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Abstract: Three-dimensional models, reconstructed from real-life objects, are extensively used in
virtual and mixed reality technologies. In this paper we propose an approach to 3D model reconstruc-
tion via inverse procedural modeling and describe two variants of this approach. The first option is
to fit a set of input parameters using a genetic algorithm. The second option allows us to significantly
improve precision by using gradients within the memetic algorithm, differentiable rendering, and
differentiable procedural generators. We demonstrate the results of our work on different models,
including trees, which are complex objects that most existing methods cannot reconstruct. In our
work, we see two main contributions. First, we propose a method to join differentiable rendering
and inverse procedural modeling. This gives us the ability to reconstruct 3D models more accurately
than existing approaches when few input images are available, even for a single image. Second, we
combine both differentiable and non-differentiable procedural generators into a single framework
that allows us to apply inverse procedural modeling to fairly complex generators. We show that both
variants of our approach can be useful: the differentiable one is more precise but puts limitations on
the procedural generator, while the one based on genetic algorithms can be used with any existing
generator. The proposed approach uses information about the symmetry and structure of the object
to achieve high-quality reconstruction from a single image.

Keywords: shape modeling; geometry reconstruction; single-view 3D reconstruction;
procedural generation; inverse procedural generation; inverse procedural modeling;
differentiable rendering

1. Introduction

Modern computer graphics applications require an extensive range of 3D models
and textures to populate virtual environments. First of all, we see an increasing demand
for realistic virtual content in the growing game and movie industries. The popularity of
virtual and augmented reality also enforces this demand. Manual creation of all models
requires much time and resources. A significant part of virtual content is created from
real-life objects via 3D reconstruction, which remains one of the most important tasks at the
intersection of computer vision and graphics. In recent years, we have also seen increased
interest in procedural model generation and representation. Sophisticated procedural
generation tools are being implemented in game engines. The procedural approach also
has other advantages:

1. Procedural models are editable, semantically meaningful, and often can be animated;
2. A mesh obtained from such models has high-quality triangulation;
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3. Procedural models are memory-saving compared to other 3D representations.

Despite the known advantages of procedural models, their creation remains a predom-
inantly manual process. Reconstruction of objects using procedural models can speed up
their creation, simplify subsequent modification of models, and bring other advantages of
the procedural approach to the field of 3D reconstruction. This is why a 3D reconstruction
method that creates procedural geometry is badly needed. However, the intersection
of these two groups of methods (3D reconstruction and procedural generation) remains
relatively unexplored.

Typically, a combination of different approaches is employed, when generated or
reconstructed models are further refined by artists. This is especially common in video
games, as each model in the game is not only a 3D mesh with a set of textures, but also a
more complex object with various levels of detail, animation, physics, etc. 3D reconstruction
is a fundamental task in computer vision and numerous methodologies have been proposed
over the past decades. To achieve high-quality 3D geometric reconstruction, scanners or
LIDARs are the most optimal solution, provided the necessary equipment is available.
Image-based approaches are much easier to use and will be the topic of this paper. In
recent years, deep learning methods, such as NeRF [1], have made remarkable progress in
solving the new problem of view synthesis. Although NeRF and its successors are good
at capturing details, they require a significant amount of time and many input images.
Other deep learning methods, such as [2,3], focus on 3D reconstruction from a single image,
but their results are unlikely to be applicable due to low quality. Additionally, it should
be noted that deep learning methods rely on an implicit representation of the model in
neural network weights, and extracting the actual mesh and textures from it becomes a
challenging task [4,5].

Differentiable rendering is a promising and rapidly developing approach to 3D recon-
struction [6]. It enables gradient-based optimization of scene parameters, such as vertex
positions and textures, to achieve a better match with the input images. One applica-
tion of differentiable rendering is the reconstruction of complex materials’ Bidirectional
Reflectance Distribution Functions (BRDFs). Although differentiable rendering can be
used with implicit representations such as signed distance functions (SDF) [7], most ap-
proaches use a classical mesh-textures representation, which is more user-friendly than
deep learning methods.

Despite the progress made in the field of image-based 3D reconstruction in recent
years, there are still significant obstacles preventing the wider adoption of these methods in
practical applications. First, performing high-quality reconstruction requires a significant
number of images ([6] uses 100 images to achieve high quality). Single-view reconstruction
methods are barely applicable, while others often require dozens of images of different
views. Second, even the best approaches struggle to reconstruct complex objects with many
thin parts, such as trees and other vegetation. The key point is that an exact reconstruction
of every small branch and leaf is not necessary; rather, the model should be sufficiently
detailed and visually similar to the given reference. The third and, perhaps, the most
significant problem of reconstruction is the difficulty of editing the resulting models.
Typically, these methods create one large triangular mesh that lacks information about
the structure of the object, such as which branch a particular triangle belongs to in the
tree model. Artifacts in the resulting model are also a serious problem, often requiring
regularization or post-processing techniques to reduce them.

Most image-based reconstruction methods do not take into account an important
aspect of applications and human perception: the structure of an object. Modification is
often required to use the reconstructed model, and lack of structural information makes
any modifications much more difficult. Procedural generation is an alternative method
for obtaining 3D models, consisting of rules that establish a correlation between input pa-
rameters and 3D objects of a certain class. In this paper, we propose a novel approach that
utilizes procedural generation for single-view and multi-view reconstruction of triangular
meshes. Instead of directly estimating the position of mesh vertices, we estimate the input



Symmetry 2024, 16, 184 3 of 22

parameters of the procedural generator through a silhouette loss function between the
reference and rendered images, using differentiable rendering and creating partially differ-
entiable procedural generators for gradient-based optimization. Our approach also allows
us to conveniently modify/edit the model by changing the estimated input parameters,
such as creating new levels of detail, altering the geometry and textures of individual mesh
parts, and more. In summary, the contributions of this work are outlined as follows:

1. An algorithm for single-view 3D reconstruction using procedural modeling is pro-
posed. Unlike many other methods, it produces an editable 3D procedural model that
can be easily converted in high-quality mesh grids and arbitrary levels of details.

2. To obtain an editable 3D procedural model as a reconstruction result, two procedural
modeling approaches were studied: non-differentiable and differentiable. The first
approach is easier to implement for a wider range of tasks, while the second can be
used to obtain more precise reconstruction.

3. Our model outperforms modern single-view reconstruction methods and shows results
comparable to state-of-the-art approaches for multi-view reconstruction (it demon-
strates IoU metrics more than 0.9 for most models with the exception of extremely
complex ones).

It should be noted that symmetry is a key property that allows one to reduce the
dimension of phase space. Thanks to this property, high-quality optimization of an object is
possible using just one image. For real-life objects that do not have symmetry our method
also works, but it performs only an approximate reconstruction. However, even in this case
the resulting 3D object does not have artifacts typical of most other reconstruction methods.

This work generalizes and extends the results presented at the conferences [8,9]. The
novelty of this work is that we propose a general approach for both differentiable and
non-differentiable procedural generators as well as an intermediate case when only several
parameters of procedural generator are differentiable (for example, the case of buildings).
In addition to the conference papers, we performed an extensive comparison and showed
the benefits of the proposed approach on different types of procedural generators and
3D models. Finally, we showed that for inverse procedural modeling, it is enough to
apply differentiable rendering to a silhouette image only. This, in algorithmic terms,
significantly reduces computational complexity and allows us to use simpler and lighter-
weight approaches to differentiable rendering (Section 4.4).

The remainder of this paper is organized as follows. Section 2 describes other recon-
struction methods and related studies, including inverse procedural modeling, which we
consider to be closest to the topic of this research. The proposed method is introduced
in Section 3. Section 4 discusses the implementation and demonstrates the results of the
proposed approach. Finally, Section 5 outlines the discussions and conclusions.

2. Related Works

Our work joins together ideas from several areas. They are 3D model reconstruction,
neural and differentiable rendering, and forward and inverse procedural modeling. In the
following, we describe what has already been accomplished before us in these areas and
finalize motivation for our research in Section 2.7.

2.1. Three-Dimensional Reconstruction

Multi-view 3D geometry reconstruction has been well studied in the literature. Tra-
ditional and well-developed approaches to solve this task include structure from motion
(SfM) [10] for large-scale and high-quality reconstruction and mapping (SLAM) [11] for
navigation. Although these approaches are capable of providing high-quality results, they
have two significant limitations. First, they are unable to reconstruct the unseen parts of
objects and therefore require a large number of input images. Secondly, they have difficulty
working with non-Lambertian or textureless objects.

Consequently, there is a growing trend towards learning-based approaches that lever-
age shape priors learned from the data by considering one or few images. These methods
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use different scene representations, such as meshes [12–14], voxel grids [15,16], point
clouds [17,18], or implicit functions [19]. Among these methods, mesh reconstruction is
especially important for our work. Most single-view 3D mesh reconstruction methods use
an encoder–decoder architecture, in which the encoder extracts features from the image
and the decoder deforms an initial mesh to match the target shape. It is worth noting that
these methods are trained and evaluated on the same object categories. However, recent
work [20] has shown that these approaches primarily achieve recognition rather than recon-
struction when working with a single image. Although there have been several works on
generalized single-view 3D reconstruction [3,21], models reconstructed from a single image
using these methods often lack the quality required for practical applications. However,
a study recently published dealing with 3D reconstruction using Gaussian splatting [22]
shows very promising results along with a higher generalization ability.

2.2. Differentiable Rendering and Neural SDF

The field of physically based differentiable rendering [6,23–26] is an active area of
research related to the accurate reconstruction of 3D models and materials. These algorithms
provide gradient information for the loss function with respect to scene parameters, which can
be minimized using gradient descent. The choice of scene representation is crucial for these
approaches, with the mesh-based representation being the most extensively studied. Specific
regularization techniques [27] and modifications of the Adam optimizer [28] were proposed
to improve the quality. Recent work by Nicolet et al. [29] has made significant advances in
this area by improving the quality of the resulting meshes. Other scene representations, such
as differentiable signed distance functions (SDFs) [30], have also been explored. Differential
rendering can also be combined with deep learning [3] to provide face quality supervision
and regularization. However, these approaches typically require a large number of input
images, which is difficult to obtain in practice. Particular mention should be made of the
work [31] which, in our opinion, is a kind of precursor of approaches based on differentiable
rendering. In this work, the minimum area surface that best fits the input data and suitable
priors is computed as a solution to a variational convex optimization problem.

2.3. NeRF

While mesh-based or surface-based representations offer efficient rendering and easy-
to-use models, optimizing surface geometry using image-based methods can be challenging
due to non-convexity. Volumetric representations [32,33] can reliably achieve a desirable
minimum, but are usually unable to capture finer details. Alternatively, point-based shape
representations have been shown to produce high-quality scene reconstructions [34,35].

Another useful technique for scalable scene representation is the use of coordinate-
based neural networks, which are commonly known as neural fields [36–38]. Neural fields
extend the resolution limits of discrete grids and generalize to higher-dimensional signals,
including directional emission [36]. Neural fields [38] have demonstrated the ability to
handle complex scenes and produce compelling results in seconds. However, for prac-
tical use, these results often need to be converted into a 3D mesh, since most rendering
engines primarily work with meshes. This conversion can be challenging and result in
sub-optimal models with more triangles and lower visual quality [38]. Another major disad-
vantage of NeRF is the same as for approaches based on differential rendering—it requires
a large number of input images. Compared to pure differentiable rendering approaches,
NeRF-based methods are more stable and do not require specific initial conditions for opti-
mizations, but produce models that are much more demanding in memory consumption
and computational power to render them directly.

2.4. Procedural Modeling

Procedural generation is a widely used approach to create a variety of virtual content.
It can be used at different levels, from individual objects to large-scale open worlds and
game scenarios [39,40]. Typically, a procedural object generator works as a function that
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transforms a vector of numerical parameters into a 3D mesh of a certain class, for example,
trees or buildings. Procedural modeling of trees is of particular interest because creating
detailed vegetation by hand is especially hard and tedious. Projects like SpeedTree [41]
provide an artist with a tool that allows them to interactively create highly detailed tree
models, while stand-alone procedural generators [42,43] create a plant model without
human involvement based on a set of input parameters. Due to its complexity, traditional
3D reconstruction of a tree model is much more difficult, since many details are hidden by
foliage. Considering this, and the fact that procedural generators are capable of producing
high-quality tree models, a few specialized tree reconstruction methods using procedural
generators have been proposed.

2.5. Inverse Procedural Modeling

The work [44,45] proposes inverse procedural generation, that is, selecting generator
parameters based on the input 3D tree model to recreate it using the generator. Thus, the
procedure takes a polygonal tree model as input. Tree sampling was performed using
Markov chain Monte Carlo in parameter space. The main limitation of this work is that a 3D
mesh is already required as input. The SIGGRAPH course [46] provides a comprehensive
review of inverse procedural modeling based on already existing 3D content. However,
procedural-based reconstruction from one or a few images remains an open problem
in general.

To move from 3D modeling to a 3D reconstruction problem, it is necessary to pro-
pose a similarity metric that answers the following question: “To what extent does a
given set of procedural generator parameters allow one to obtain a model similar to the
input reference?”

This strategy was adapted in [8,47]. The work [47] analyzes an input tree image
and infers a parametric L-system that represents it. In [8], the authors use more complex
stochastic procedural models that simulate the process of vegetation growth, so the selection
of procedural generator parameters is carried out using genetic algorithms. Both methods
take a single tree image and find the optimal generator parameters by minimizing the loss
function between a given reference and the model image created by the generator. Despite
relatively good results, these methods are specific for plants (especially [47]) and cannot be
applied to a wider class of objects.

There are several works devoted to inverse procedural modeling of specific classes of
objects, such as materials [48], facades [49], and knitting yarn [50,51]. Reference [49] derives
a so-called “split grammar” for a given facade layout. A more general approach has also
been studied. In the work [52], the authors focus on an interactive procedural generation
tool that allows for greater user control over the generated output. The user then modifies
the output interactively, and the modifications are passed back to the procedural model as
its parameters by solving the inverse procedural modeling problem.

2.6. Adding Geometric Constraints

There are a number of methods focused on the reconstruction of objects with geometric
constraints, such as bodies of revolution [53,54], buildings [55], human bodies [56,57], etc.
These approaches are carefully designed for specific application scenarios and specific input
data. They may use [55], or not use learning-based approaches. These approaches usually
provide sufficiently accurate results for the intended applications. However, they are more
limited and specific to a certain type of object than the procedural approach in general.

2.7. Motivation for Our Work

Most of the works devoted to 3D reconstruction tend to overlook how the recon-
structed model can actually be used. Even if a method is able to produce a decent triangle
mesh, it will likely need to be modified to remove some artifacts and adjust it to spe-
cific users’ needs. This process is much more complex with methods based on implicit
representations such as NeRF [36] or Gaussian Splatting [58], which requires additional
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steps [5,59]. In most cases, models have to be converted to a mesh or point cloud, which
likely reduces quality.

Also, in the gaming and movie industries models are often further edited to match a
specific visual style and sometimes a set of similar models is created from a single real-world
object. This shows that even perfectly reconstructed models often need editing to meet the
requirements of the end user and how easy it is to carry out such editing largely determines
the applicability of a particular method. High-level editing, such as increasing the number
of floors or replacing windows in a building, require much effort unless we have access to
information about the structure of the object and the ability to change it directly.

There are ideas of procedural generation and inverse procedural generation, that is,
describing an existing 3D model with the parameters of a procedural generator [44,45].
The main reason for this is the change in the model structure through its parameters. This
observation leads us to the idea of inverse procedural generation, which uses images as
input instead of an existing model. This approach allows us to reconstruct the structure of
the object and greatly simplifies further modifications.

3. Proposed Method

In this section we describe our method for single- and multi-view 3D reconstruction
using procedural generation. We first present our general reconstruction pipeline and
its two variants: differentiable and non-differentiable. The advantages and limitations of
the differentiable variant are discussed. We then present procedural generators used in
our work and discuss the differences between them when used for reconstruction. The
next part of this section is dedicated to the optimization process in both differentiable and
non-differentiable pipelines.

3.1. Workflow

In our work, we assume that we are given a set of N images Ri of the same object
from different (and unknown) viewpoints. We do not use reference images directly, but
instead use “masks” Mi taken from these images. The exact type of mask depends on the
procedural generator, but in most cases it is simply a binary mask separating the object from
the background. This allows us to ignore the lighting in the original image and simplifies
the calculation of the loss function during the optimization process. Figure 1 shows the
general workflow of our proposed method.

Figure 1. General workflow of proposed method. Binary masks are generated from input images and
used to reconstruct 3D models in form of procedural generator’s input parameters. Then, this set of
parameters can be optionally edited and/or used to create a group of similar models.

Creating a mask remains beyond the scope of consideration in this paper, and any
existing segmentation algorithms can be used for this. Masks obtained in one way or
another are used by our algorithm to remove from the loss function influence of insignificant
details, which is visible in the input image.
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3.2. Reconstruction Pipeline

We assume that we already know the procedural generator Gen needed for reconstruc-
tion, either because it was chosen manually or through some classification. It takes a set of
parameters P to create a triangle mesh consisting of vertex positions, normals, and texture
coordinates Gen(P) = Mesh = {posi, normi, tci}, where posi is the vertex position, normi –
vertex normal, and tci is the vertex texture coordinates of i-th vertex. A mask of this mesh
can then be created using a render function that takes only vertex positions pos and camera
parameters C: I = Render(Mesh, C). We perform the reconstruction as an optimization of
the loss function between the given and rendered masks:

Loss(P, C1, ..., CN) =
1
N
∗

N

∑
i=1

MSE(Ii, Mi) =
1
N
∗

N

∑
i=1

MSE(Render(Gen(P), Ci), Mi) (1)

Then, the goal of our algorithm is to minimize the loss function and find the optimal
parameters of the generator P∗ and cameras C∗1 , ..., C∗N . This brings us to the general
reconstruction pipeline shown in Figure 2.

Figure 2. The mesh reconstruction cycle consists of a procedural generator that creates a mesh from
the input parameters, which is then rendered as a mask. A loss function is calculated between it
and the reference image mask. The loss value is then returned to the optimizer that updates the
parameters of the generator and cameras.

This general reconstruction pipeline looks simple and straightforward, especially since
it treats the procedural generator as a black box function that is able to create a 3D model
from a set of parameters. This fact allows us to use any existing procedural generator
without knowing how it actually works internally, at least in theory, since we still need
to know which input parameter values are correct and which are not. However, in this
case we need to implement a gradient-free optimization method for the loss function (1),
which can pose a serious problem. Later, we will describe the cases where we have to
use this general pipeline and show how to make optimization for it relatively efficient.
However, in most cases we can make a few changes to this pipeline that will allow for
gradient-based optimization. This requires gradients of the loss function with respect to the
scene parameters. Using a differentiable renderer to render the mask and calculate the loss
function, we can obtain dLoss

dC , where C represents camera parameters. Our implementation
can use Mitsuba 3 [60] or our own differentiable renderer for this purpose. Obtaining dLoss

dP
(where P represents the procedural model parameters) is a little more complicated. Given
the chain rule and suppose that the mask does not depend on the model normal vectors
and texture coordinates, we obtain:

dLoss
dP

=
dLoss
dpos

∗ dpos
dP

(2)

The equation term dLoss
dpos (where pos is the vector of all vertex positions) also comes

from the differentiable renderer, and the Jacobian dpos
dP must be obtained from the procedural

generator. The whole process of optimizing the silhouette loss function is shown in Figure 3.
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Creating a procedural generator capable of calculating dpos
dP is the most important part of this

improved pipeline. We would call a generator that can do this a differentiable procedural
generator. In the next section we describe the differentiable procedural generators created
for this work and the challenges they pose. In fact, most non-trivial generators can only be
partially differentiable, and we address this issue in the third section, where the optimizer
is described in details.

Figure 3. Gradient-based reconstruction pipeline. Rendering and loss function calculation are performed
by a differentiable renderer. Assuming that the rendered mask depends only on the vertex positions pos,
and not on the normals and texture coordinates, we obtain dLoss

dC and dLoss
dpos . Then, to obtain dLoss

dP , the

procedural generator must be able to compute the Jacobian dpos
dP alongside with the mesh (pos, norm, tc).

3.3. Differentiable Procedural Generators

The previous section introduced a pipeline that treats the procedural generator as
a black box function capable of producing a mesh (pos, norm, tc) (where pos, norm, and
tc are position vectors, normals, and texture coordinates) and the Jacobian dPos

dP from the
input vector P. However, it is impossible to create a generator for nontrivial objects that
functions as a smooth differentiable function due to the discrete properties of the objects,
such as, for example, the number of floors in a building. For consistency, we still include
these parameters in the vector P, assuming that dPos

dPd
= 0 for each parameter Pd of this type.

In this work, we have developed two different procedural generators: one for dishes,
and the other for buildings. Both generators were created from scratch using the automatic
differentiation library CppAD [61], which helps us to obtain the required derivatives from
computational graphs without explicitly calculating them in our code. The dish generator
is an example of a simple and easily differentiable algorithm that has only one binary
parameter. It has axial symmetry. It defines a spline that forms the boundary of the object
along the Y axis. Further generation of the 3D object occurs by rotating the spline around
the Y axis. Algorithm 1 shows the high-level pseudocode for the dish generator.

Algorithm 1 Differentiable dishes generator.

P—input parameters, LOD—level of detail
Result: Mesh = {posi, normi, tci}—3D model
splineParams, hasHandle, handleSplineParams← P
spline← getSpline(splineParams)
transo f ormSpline(spline, LOD)
baseModel ← getBaseModel(spline, LOD)
if hasHandle then

handleSpline← getSpline(handleSplineParams)
transo f ormHandleSpline(handleSpline, LOD)
handleModel ← getHandleModel(handleSpline, LOD)
return baseModel ∪ handleModel ▷ Concatenate lists of vertices

end if
return baseModel
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In contrast, the building generator was designed to demonstrate the capability of
our method to handle generators with multiple discrete features. Algorithm 2 shows its
pseudocode. The building generator has several symmetry planes: XY and YZ. At the
same time, there is also symmetry relative to the XZ plane, but only at the level of one
floor because in general the floors are not the same. Thus, the symmetry of the object is
intensively used to reduce the dimension of the phase space and makes possible high-
quality optimization of the object from a single image. Both generators are capable of
producing a significant variety of models based on input parameters (Figure 4) and are
capable of creating different levels of detail for each model (Figure 5).

Algorithm 2 Differentiable buildings generator.

P—input parameters, LOD—level of detail
Result: Mesh = {posi, normi, tci}—3D model
windowParams, balconyParams, roo f Params, structureParams, f loors, sections← P
windowModel ← getWindow(windowParams, LOD)
balconyModel ← getBalcony(balconyParams, LOD)
wallPatch← getWallPatch(windowModel, balconyModel, structureParams)
roo f Section← getRoo f (roo f Params, LOD)
buildingModel ← ∅
for i← 1, sections do

sectionModel ← ∅
for j← 1, f loors do

sectionModel ← sectionModel ∪moveFloor(wallPatch, j)
end for
sectionModel ← sectionModel ∪ roo f Section
buildingModel ← buildingModel ∪moveSection(roo f Section, i)

end for
return buildingModel

Figure 4. Some examples of models created with dish (top row) and building (bottom row) generators.



Symmetry 2024, 16, 184 10 of 22

Figure 5. Levels of detail for dish (top row) and building (bottom row) generators.

3.4. Gradient-Based Optimization

Even the simple procedural models demonstrated in the previous section prove to
be extremely difficult to optimize functions for due to two factors: the large number of
nonlinear internal dependencies within the generator and heterogeneous input parameters,
some of which are integers with a limited set of possible values. Our first attempt at 3D
reconstruction using procedural generators [8] relied on a specific implementation of a
genetic algorithm [62] to find solutions without gradient calculation, but only for a limited
set of problems. The ability to calculate the gradient of the loss function expands the range
of available optimization methods. However, it is not yet possible to obtain derivatives
with respect to parameters reflecting discrete features of the procedural model.

To address this issue, we implemented a memetic algorithm [63], which combines a
genetic algorithm with gradient-based optimization. The algorithm starts with an initial
population—a set of initial parameter values obtained from predefined presets. Each
preset consists of input parameters representing an adequate model (as shown in Figure 4).
The memetic algorithm performs random mutations and recombination of the original
population in addition to gradient-based optimization. It works with a medium-sized
population of a few hundred individuals and uses tournaments to match partners for
crossover. At each iteration, all but a few best individuals from the old population are
replaced by new ones. Although this process requires several hundred iterations, it can
be performed with low levels of detail and low rendering resolution. To further improve
quality, the solution obtained by the memetic algorithm is used as an initial approximation
for a subsequent round of gradient-based optimization with a higher level of details and
higher rendering resolution. The results at each step are shown in Figure 6.

Figure 6. Results of model reconstruction after each optimization step. From left to right: reference
image, genetic algorithm with rendering resolution 128 × 128, and gradient descent with resolution
256 × 256 and 512 × 512, respectively.
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3.5. Non-Differentiable Case

Using differentiable rendering and procedural generation allows us to use gradient
descent and makes optimization much easier, even with integer input parameters that should
be optimized differently. However, some types of procedural generators are not suitable for
the described pipeline. Modern systems for automatic plant modeling, such as [43,64,65],
focus on simulating the growth process and the influence of the environment on it. This kind
of simulation is crucial for a more realistic result, but at the same time it makes the creation
process more random and less stable. We implemented a generator based on the work [43]
and found that even a tiny change in the input parameters for it can lead to a significantly
different tree structure. The overall tree shape remains the same, but the exact location of
the individual branches changes. In this case it is extremely difficult to obtain meaningful
gradients using automatic differentiation. The same problem appeared to some extent in
the much simpler rule-based generator [66]. So, tree modeling shows the limitations of the
differentiable reconstruction approach, but it is still possible to perform reconstruction using
the general pipeline (Figure 2). Since we cannot obtain the gradients of the loss function in
this case, we used a genetic algorithm from our previous work. A special loss function was
also used for the reconstruction of tree models.

3.5.1. Tree Similarity Function

We define a loss function between the generated tree model and the reference image based
on the tree similarity function and an optional set of regularization multipliers (factors).

Loss = TSim ∗∏
c∈C

min(c, cre f )

max(c, cre f )
(3)

The tree similarity value is obtained by comparing the reference image with the
impostors of the generated tree model. To facilitate this comparison, semantic masks are
used, in which each pixel is assigned one of three categories: branch, foliage, or background.
One method for obtaining such a mask from the source image is to use a neural network,
as discussed in [67]. In simpler cases, the mask can be derived solely from the color of
the pixel, with green representing the leaves and brown or gray representing the branches
and trunk. The reference and generated images are divided into 20–30 narrow horizontal
stripes, for each of which the following are determined:

• [ai, di]—crown borders;
• [bi, ci]—dense crown borders (>75% leaf pixels);
• Bi—percentage of branch pixels;
• Li—percentage of leaf pixels.

According to the ratio Bi/Li, each stripe belongs to either the crown or the trunk, see
Figure 7. By comparing the parameters ai, bi, ci, di, and the ratio Bi/Li for each stripe of the
reference image and the generated image, the tree similarity value (TSim) can be calculated.

Figure 7. Original image, semantic mask, visualization of division into stripes. Brown stripes
correspond to the trunk, green stripes correspond to the crown. The vertical lines inside each stripe
are the values ai, bi, ci, and di, respectively.
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To guide the optimization process, regularization factors
min(c,cre f )

max(c,cre f )
are introduced.

These multipliers are determined based on the minimum and maximum values of certain
characteristics, such as the number of vertices in the branch graph, height and width,
average density of branches and leaves, and average leaf size. Although none of these
characteristics are mandatory, it is recommended to specify the number of vertices in
the branch graph to avoid searching for a solution among models with excessively high
geometric complexity, which could slow down the search process.

3.5.2. Genetic Algorithm Implementation

The previously mentioned similarity function is used as the objective function in the
genetic algorithm. The proposed method consists of several elementary genetic algorithms,
and the best result is selected from each elementary algorithm. Each elementary genetic
algorithm involves the initialization of a population and its evolution over a fixed number
of generations. In a tree-like population structure, each node represents an elementary
genetic algorithm. The algorithms on the leaves of the tree start with a randomly initialized
population, while all other algorithms form a population consisting of the fittest individuals
obtained from the child nodes. Figure 8 presents the proposed tree-like population structure,
where the final result is a small set of the best species at the top level.

Figure 8. Tree-like population structure. An elementary GA of the first level starts with random
genes, and GA of level i takes the best species from the last two populations of the previous level.
The final result of the whole algorithm is a small set of the best species at the topmost level.

All elementary genetic algorithms follow the same strategy based on the objective
function f (x). At the beginning of each iteration, the half of the population with the lowest
fitness value is eliminated. The remaining individuals contribute to the creation of a new
generation, with new individuals being created through a one-dot crossover using parents
selected from the remaining species of the previous generation. Choice of parents uses
fitness proportional selection, meaning that the probability of an individual being chosen
as a parent is proportional to its fitness value. The objective function and fitness function
are calculated for representatives of the new generation. The mutation chance Mchance and
the percentage of genes that change Mgenes are constant.

To increase the chance of meaningful mutations, we introduce a specific mutation pro-
cedure, which is shown in the Algorithm 3 below. It is based on pre-collected information
about the entire family of objective functions F = f (x) (each function corresponds to its
own input image and set of properties) on a large sample with random input parameters x.
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Algorithm 3 Genome quality estimation and mutation.

ϵ = 0.001, B = 16, steps = 500 - hyperparameters
function Q(i, j)

using pre-collected pairs Π = {(G, f (G))}
Pi,j = #{ f (G) > ϵ|G ∈ Π, j−1

B < Gi <
j
B}/#Π

P0 = #{ f (G) > ϵ|G ∈ Π}/#Π

Qi,j = sign(Pi,j − P0) ∗
max(Pi,j ,P0)

min(Pi,j ,P0)

return Qi,j
end function
function QUALITYEST(G, N)

Q = ∑N
i=1 Q(i, ⌊Gi ∗ B⌋)

return Q
end function
function MUTATION(G, N, Mgenes) ▷ genome, genome size, number of genes to mutate

Gbest ← G
Qbest ← QualityEst(G, N)
for step← 1, steps do

k1, k2, ...kMgenes = SelectRandomGenes(N, Mgenes)
G‘← G
for all k ∈ k1, k2, ...kMgenes do

G‘k = G‘k + Normal(0, σ2)
end for
Q‘← QualityEst(G‘, N)
if Q‘ ≥ Qbest then

Qbest ← Q‘
Gbest ← G‘

end if
end for
return Gbest

end function

4. Results

We implemented our method as a standalone program written mostly in C++. Dif-
ferentiable procedural generators were written from scratch and the CppAD library [61]
was used for automatic differentiation inside the generators. We also implemented a differ-
entiable renderer for fast rendering of silhouettes during optimization. We used our own
differentiable renderer to reconstruct the models shown here, and Mitsuba 3 [60] was only
used for forward rendering of final images.

Our method requires defining a set of hyperparameters, such as the number of ren-
dering stages, the size of rendering image, the number of iterations for each stage, and the
parameters of genetic or memetic algorithm. We used basically the same set of hyperpa-
rameters for all of our results. For reconstruction with differentiable generators, we set
the number of optimization stages to 3 or 4 with a rendering resolution 128 × 128 for the
first stage and doubled it in each subsequent stage. The memetic algorithm is used only
in the first stage with a limit of 5000 iterations; in subsequent stages the Adam optimizer
is used with 200–300 iterations per stage. For reconstruction with non-differentiable tree
generators, we used only one stage with a rendering resolution of 256 × 256 and a limit
of 50 thousand iterations for the genetic algorithm. The whole optimization process takes
about 10–20 min with the differentiable procedural generator and up to 30 min with the
non-differentiable one. These timings were measured on a PC with AMD Ryzen 7 3700X
and NVIDIA RTX 3070 GPU. In general, the implemented algorithm does not place high
demands on used hardware. In the experiments described in this section, the program took
up no more than 2 gigabytes of RAM and several hundred megabytes of video memory.
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Our implementation of the algorithm can work on any relatively modern PC or laptop with
a GPU.

4.1. Single-View Reconstruction Results

Figure 9 shows the results of single-view reconstruction for different types of objects
using the corresponding procedural generators. For building reconstruction, we provided
window masks that were created manually, while all other masks were generated auto-
matically. As expected, all presented models are free of usual reconstruction artifacts, are
detailed, and have adequate texture coordinates, allowing textures to be applied to them.
Reconstruction of the cups and building with differentiable generators results in models
very close to the reference ones. The main quality limitation here is the generator itself.
The quality of reconstruction with the non-differentiable tree generator is lower because
the genetic algorithm struggles to precisely find the local minimum. However, the overall
shape of the tree is preserved and the model itself is quite good. Table 1 shows the time
required for reconstruction of different models.

Figure 9. Reconstruction results for different types of objects. Differentiable procedural generators
were used for cups and buildings and the non-differentiable one for trees. All models were rendered
with some default textures whose texture coordinates were provided by the procedural generator.

Table 1. Reconstruction time for different models.

Model Cup Bowl Building Tree

time (min) 16.3 11.5 19.1 29.0
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4.2. Comparison with Other Approaches

We compared the results of our work with various state-of-the-art image-based 3D
reconstruction approaches to demonstrate that our method avoids the problems common
to all these algorithms. Four algorithms were used for comparison: InstantNGP, DiffSDF,
Pixel2Mesh, and Triplane Gaussian Splatting (TGS). InstantNGP [38] is a modern approach
to multi-view reconstruction from NVidia based on the idea of neural radiance fields.
It provides the same reconstruction quality as the original NeRF [1], but is an order of
magnitude faster. However, it still requires dozens of input images and provides models
with various visual artifacts, mainly arising from the transformation of the radiance field
into a mesh. DiffSDF [30] is a method that represents a scene as a signed distance field
(SDF) and utilizes differentiable rendering to optimize it. It requires fewer input images
than NeRF-based approaches and achieves better results for opaque models due to better
surface representation. In [30], SDF values are stored in a spatial grid with relatively small
resolution. This limits the method’s ability to reconstruct fine details. Pixel2Mesh [12]
is a deep neural network capable of creating a 3D mesh from a single image, that does
not require training a separate model for every class of objects. TGS [22] is today’s most
advanced and powerful approach to single-view 3D reconstruction that highly relies on
generative models, such as transformers. It achieves better quality and works faster than
previous methods. However, it represents the reconstructed model as a set of 3D Gaussians
that cannot be used directly in most applications.

Figure 10 demonstrates the results of different algorithms on a relatively simple cup
model. It shows that Pixel2Mesh failed to reconstruct the shape of the model from a
single image, while methods that use multiple images achieved results comparable to
ours. However, they both struggled to represent the concave shape of the model and
produced meshes with significant artifacts. In Figure 11, some of the reconstructed meshes
are visualized in wireframe mode. The diffSDF algorithm achieved a slightly better IoU
value but took significantly more time. It also created a model with a rough surface, which
will require refinement before use. The result of TGS is the closest to ours in terms of both
IoU and required input data. However, the result of this method is a set of Gaussians, not a
3D mesh. The authors did not consider the problem of converting them into a mesh in [22]
but, by analogy with NeRF-based methods, it can be assumed that such a conversion will
reduce the quality of the result. The Gaussian representation makes it much more difficult
to use or modify the resulting model because it is not supported by 3D modeling tools and
rendering engines.

For more complex objects, such as trees and buildings, the ability to reconstruct
the object’s structure becomes even more important. For most applications, such as, for
example, video games, the reconstructed meshes need to be modified and augmented
with some specific data. This becomes much easier if the initial mesh contains some
structural information. In this particular case, it is necessary to distinguish between
triangles related to different parts of a building or to leaves/branches of a tree in order to
be able to meaningfully modify these models. Figure 12 shows the results of reconstruction
of buildings and trees using different approaches.

We also tested our approach on more models from the given classes and compared it
with differentiable SDF reconstruction [30], InstantNGP [38], Pixel2Mesh [12], and TGS [22]
algorithms. The diffSDF was tested with 2, 6, and 12 input images, and InstantNGP
with 16 and 64 input images. The results of the comparison on the studied models are
presented in Table 2. Although our method performs worse on average than the multi-view
reconstruction algorithms diffSDF and InstantNGP in terms of the IoU metric, it is able
to produce better models even if it fails to achieve high similarity to the reference images.
This can be demonstrated using the tree models; the last two columns of the table and the
bottom row in Figure 12 correspond to them. The IoU values for our approach are less
than those for the diffSDF algorithm, and diffSDF produced a tree model that was closer in
overall shape to the original, but failed to reconstruct the expected structure of the tree. So,
our model is more suitable for many applications, especially considering that procedural
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models are easier to refine. Moreover, diffSDF does not create a triangle mesh but rather a
3D grid with values of reconstructed signed distance function. This representation of the
scene imposes serious limitations, for example, it cannot be used with 2D texture maps.

Figure 10. Results using our method compared to differentiable SDF reconstruction [30], Instant-
NGP [38], Pixel2Mesh [12], and TGS [22]. We measured the average silhouette intersection over union
(IoU) between the reference and reconstructed models for 64 uniformly distributed viewpoints. Our
approach is much better than Pixel2Mesh single-view reconstruction and produces results comparable
to multi-view reconstruction methods.
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Figure 11. Comparison of wireframe meshes. Our method is able to represent a model with fewer
triangles and fewer tiny and deformed polygons, allowing it to be used directly in applications.

Figure 12. The building and tree are reconstructed using our approach, differentiable SDF recon-
struction [30], InstantNGP [38], Pixel2Mesh [12], and TGS [22]. InstantNGP failed to reconstruct the
tree model and a mesh cannot be obtained from the radiance field it provided.

Table 2. Average IoU (the larger the better) on different models. “–” is used in cases where the method
failed to reconstruct a model that is even remotely similar to the reference mesh. See Section 4.2 for
more details of algorithms used for comparison.

Algorithm cup_1 cup_2 Building tree_1 tree_2

diffSDF (2 views) [30] 0.787 0.422 0.728 0.665 0.746
diffSDF (6 views) [30] 0.960 0.502 0.967 0.876 0.911
diffSDF (12 views) [30] 0.984 0.669 0.979 0.900 0.941

InstantNGP (16 views) [38] 0.858 0.878 0.940 – –
InstantNGP (64 views) [38] 0.905 0.930 0.971 – –

pixel2Mesh (1 view) [12] 0.788 0.513 0.626 – –
TGS (1 view) [22] 0.939 0.925 0.965 0.711 0.695

our approach (1 view) 0.948 0.972 0.886 0.509 0.573
our approach (2 views) 0.951 0.978 0.890 0.527 0.559
our approach (4 views) 0.962 0.979 0.869 0.571 0.613

4.3. Multi-View Reconstruction

We mainly focused on single-view reconstruction in this work but our approach
also supports multi-view reconstruction. However, although we have found that adding
a new view does not usually result in a significant increase in quality, it can be useful
for more complex objects or texture reconstruction. Figure 13 shows how increasing the
number of views used for reconstruction affects the result for the relatively simple cap
model. Although increasing the number of input images has almost no effect on quality, it
significantly increases the running time of the algorithm, as shown in the Table 3.
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Table 3. Average IoU (the larger the better) and reconstruction time for cap model with our method
using different numbers of input views.

Input Views 1 View 2 Views 4 Views 8 Views

IoU 0.972 0.978 0.979 0.981
time (min) 16.3 18.8 24.1 31.1

Figure 13. Results of multi-view 3D reconstruction using our approach. A single viewpoint is
sufficient for mesh reconstruction, and adding more viewpoints does not provide much improvement.
However, a larger number of viewpoints allows for accurate texture reconstruction.

4.4. Differentiable Renderer

During the reconstruction process, most of the time is spent on differentiable rendering.
The rendering is performed in silhouette mode, which means that we only obtain vertex
position gradients from edge of the silhouette. This can be performed by Mitsuba 3 [60],
but there is no need to use such a powerful tool for this simple task. Instead, we created our
own implementation of a differentiable renderer that uses edge sampling [68] to calculate
the required derivatives. Figure 14 shows that its use does not reduce the quality of
reconstruction, but almost doubles its speed. Table 4 shows the difference in rendering
speed for our renderer and Mitsuba 3.

Figure 14. Images: reference (left), reconstructed using Mitsuba 3 (center), and our own differentiable
renderer (right).
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Table 4. Differentiable rendering time (in ms) for the same mesh (about 3000 vertices) with different
rendering resolutions using our differentiable render and Mitsuba [60].

Rendering Resolution 128 × 128 256 × 256 512 × 512

our differentiable render 6.7 23.2 87.1
Mitsuba 3 137.1 211.5 512.9

4.5. Discussion

Our work provides a bridge between two groups of methods: (1) inverse procedural
modeling [44–47] and (2) approaches based on differential rendering [6,23–26]. Methods
of the first group take 3D models as input, while methods of the second group calculate
gradients from an input image for some conventional representation of a 3D model (mesh,
SDF, etc.). Our approach allows us to directly obtain procedural generator parameters from
the image. Unlike conventional meshes and SDF, procedural models are easy to edit and
animate because a procedural model by its construction has separate parts with a specific
semantic meaning. This allows our method to reconstruct 3D models that can later be
modified and used by professional artists in existing software. This also opens up great
opportunities for AI-driven 3D modeling tools such as text-to-3D or image-to-3D.

5. Conclusions

In this work, we present a novel approach to 3D reconstruction that estimates the
input parameters of a procedural generator to reconstruct the model. In other words, we
propose an image-driven approach for procedural modeling. We optimize the parameters
of the procedural generator so that the rendering of the resulting 3D model is similar to
the reference image or images. We have implemented several differentiable procedural
generators and demonstrated that high-quality results can be achieved using them.

We also proposed an alternative version of the same approach that does not rely on
the differentiability of the generator and allows it to achieve decent quality using already
existing non-differentiable procedural generators. We have implemented an efficient
strategy to find the optimal parameter sets for both versions of the proposed approach. For
a small number of input images, our methods perform better than existing approaches and
produce meshes with fewer artifacts.

Our approach works well with the certain class of objects that the underlying pro-
cedural generator can reproduce. The differentiable procedural generators used in this
work are created from scratch and are limited in their capabilities. We consider that the
main limitation of our method is that it is currently not capable of reconstructing arbitrary
models. We also foresee challenges in scaling our approach to more complex procedural
models with hundreds or thousands of parameters. Thus, the following topics for future
work can be proposed:

1. Development of a universal procedural generator with more flexible models, capable
of representing a wide class of objects;

2. Creation of a method for automated generation of the procedural generator itself, for
example Large Language Models;

3. Optimization or reconstruction of more complex models through increasing the num-
ber of parameters for optimization by an order of magnitude (this is a problem with
genetic algorithms).

Overall, in future research we plan to extend our approach to a wider class of objects.
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