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Abstract: With the increasing expansion of power systems, there is a growing trend towards active
distribution networks for decentralized power generation and energy management. However, the
instability of distributed renewable energy introduces complexity to power system operation. The
active symmetry and balance of power systems are becoming increasingly important. This paper
focuses on the characteristics of distributed resources and under-frequency load shedding, and a
coordinated operation and control strategy based on the rapid adjustment of energy storage power
is proposed. The characteristics of various controllable resources are analyzed to explore the rapid
response capabilities of energy storage. The energy storage types are categorized based on the
support time, and the final decision is achieved with power allocation and adjustment control of the
energy storage system. Additionally, a comprehensive control strategy for under-frequency load
shedding and hierarchical systems is provided for scenarios with insufficient active support. The
feasibility of the proposed model and methods is verified via a multi-energy system case.

Keywords: active power balance; active power symmetry; coordinated control; flexible resource;
frequency stability; under-frequency load shedding

1. Introduction

Active symmetry and balance refer to the active power balance of a power system
between the supply and demand sides [1]. With the rapid development of distributed
renewable energy, active distribution networks have become a trend in the evolution of
power systems [2]. However, the uncertainty and volatility of distributed renewable energy
make the operation of power systems more complex and unstable [3,4]. Concurrently, with
the integration of clean energy and distributed controllable loads, the inertia resources and
regulation capabilities in the power system are weakened, resulting in a decrease in the
system’s frequency response capability and an increased risk of frequency decline [5,6].
Hierarchical coordinated control of controllable resources is crucial for achieving the stable
operation and decarbonization of high-penetration renewable energy grids [7]. Research on
decentralized resource active support and automatic load-shedding coordination control
methods in response to the risk of frequency decline holds significant importance [8,9].

Distributed generation, energy storage systems, controllable loads, and other decen-
tralized resources have distinct characteristics and control capabilities [10,11]. They provide
frequency support measures to the power system, effectively reducing the risk of frequency
decline and enhancing the stability and reliability of the power system [12,13]. Meanwhile,
different types of controllable resources exhibit varying response speeds and control capa-
bilities. The energy storage system has the advantage of flexible output control [14,15]. It is
both a key part of the energy Internet and a key support for dealing with large-scale renew-
able energy grid integration problems and increasing the economy and reliability of the
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power grid [16,17]. Based on this, the study investigates a hierarchical coordinated control
approach for controllable resources in the context of active distribution networks [18,19].
It fully utilizes controllable resources to enhance the flexibility and response speed of the
power system [20,21].

Coordination control primarily involves the coordinated control of distributed energy
resources, energy storage, loads, and under-frequency load shedding within microgrids.
Its essence lies in considering the output characteristics of different types of resources,
coordinating output control to achieve power balance. Ref. [22] proposes the use of constant
power and constant voltage–frequency control strategies. Ref. [23] achieves coordinated
control of the microgrid by monitoring the operating state of the microgrid side and the
main power grid through upper-level central control. Ref. [24] sets distributed energy
source units in maximum power tracking mode, engages energy storage units in peak
shaving during load peaks, and charges them at a constant power to the upper limit of the
state of charge during non-peak periods. While various energy source units are coordinated
to fully leverage their respective advantages, they can also flexibly coordinate with under-
frequency load shedding. Ref. [25] optimizes the allocation of automatic generation control
(AGC) commands based on the prediction of perturbation signals as well as information
about the state of charge (SOC) of energy storage in combination with a grid adaptive
search algorithm on the basis of subdividing the continuous control period. Ref. [26] takes
flywheel energy storage as the research object and ensures that the remaining capacity is
always in the optimal output state while considering its SOC recovery. Ref. [27] proposes
control strategies for two cases of adaptive frequency regulation and self-restoration of
charge state for energy storage to realize the coordination between battery storage and
thermal power units under the premise of energy storage battery charge state management.

There are many studies on load-shedding emergency control systems. However,
separate emergency control tends to over-cut or under-cut phenomena triggering negative
effects. Additionally, the current coordination control framework often directs energy
storage systems to maintain maximum power output during emergency situations. If the
storage SOC is insufficient, it would be difficult for its output power to reach the desired
value. This is equivalent to a new power deficit under an emergency situation. At this time,
it is difficult to maintain the stability of the system with the coordination system of energy
storage and load shedding. Therefore, this paper proposes a coordinated control strategy
based on the flexible output of energy storage. Based on the flexible output characteristics
of the energy storage unit, the fluctuation of renewable energy is suppressed, and the means
of low-frequency load shedding is combined to accomplish the coordinated control of the
system as a whole. The main contribution of this paper has three main aspects. Firstly, an
energy storage output control measure based on different SOC states is designed to provide
leaner control of energy storage in the face of different demands. Secondly, a mathematical
model of load slicing based on differential evolutionary algorithm is proposed to compress
the amount of load slicing under the premise of satisfying the power balance. Thirdly,
a complete coordinated control framework is proposed, which takes into account the
characteristics of multiple flexible resources, achieves the minimum fluctuation curve in
the steady state, and cooperates with the load shedding to complete the emergency control
in the emergency state.

The rest of this paper is organized as follows. Section 2.1 considers the characteristics
of the different types of controllable resources involved in the frequency response. Addi-
tionally, the energy storage control strategies with emergency load-shedding optimization
models for different SOC states are presented in Section 2.2. Section 2.3 presents the hierar-
chical coordinated control approach for systems containing multiple types of controllable
resources. The case study is carried out in Section 3. Finally, conclusions and discussion are
drawn in Section 4.
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2. Materials and Methods
2.1. Controllable Resources Participating in Frequency Response
2.1.1. Inertia Analysis

First, the difference between the synchronous generator in traditional thermal power
unit and frequency regulation capabilities of energy storage was analyzed. The total inertia
of the generator and prime mover in traditional thermal power units accelerates through the
imbalance of applied torque, and the motion equation and inertia expression are expressed
by (1) and (2):

J
dω

dt
= Tm − Tc (1)

J =
∫

r2dm (2)

where J is the moment of inertia, ω is the rotor angular velocity, r is the rotational radius,
and m is the mass of the rigid body.

The inertia time constant of the synchronous machine is defined as the ratio of the
rotor kinetic energy to the rated capacity under the unit’s rated speed operation, which is
expressed by (3).

H =
EK
SB

=
Jω2

n
2SB

(3)

From Equations (1)–(3), it can be observed that the synchronous machine inertia J is
related to the generator rotor mass m. The inertia of each generator’s synchronous machine
is fixed and cannot be changed. Synchronous machines can only provide inertia during
operation, meaning inertia is provided only when the system is in operation. The inertia
value remains fixed and unchangeable, resulting in a discrete characteristic of system inertia
due to start–stop states, as shown in Table 1.

Table 1. Comparison between synchronous inertia and virtual inertia.

Aspect Synchronous Machine Inertia Energy Storage Virtual Inertia

Inertia Continuity Fixed and discrete Continuous and designable
Inertial Response Time Instantaneous action Some inherent delay

Source of Response Energy Mechanical energy from synchronous machines Electrical energy from energy storage

Due to the power shortage causing a decline in system frequency, energy storage em-
ploys droop control to mimic the output characteristics of synchronous machines. When the
grid frequency deviates from the rated frequency, the energy storage output is determined
based on the difference between the measured frequency and the reference frequency. The
mathematical expression for the increase in energy storage output, ∆PESS1, is expressed
by (4):

∆PESS1 = −Kep∆ f (4)

where Kep is the proportionality control coefficient set for the energy storage system.
In addition to droop control, energy storage enhances inertial response capability

through additional virtual inertia control, adjusting the active power output to mitigate the
system’s power imbalance. In this case, the increase in active power output from energy
storage, ∆PESS2, can be expressed as (5):

∆PESS2 = −Ked
d∆ f
dt

(5)

where Ked is the virtual inertia control coefficient set for the energy storage system.
The virtual inertia capability of energy storage is related to the coefficient and time

constant size and is a designable parameter, thus exhibiting a continuity different from
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synchronous machine inertia. In summary, the comparison between synchronous machine
inertia and virtual inertia is shown in Table 1.

2.1.2. Comparison of Frequency Regulation Capability

To maintain system frequency stability, synchronous generators need to reserve net
space for frequency regulation backup. Refs. [28,29] indicate that thermal power units
require less than 3 s. In addition to the action delay, the complete response time for
synchronous machine frequency regulation is about 10 to 20 s [30,31], no longer able to
meet the frequency regulation requirements of current low-inertia systems.

Compared to synchronous generators, energy storage exhibits faster regulation speed,
and its output is theoretically adjustable across the full power range, albeit typically with
certain amplitude limitations. During the frequency response process, energy storage de-
vices also experience some delay. The comparison of their frequency regulation capabilities
is illustrated in Figure 1. T1 and T2 are the times used to increase the output of the storage
unit and the thermal unit, respectively; Tdel1 and Tdel2 are the control delays of the storage
unit and the thermal unit, respectively.
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Figure 1. Comparison of frequency regulation capability between energy storage units and thermal
power units.

According to [32], energy storage can output active power to the grid within 140 ms
after triggering, and the UK specifies that the response delay of energy storage under
significant disturbances is generally not more than 0.5 s. Following the triggering action,
the complete response time of energy storage does not exceed 2 s [33]. Therefore, energy
storage possesses a rapid frequency regulation characteristic, enabling it to provide stable
and swift support in low-inertia systems. A comparison of the frequency regulation-related
characteristics between synchronous generators and energy storage is presented in Table 2.

Table 2. Comparison of synchronous machines and energy storage frequency regulation capabilities.

Aspect Synchronous Machine Frequency Regulation Energy Storage Frequency Regulation

Response Delay Not more than 3 s Not more than 0.5 s
Complete Response Time 10~20 s Not more than 2 s

Output Power Coupling Mechanical energy from synchronous machines
should not exceed governor response limits

Theoretically full power range
adjustment, generally with certain limits

Based on the aforementioned characteristic analysis, the proposed controllable re-
source hierarchical coordinated control strategy in this study utilizes energy storage as the
primary support for rapid power adjustment, supplemented by thermal power support,
and derives relevant constraints.
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2.1.3. Emergency Load Shedding Based on the Differential Evolution Algorithm

In emergency conditions, when other emergency control resources act rapidly but can-
not prevent a rapid frequency decline, load-shedding measures are needed for emergency
power support in the system [34].

With the objective of minimizing the cost of load shedding, the cost factor of the load
is set as a function that increases with the load-shedding ratio. The final objective function
for emergency load shedding is expressed as (6): minF =

NL
∑

j=1
cjρjPLj ,0

cj = φ(ρj) = k jρj + bj

(6)

where F is the total cost of load shedding; NL is the number of load-shedding stations; cj is
the load-shedding cost factor for each station; φ is the function representing the variation
of the cost factor with the load-shedding ratio, approximating the cost factor as a linear
function; kj is the growth coefficient of the cost factor; bj is the base cost factor; pj is the
shedding ratio; and PLj,0 is the active load of the shedding station at steady state before
direct current (DC) blocking.

The research on the emergency load-shedding model is relatively mature, and its
constraint conditions can be summarized by (7):

η f ≥ ζ f
ηv ≥ ξv
ηI ≤ ζ I
ηδ ≤ ξδ

0 ≤ ρj ≤ ρj,max

(7)

where ηf, ηv, ηI, and ηδ are transient frequency, voltage security index, line current security
index, and rotor angle security index; ξf, ξv, ξI, and ξδ are the set limits for transient
frequency, voltage, current, and rotor angle constraints; and ρj,max is the maximum load-
shedding ratio.

The differential evolution algorithm (DE) is more suitable for real-valued optimiza-
tion problems. The main operations of the DE algorithm include the generation of the
initial population, mutation, crossover, and selection, with the main parameters being the
population size N, evolution generation T, mutation factor K, and crossover factor C. The
optimization process is described as follows.

Generate a population randomly within the range of control variables, as shown in (8):

X0 = {x1, x2, x3, · · · , xN}
xi = (xi,1, xi,2, xi,3, · · · xi,L), xi,j ∈ [0, ρj,max]

(8)

where N is the number of individuals within the population, L is the number of genes, i.e.,
the number of cut-loading control variables, and each individual x within the population
corresponds to a cut-loading scheme.

In the mutation stage, the parent individuals generate mutated individuals through a
mutation strategy, as shown in (9):

vg+1
i = xg

r1 + K(xg
r2 − xg

r3) (9)

where g is the current generation; i, r1, r2, and r3 are distinct random integers within
the [1, N] interval; vi is the generated mutated individual; and K is the mutation factor.
Equation (9) is commonly referred to as random mutation, and another faster converging
optimal mutation method is expressed by (10):

vg+1
i = xg

best + K(xg
r1 − xg

r2) (10)
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where xg
best is the optimal individual of the g-th generation population.

The crossover operation involves pairwise crossover between the generated mutated
individuals and the parent individuals, as shown in (11):

ug+1
i,j =

{
vg+1, if randj ≤ CR or j = rand(j)

xg, otherwise
(11)

where CR is the crossover factor, ranging between [0, 1]; ui is the individual after crossover;
randj is a random number within [0, 1]; and rand(j) is a random integer between 1 and L,
ensuring that at least one control variable is updated.

The selection operation involves pairwise comparison between the individuals gener-
ated after crossover and the parent individuals. The more optimal individual is selected to
proceed to the next generation of evolution, as shown in (12):

xg+1
i =

{
ug+1

i , i f f (ug+1
i ) ≤ f (xg

i )
xg

i , otherwise
(12)

where f is the individual evaluation function, i.e., the final established objective function
for emergency load-shedding Equation (6).

2.2. Considering Different Operating States of Energy Storage Control Strategies
2.2.1. Energy Output Control Strategies

Currently, commonly used methods for energy storage participating in power system
frequency control include virtual inertia control and virtual droop control. Both control
methods simulate the role played by traditional generators in the grid. In the event of a
sudden change in system frequency, increasing system inertia and adjusting active power
in proportion to frequency deviation can achieve the goal of frequency control. The energy
storage unit adopts constant-power double-loop control, which achieves the effect of
quickly adjusting the charging and discharging power by adjusting the reference value.
The two controls with transfer functions are shown in Figure 2.
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Figure 2. The control scheme diagram of energy storage: (a) Virtual droop control; (b) PQ double-
loop control.

The transfer functions of traditional frequency control units’ active power output
∆PG(s) in relation to frequency deviation ∆f (s), energy storage system’s active power
output ∆Pb(s) in relation to frequency deviation ∆f (s), and the disturbance of load ∆PL(s),
∆PG(s), ∆Pb(s), ∆f (s) are expressed by (13).

∆PG(s) = −KgGen(s)Ggov(s)∆ f (s)
∆Pb(s) = −KbGb(s)∆ f (s)
∆ f (s) = ∆PG(s)+∆Pb(s)−∆PL(s)

Ms+D

(13)

The relationship between load and frequency fluctuations can be summarized as (14).

∆ f (s) =
−∆PL(s)

Ms + D + KbGb(s) + KgGen(s)Ggov(s)
(14)
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In the novel power system with coordinated control of multiple resources, the ad-
vantage of rapid charging and discharging of energy storage is utilized to mitigate the
fluctuations of wind and photovoltaic fields, as shown in (15):

Pess = Pre f − Pw − PPV (15)

where Pref is the expected grid-connected power of the renewable energy generation system,
and Pw and PPV are the uncontrollable original power of the wind and photovoltaic fields.
When Pref > Pw + PPV, the energy storage system releases its stored energy to make up the
difference between them. When Pref < Pw + PPV, the energy storage system absorbs excess
power. The principle is illustrated in Figure 3.
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Figure 3. The schematic diagram of minimum output fluctuation based on energy storage.

With the increasing proportion of renewable energy, the system’s inertia level de-
creases, and there is a higher probability of major power deficits or faults such as DC
blocking. In the face of a rapid decline in frequency during major fault events, it is neces-
sary for energy storage to transition to operating modes that rapidly increase output for
power support.

In emergency situations, it is common practice to immediately adjust energy storage to
its maximum output for power support. While this control strategy supports the system’s
power deficit in milliseconds, it does not consider the state of each energy storage unit. This
oversight can lead to a decrease in power due to insufficient SOC after the unit’s action,
resulting in new power deficits and worsening the system’s frequency stability.

To address this issue, we propose a classification control strategy for energy storage
under emergency conditions, categorizing energy storage into four classes based on its
state, as illustrated in Figure 4.
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Figure 4. The classification of energy storage based on different discharge times.
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First, set the indices for the shortest discharge time (Tmin) and remaining discharge
time (Tsy). The shortest discharge time (Tmin) represents the minimum time required
for energy storage to provide power support in emergency situations. The remaining
discharge time (Tsy) indicates the sustainable time that energy storage can output power at
the maximum rate.

In emergency situations, grid operators are more concerned about the supporting
power and supporting time of the units, hence the establishment of two indicators, Tmin and
Tsy. Under this setup, for an energy storage unit corresponding to the shortest discharge
time tmin, SOCmin is shown in Equation (16):

SOCmin =
Pdis,ttmin

ηdus
(16)

where Pdis,t is the unit output required by the operator and ηdus is the discharge efficiency
of energy storage. Similarly, corresponding to the remaining discharge time tsy, SOCsy is
shown in Equation (17).

SOCsy =
Pdis,ttsy

ηdus
(17)

Different degrees of power deficits require energy storage units to provide varying
levels of output support. Under different conditions, even for the same energy storage unit
at the same SOC state, the corresponding Tmin and Tsy may vary.

If the energy storage capacity is sufficient, and the Tsy is longer than Tmin, it falls into
the first category of energy storage. If the Tsy is shorter than Tmin, indicating insufficient
SOC, and the system is in a charging state, it is categorized as the second type of energy
storage. If the system is in a standby or discharge state and the SOC is too low to provide
power support, it falls into the fourth category of energy storage, and charging or discharg-
ing is stopped. Otherwise, it is categorized as the third type of energy storage, providing
power support by reducing output.

For the first type of energy storage, discharge at the maximum output to support the
power deficit is required by the system within a specified time, as is shown in (18):

Pdis,1(t) =
SOC(t − 1)− Smin

∆t
ηdus (18)

where Pdis,1(t) is the output power of the first type of energy storage, SOC(t − 1) is the
remaining energy at time t − 1, and Smin is the minimum remaining charge allowed when
energy storage outputs at the current power.

For the second type of energy storage, when it is in the charging state, it is considered
as a load. It should immediately switch to standby mode to reduce power demand, and
based on its SOC, it transitions to the third or fourth type of energy storage.

For the third type of energy storage, the power output should be reduced to support
until the shortest discharge time. Equation (19) designs the attenuation coefficient based on
the SOC state and power support requirements to derive the output power:

Pdis,3(t) = Pdis,1

√
SOC(t − 1)− SOChigh

SOCmax − SOChigh
= λPdis,1 (19)

where Pdis,3(t) is the output power of the third type of energy storage, SOChigh is the
minimum charge corresponding to the allowable power support of energy storage, SOCmax
is the maximum charge of energy storage, and λ is the attenuation coefficient.

In summary, the energy storage control strategy is illustrated in Figure 5.
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2.2.2. Adaptive Constraint Handling in Under-Frequency Load Shedding
Optimization Strategy

The optimal solution to the emergency load-shedding optimization problem lies on
the boundary of the feasible region. Evaluating individuals based on feasibility rules
may overlook some better individuals near the boundary, hindering the discovery of
optimal solutions.
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By adopting the ε-adaptive constraint-handling method, we consider superior but
infeasible solutions in the optimization process, building upon the feasibility rules. Let
xi and xj be two individuals under consideration, with xi > xj indicating that xi is superior
to xj. Setting ε as the threshold for constraint violation, the specific comparison criteria are
as follows:

Criterion 1: If both solutions meet the constraint requirements, select the one with
lower control cost, as shown in (20).

xi > xj ⇔ F(xi) ≤ F(xj) (20)

Criterion 2: If one solution satisfies the constraints while the other does not, first
calculate the constraint violation degree G(x) for each solution. If the constraint violation
degree is less than ε, choose the load-shedding plan with lower control cost. If the violation
degree exceeds ε, select the solution that satisfies the constraint requirements according
to (21).

xi > xj ⇔
{

G(xi) < ε, G(xj) = 0, F(xi) ≤ F(xj)
G(xi) = 0, G(xj) > ε

(21)

The degree of violation of the constraint is defined as (22):

G(x) = ∑
∆g
gξ

(22)

where ∆g is the constraint violation value of the cut-load scheme and gζ is the constraint
limit value.
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Criterion 3: If both solutions fail to satisfy the constraints, and the constraint violation
degrees for both are less than ε, choose the individual with lower cost. In other cases, select
the individual with a smaller constraint violation degree, as shown in (23).

x1 > x2 ⇔


G(x1) ≤ ε, G(x2) ≤ ε, F(x1) ≤ F(x2)

G(x1) ≤ ε, G(x2) > ε
ε < G(x1) < G(x2)

(23)

Compared to the feasibility rule, criteria 2 and 3 retain the load-shedding plans with
small constraint violation degrees and low control costs, thereby increasing the exploration
of the feasible domain boundaries. ε is adaptively adjusted based on the overall violation
of constraints, incorporating infeasible individuals in the early stages and setting ε to 0 in
the later stages of evolution, as shown in (24):

E(t) =
{

E(0)e−αt/Te , t ≤ Te
0, t > Te

(24)

where α is the decreasing coefficient and Te is the truncation algebra, which is transformed
to the feasibility law when taking 0.

In summary, the load-shedding optimization process based on the improved differen-
tial evolution algorithm is outlined as follows:

(1) Generate a large number of load-shedding plans randomly within the [0, ρmax] space,
serving as the initial set S.

(2) Filter samples that satisfy frequency constraints. Utilize a uniform removal approach
to explore and determine approximate lower (Plow) and upper (Pup) limits of load-
shedding amounts. Choose plans in S that meet Plow < Pup to compose the sample
set Sf.

(3) Filter samples that satisfy current or voltage constraints. Calculate the sensitivity of
all load-shedding stations and identify the station Ls with the maximum sensitivity.
Explore and determine its approximate lower limit with the maximum sensitivity.
Explore and determine its approximate lower limit (Plow,L). Choose plans in the
sample set Sf that meet the requirements to form the sample set S1.

(4) Randomly select N plans from S1 to form the initial population X0.

The diagram of adaptive constraint handling in under-frequency load-shedding opti-
mization strategy is shown in Figure 6.

2.3. Hierarchical Coordinated Control Method for Systems with a High Proportion of Renewable
Energy Sources

After the large-scale integration of renewable energy sources into the power grid, it is
necessary to conduct research on the hierarchical coordinated control of various controllable
resources for more intelligent control. The goal is to fully leverage the advantages of
different types of resources. During normal operation, when a certain type of resource is
affected, other resources can quickly coordinate and complement, thereby improving the
economic efficiency and reliability of the power system.

Compared to traditional systems, the coordinated control problem in multi-energy
systems exhibits complex nonlinear characteristics. To fully utilize the power support
from thermal power generators and the flexibility of energy storage systems, a coordinated
control scheme is proposed. This scheme divides the system into two hierarchical levels,
each containing different energy resources.

Figure 7 illustrates the coordinated control block diagram after the introduction of
load shedding. In each unit, wind and photovoltaic units, unable to support reactive power,
adopt fixed DC voltage and reactive power control to maintain zero reactive power output.
Active power support is adjusted based on the daily wind and solar conditions.
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where PPV is the actual output power of the photovoltaic panels; k is the power tempera-
ture coefficient, commonly set to −0.3%/°C [36]; GC and TC denote real-time solar radiation 
intensity and surface temperature of the photovoltaic modules, respectively; PW(t) is the 
actual output power of the wind turbine at time t; vr is the rated wind speed; vin and vout 
are the cut-in and cut-out wind speeds of the wind turbine, respectively; and Pr is the rated 
power of the wind turbine. 

The core of the upper-level model is to determine the wind and solar output. The 
energy storage unit adopts constant-power dual-loop control to achieve rapid adjustment 
of charging and discharging power by adjusting reference values. Under steady-state con-
ditions, the rapid response capability of energy storage is utilized to follow the fluctua-
tions of wind, solar, and load, with the goal of optimizing the output of the wind–solar–
storage integrated system to minimize net load fluctuations. Based on this, the output of 
the energy storage unit is set to (27): 

Figure 7. The hierarchical coordinated control system framework for systems with a high proportion
of renewable energy sources.
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Currently, widely used wind and photovoltaic generation models are expressed by
(25) and (26) [35]:

Ppv = PSTC
GC

GSTC
[1 + k(TC − TSTC)] (25)

PW(t) =


0, v(t) ≤ vin, v(t) ≥ vout

Pr
ν(t)−vin
vr−vm

, vin ≤ v(t) ≤ vr

Pr, vr ≤ ν(t) ≤ vout

(26)

where PPV is the actual output power of the photovoltaic panels; k is the power temperature
coefficient, commonly set to −0.3%/◦C [36]; GC and TC denote real-time solar radiation
intensity and surface temperature of the photovoltaic modules, respectively; PW(t) is the
actual output power of the wind turbine at time t; vr is the rated wind speed; vin and
vout are the cut-in and cut-out wind speeds of the wind turbine, respectively; and Pr is the
rated power of the wind turbine.

The core of the upper-level model is to determine the wind and solar output. The
energy storage unit adopts constant-power dual-loop control to achieve rapid adjustment
of charging and discharging power by adjusting reference values. Under steady-state con-
ditions, the rapid response capability of energy storage is utilized to follow the fluctuations
of wind, solar, and load, with the goal of optimizing the output of the wind–solar–storage
integrated system to minimize net load fluctuations. Based on this, the output of the energy
storage unit is set to (27):

PBESS = Pess = Pre f − Pw − PPV (27)

where Pess is the power deviation value, Pref is the expected grid-connected power of the
renewable energy unit system, and Pw and PPV are the uncontrollable original power of the
wind and photovoltaic fields. When Pref > Pw + PPV, indicating insufficient output from
the renewable energy unit, PBESS takes a positive value, representing discharging power,
releasing stored energy to compensate for the gap between them. When Pref < Pw + PPV,
indicating excess output from the renewable energy unit, PBESS takes a negative value,
representing charging power, absorbing the surplus power.

The lower-level system is primarily responsible for the power support of thermal
power and energy storage units. Under steady-state conditions, it provides output support
for thermal power units based on the equivalent load curve transmitted from the upper-
level system. The output of participating controlled thermal power units is determined,
yielding the final results.

In emergency situations, the power deficit is determined based on frequency re-
sponse. Utilizing the emergency output control strategy of energy storage under different
classifications as described in Section 2.2.1, the output of the energy storage system is
determined. This involves a rapid response to adjust charging and discharging power to
achieve successful power support, serving the purpose of swiftly providing power assis-
tance. Thermal power, constrained by its response time, participates in primary frequency
control power restoration.

If, after reaching maximum output from the energy storage system, a significant
power deficit persists, load shedding is implemented. Simultaneously, the output of the
energy storage is adjusted, allowing the system to continue stabilizing. The amount of load
shedding is expressed by (28):

∆Psho.real(t) =
n

∑
t=1

[
PL(t)− PG(t)− Pp,w(t)− PBESS(t)

]
(28)
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where PL(t), PG(t), Pp,w(t), and PBESS(t) are the power at time t for load, thermal power,
renewable energy, and the energy storage system, respectively. The power supported by
the energy storage is expressed by (29):

PBESS(t) = Pdis,1(t) + Pdis,3(t) (29)

where Pdis,1(t) and Pdis,3(t) are the output of the energy storage units for the first and
third categories.

The system proposed coordinates control based on the flexible output of energy
storage. The performance is closely related to the SOC of the energy storage. Using the
emergency load-shedding amount to measure the performance of the system, let the index
be denoted as D, which can be expressed as (30):

D = ∆Psho.real(t)
∆Pmax

=
∆Pe−Pdis,1(t)−Pdis,3(t)

∆Pmax

==
∆Pe−(1+λ)

SOC(t−1)−Smin
∆t

∆Pmax
ηdus

(30)

where ∆Pmax is the maximum load-shedding capacity, ∆Pe is the power deficit of the
entire system excluding energy storage units, and λ is the attenuation coefficient. It can
be observed that as the SOC decreases, the value of D increases. When D is negative,
the system quickly adjusts output through energy storage to achieve stability control
without the need for load shedding, thus maintaining system stability. When D is a positive
number less than 1, the system initiates emergency load shedding for coordinated control
to achieve stability. When D is greater than 1, indicating that the power deficit exceeds the
maximum load-shedding capacity and SOC is too low to support stable control, the system
becomes unstable.

3. Case Studies
3.1. Introduction to the Algorithm

To validate the proposed strategy, a simulation model is constructed as illustrated in
Figure 8, where L1 and L2 represent active loads, and the distribution network operates
at a voltage of 10 kV and a frequency of 50 Hz, consisting of wind, solar, storage, and
synchronous generator units.
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Multiple scenarios were set up for comparative analysis to validate the effectiveness
of the proposed method.

Scenario 1: Load surge. Set load 2 to increase by 600 kW at 4 s into the simulation.
Scenario 2: Illumination perturbation. Introduce irradiance disturbance by setting

irradiance to decrease from 1000 to 500 at 4 s into the simulation, and then increase from
500 to 800 at 6 s.
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Scenario 3: Wind speed disturbance. Introduce wind speed disturbance by setting
wind turbine speed to decrease from 11 m/s to 8 m/s at 4 s into the simulation.

Scenario 4: Insufficient storage. Set the initial SOC of the storage system to 30%. When
the simulation reaches 4 s, decrease SOC to below 26%, simulating insufficient energy
storage and reducing output power.

Scenario 5: Continuous load increase, insufficient power support. Simulate a contin-
uous increase in load, resulting in insufficient power support and the system frequency
dropping below the lower limit.

Scenario 6: Load fluctuation (similar to Scenario 5), with coordinated control of
controllable loads.

3.2. Analysis of Different Scenarios

The frequency fluctuations of the system under the first four disturbance scenarios
are depicted in Figure 9. It can be observed that, in the face of different fluctuation
scenarios, the proposed strategy can effectively achieve coordination among various units
in a short period. This involves controlling energy storage tracking and thermal power
support, enhancing the integration of renewable energy sources, and stabilizing the system
frequency. Taking the scenarios of irradiance fluctuation and insufficient SOC in energy
storage as examples, the control strategies of different units under layered coordinated
control are analyzed based on their respective power outputs.
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The output variations of each unit are shown in Figure 10. It can be observed that,
under the scenario of fluctuating sunlight, the output curve of the photovoltaic unit changes
with the sunlight variation. The dual-loop controlled energy storage unit adjusts the
constant power output by changing the reference value, while the wind power unit shows
no fluctuations. The upper-level model optimizes the entire system to achieve the minimum
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net load. In this case, the lower-level model does not require adjustments to the thermal
power unit.

In the scenario of insufficient energy storage SOC, the energy storage unit is forced to
reduce its output power and cannot support the power deficit in the system. In this case,
the thermal power unit in the lower-level model receives instructions to increase power
support, with a response time slightly slower than that of the energy storage unit, but still
maintaining system frequency stability.
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Figure 9. The frequency response under different perturbations: (a) Load surge; (b) Illumination 
perturbation; (c) Wind speed disturbance; (d) Insufficient storage. 
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Figure 10. The change in output of each unit: (a) Illumination perturbation; (b) Insufficient storage. 
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to reduce its output power and cannot support the power deficit in the system. In this 
case, the thermal power unit in the lower-level model receives instructions to increase 

Figure 10. The change in output of each unit: (a) Illumination perturbation; (b) Insufficient storage.

Figure 11 illustrates the system response during an emergency situation when the
power support of units is insufficient due to a sudden load increase. In this scenario, for
rapid support, priority is given to the energy storage units to act first, slowing down the
frequency drop and raising the minimum frequency point. The wind and solar units remain
unchanged, followed by the thermal power units providing power support for primary
frequency regulation. From the power output variations of each unit Figure 11a, it can
be observed that during the three load spikes at 4 s, 5 s, and 6 s, the energy storage units
can quickly increase their output power to achieve the expected results. Energy storage
unit 1, with a higher SOC, rapidly increases power support during each disturbance.
Energy storage unit 2 operates in the third-class state, only increasing power support when
the system power support is insufficient, ensuring the supply time. This validates the
effectiveness of the proposed strategy. The thermal power unit responds slightly slower
than the energy storage unit when participating in power support. At 6 s, facing another
load increase, both types of energy storage cannot further increase power support as they
have reached their maximum discharge power. At this point, when the frequency drops
below 49.5 Hz, load-shedding measures are implemented, and the thermal power unit
subsequently provides power support. The load-shedding value is determined according
to Section 2.2, and in this study, nearly 0.4 MW is shed. Compared with the control without
load cutting measures, the stability of system is maintained at the cost of 0.4 MW.

Considering the scenario where the overall maximum output power of the units cannot
support the power deficit, load shedding is a crucial control measure for system stability.
From the frequency comparison chart Figure 11b, it can be observed that after considering
load shedding, the original control method provides more stable system support in the
emergency situation after 6 s, highlighting the necessity of load shedding as a coordinated
control strategy.
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4. Discussion

In the trend of growing active distribution networks, this paper presents an innovative
study aimed at solving the layered coordinated control of controllable resources with auto-
matic load shedding in power systems. The characteristics of various controllable resources
are analyzed in order to employ adaptive control methods, and a layered coordinated
control strategy is proposed. Simulation results show that the controllable resources are
effectively coordinated and controlled in various scenarios.

Significantly, this paper highlights the critical role of energy storage systems in active
distribution networks. Classification of energy storage based on power support time and
the corresponding control strategy are developed, which finally realizes the output control
of the energy storage unit. The proposed method exploits the rapid response characteristics
of energy storage systems, enhancing the stability of the overall control strategy.

Lastly, this study introduces coordinated control with load shedding on the basis of
coordinated control, providing a feasible solution for frequency dropping again. This com-
prehensive research framework not only proposes effective solutions for the coordinated
control of power systems but also provides innovative insights to cope with challenges
like recurrent frequency drops. These research findings are promising to provide robust
support for the stability and reliability of power systems.
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Nomenclature

The main symbols appearing in this paper are defined below.
SOC State of charge
AGC Automatic generation control
ES Energy storage
BESS Battery energy storage system
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PV Photovoltaic system
DE Differential evolution
DC Direct current
Tmin Shortest discharge time
Tsy Remaining discharge time
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