 dν

=
376− 27κ + 31κ2

61440

and

M1(1) =
1
2

[(
4
3

)−2
+

1−2 + 2−2

2

] ∫ 2

1

1
ν2

(
1
ν
− 3

4

)2
dν =

47
7680

.

The Figure 4 below validates the inequality (19) in Theorem 21.
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Figure 4. The graph of inequality (19) for 0 ≤ κ ≤ 1.

The properties of the mapping N1 are presented in the given result:

Theorem 22. Let χ, ϕ, N1 be defined as above. Then N1 is harmonically convex, increasing on
[0, 1] and the Fejér-type inequalities

1
2

∫ κ2

κ1

[
χ

(
2κ1ν

κ1 + ν

)
+ χ

(
2κ2ν

ν +κ2

)]
ϕ(ν)

ν2 dν = N1(0)

≤ N1(κ) ≤ N1(1) =
χ(κ1) + χ(κ2)

2

∫ κ2

κ1

ϕ(ν)

ν2 dν (22)

hold for all κ ∈ [0, 1].

Proof. We can prove the harmonic convexity of N1 on [0, 1] by following the same method
as that of proving the harmonic convexity of I1 on [0, 1] in Theorem 18.
It is easy to observe that

N1(κ) =

2κ1κ2
κ1+κ2∫
κ1

[
χ

(
κ1κ2ν

κ1νκ + (1− κ)(κ1ν +κ2ν−κ1κ2)

)

+χ

(
κ1ν

κν + (1− κ)κ1

)] ϕ
(

κ1ν
2κ1−ν

)
ν2 dν.
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holds for all κ ∈ [0, 1] and ν ∈
[
κ1, 2κ1κ2

κ1+κ2

]
.

According to Lemma 2, the given inequalities are valid for all κ1, κ2 ∈ [0, 1] with κ1 < κ2

and ν ∈
[
κ1, 2κ1κ2

κ1+κ2

]
:

χ

(
κ1ν

κ1ν + (1− κ1)κ1

)
+ χ

(
κ1κ2ν

κ1νκ1 + (1− κ1)(κ1ν +κ2ν−κ1κ2)

)
≤ χ

(
κ1ν

κ2ν + (1− κ2)κ1

)
+ χ

(
κ1κ2ν

κ1νκ2 + (1− κ2)(κ1ν +κ2ν−κ1κ2)

)
. (23)

Multiplying both sides of (23) by
ϕ
( κ1ν

2κ1−ν

)
ν2 and then integrating over

[
κ1, 2κ1κ2

κ1+κ2

]
, we get

that N1(κ1) ≤ N1(κ2) for κ1, κ2 ∈ [0, 1] with κ̂1 < κ2. Hence, N1 is increasing on [0, 1] and
thus the inequalities (22) follow.

Example 5. Let χ(ν) = ν−2, ν ∈ [1, 2], then χ is harmonically convex. Let ϕ(ν) =
(

1
ν −

3
4

)2
,

ν ∈ [1, 2]. It is clear that ϕ is harmonically symmetric with respect to 4
3 . By using the techniques of

integration, we observed the following calculations for 0 ≤ κ ≤ 1:

N1(0) =
1
2

[(
8
7

)−2
+

(
8
5

)−2
] ∫ 2

1

1
ν2

(
1
ν
− 3

4

)2
dν =

37
6144

,

N1(κ) =
1
2

2∫
1

[(
4ν

2νκ + (1− κ)(ν + 2)

)−2

+

(
2ν

2νκ + (1− κ)(1 + ν)

)−2
]( 1

ν −
3
4

)2

ν2 dν =
2κ2 + κ + 47

7680

and

N1(1) =
1−2 + 2−2

2

∫ 2

1

1
ν2

(
1
ν
− 3

4

)2
dν =

5
768

.

The Figure 5 below validates the inequality proved in Theorem 22.
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Figure 5. The graph of inequality proved in Theorem 20 for 0 ≤ κ ≤ 1.

Remark 2. Let ϕ(ν) = κ1κ2
κ2−κ1

, ν ∈ [κ1,κ2] in Theorem 18. Then N1(κ) = V(κ), κ ∈ [0, 1] and
the inequalities (22) become

κ1κ2

κ2 −κ1

∫ κ2

κ1

χ(ν)

ν2 dν = V(0) ≤ V(κ) ≤ V(1) =
χ(κ1) + χ(κ2)

2
,

where V is defined by (7).
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Theorem 23. Let χ, ϕ, M1, N1 be defined as above. Then M1(κ) ≤ N1(κ) on [0, 1].

Proof. We observe that the following identities hold for all κ ∈ [0, 1] and ν ∈
[
κ1, 4κ1κ2

3κ1+κ2

]
:

M1(κ) =

4κ1κ2
3κ1+κ2∫
κ1

[
χ

(
κ2ν

κν + (1− κ)κ2

)
+ χ

(
2κ1κ2ν

(3κ1 +κ2)ν− 2(1− κ)κ1κ2 − 2κκ1ν

)

+ χ

(
2κ1κ2ν

2(1− κ)κ1κ2 + (κ2 −κ1)ν + 2κκ1ν

)

+χ

(
κ1κ2ν

(κ1 +κ2 − κκ1)ν− (1− κ)κ1κ2

)] ϕ
(

κ1ν
2κ1−ν

)
ν2 dν. (24)

and

N1(κ) =

4κ1κ2
3κ1+κ2∫
κ1

[
χ

(
κ2ν

κν + (1− κ)κ2

)
+ χ

(
2κ1κ2ν

2κ1νκ + (1− κ)((3κ1 +κ2)ν− 2κ1κ2)

)

+ χ

(
κ1κ2ν

κκ2ν + (1− κ)(κ2ν +κ1ν−κ1κ2)

)

+χ

(
2κ1κ2ν

2κ2νκ + (1− κ)(2κ1κ2 + (κ2 −κ1)ν)

)] ϕ
(

κ1ν
2κ1−ν

)
ν2 dν. (25)

Let

ν1 =
κ2ν

κν + (1− κ̂)κ2
,

ν2 =
2κ1κ2ν

(3κ1 +κ2)ν− 2(1− κ)κ1κ2 − 2κκ1ν
,

ω̃1 =
κ2ν

κν + (1− κ)κ2

and
ω̃2 =

2κ1κ2ν

2κ1νκ + (1− κ)((3κ1 +κ2)ν− 2κ1κ2)

for all κ ∈ [0, 1] and ν ∈
[
κ1, 4κ1κ2

3κ1+κ2

]
.

Hence, Lemma 2 gives the inequality

χ

(
κ2ν

κν + (1− κ)κ2

)
+ χ

(
2κ1κ2ν

(3κ1 +κ2)ν− 2(1− κ)κ1κ2 − 2κκ1ν

)
≤ χ

(
κ2ν

κν + (1− κ)κ2

)
+ χ̂

(
2κ1κ2ν

2κ1νκ + (1− κ)((3κ1 +κ2)ν− 2κ1κ2)

)
(26)

for all κ ∈ [0, 1] and ν ∈
[
κ1, 4κ1κ2

3κ1+κ2

]
.

Similarly with the choices

ν1 =
2κ1κ2ν

2(1− κ)κ1κ2 + (κ2 −κ1)ν + 2κκ1ν
,

ν2 =
κ1κ2ν

(κ1 +κ2 − κκ1)ν− (1− κ)κ1κ2
,

ω̃1 =
κ1κ2ν

κκ2ν + (1− κ)(κ2ν +κ1ν−κ1κ2)
,
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ω̃2 =
2κ1κ2ν

2κ2νκ + (1− κ)(2κ1κ2 + (κ2 −κ1)ν)

in Lemma 2, we get

χ

(
κ1κ2ν

κκ2ν + (1− κ)(κ2ν +κ1ν−κ1κ2)

)
+ χ

(
κ1κ2ν

(κ1 +κ2 − κκ1)ν− (1− κ)κ1κ2

)
≤ χ

(
κ1κ2ν

κκ2ν + (1− κ)(κ2ν +κ1ν−κ1κ2)

)
+ χ

(
2κ1κ2ν

2κ2νκ + (1− κ)(2κ1κ2 + (κ2 −κ1)ν)

)
. (27)

Adding (26) and (27) and multiplying the result by
ϕ
( κ1ν

2κ1−ν

)
ν2 and then integrating over[

κ1, 4κ1κ2
3κ1+κ2

]
, we get that M1(κ) ≤ N1(κ) for κ ∈ [0, 1].

Example 6. Let χ(ν) = ν−2, ν ∈ [1, 2], then χ is harmonically convex. Let ϕ(ν) =
(

1
ν −

3
4

)2
,

ν ∈ [1, 2]. It is clear that ϕ is harmonically symmetric with respect to 4
3 . By using the techniques of

integration, we observed the following calculations for 0 ≤ κ ≤ 1:

M1(κ) =
1
2

4
3∫

1

[(
4ν

2νκ + (1− κ)(ν + 2)

)−2
+

(
4ν

3κν + 2(1− κ)(1 + ν)

)−2
]( 1

ν −
3
4

)2

ν2 dν

+
1
2

2∫
4
3

[(
4ν

3κν + (1− κ)(2 + ν)

)−2
+

(
2ν

2νκ + (1− κ)(ν + 1)

)−2
]( 1

ν −
3
4

)2

ν2 dν

=
31κ2 − 27κ + 376

61440

and

N1(κ) =
1
2

2∫
1

[(
4ν

2νκ + (1− κ)(ν + 2)

)−2

+

(
2ν

2νκ + (1− κ)(1 + ν)

)−2
]( 1

ν −
3
4

)2

ν2 dν =
2κ2 + κ + 47

7680

The Figure 6 below validates the inequality proved in Theorem 23.

0.0 0.2 0.4 0.6 0.8 1.0

0.0060

0.0061

0.0062

0.0063

0.0064

0.0065

κ

V
a
lu
e
s

Figure 6. The graph of inequality proved in Theorem 23 for 0 ≤ κ ≤ 1.

Theorems 19–23 lead to the following Fejér-type inequalities.
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Corollary 1. Let χ, ϕ be defined as above. Then

χ

(
2κ1κ2

κ1 +κ2

) ∫ κ2

κ1

ϕ(ν)

ν2 dν ≤
χ
(

4κ1κ2
κ1+3κ2

)
+ χ

(
4κ1κ2

3κ1+κ2

)
2

∫ κ2

κ1

ϕ(ν)

ν2 dν

≤ 1
2

∫ κ2

κ1

[
χ

(
2κ1ν

κ1 + ν

)
+ χ

(
2κ2ν

ν +κ2

)]
ϕ(ν)

ν2 dν

≤ 1
2

[
χ

(
2κ1κ2

κ1 +κ2

)
+

χ(κ1) + χ(κ2)

2

] ∫ κ2

κ1

ϕ(ν)

ν2 dν

≤ χ(κ1) + χ(κ2)

2

∫ κ2

κ1

ϕ(ν)

ν2 dν. (28)

Corollary 2. Let ϕ(ν) = κ1κ2
κ2−κ1

, ν ∈ [κ1,κ2] in Corollary 1. Then the inequality (28) reduces to

χ

(
2κ1κ2

κ1 +κ2

)
≤

χ
(

4κ1κ2
κ1+3κ2

)
+ χ

(
4κ1κ2

3κ1+κ2

)
2

≤ 1
2

(
κ1κ2

κ2 −κ1

) ∫ κ2

κ1

1
ν2

[
χ

(
2κ1ν

κ1 + ν

)
+ χ

(
2κ2ν

ν +κ2

)]
dν

≤ 1
2

[
χ

(
2κ1κ2

κ1 +κ2

)
+

χ(κ1) + χ(κ2)

2

]
≤ χ(κ1) + χ(κ2)

2
. (29)

3. Conclusions

Integral inequalities have become an emerging topic in the last three decades. Re-
searchers are trying to find new proofs of the existing results and trying to investigate
refinements of the existing results using novel ideas. In different directions of research
in the field of inequalities and other fields of mathematics, convexity plays an important
role in establishing new results and refinements of the existing results. Mathematicians
are trying to find new and novel generalizations to generalize and refine the existing re-
sults. One the generalizations of the convex functions is known as harmonically convex
functions, which has given rise to a number of novel results and refinements. In this
study, we defined new mappings over the interval [0, 1] related to the Hermite-Hadamard
and Fejér type inequalities, proved for harmonically-convex functions and obtained new
Hermite-Hadamard and Fejér type inequalities using novel techniques and notions of
harmonically convexity. The results obtained are not only the new Fejér type inequalities
but also provide refinements of Hermite-Hadamard and Fejér type results already proven
in the existing literature of mathematical inequalities. The research of this paper could be a
source of inspiration for new researchers and for the researchers already working in the
field of mathematical inequalities.
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