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Abstract: There are deep historical connections between symmetry, harmonic functions, and stratified
sets. In this article, we prove an analog of the removable singularity theorem for bounded harmonic
functions on stratified sets. The harmonic functions are understood in the sense of the soft Lapla-
cian. The result can become one of the main technical components for extending the well-known
Poincaré–Perron’s method of proving the solvability of the Dirichlet problem for the soft Laplacian.
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1. Introduction

There are deep historical connections between symmetry, harmonic functions, and strat-
ified sets. A beautiful paper [1] by G. W. Mackey gives a systematic overview of the inter-
play of harmonic analysis and symmetry. At the same time, stratified sets often appear as
quotients under symmetry group actions (see, for instance, [2]).

In 1926, R. Courant considered (see [3]) the oscillations of an elastic medium of a
composite type: a membrane with an attached grid of strings. After a timelapse, at the end
of the 1950s, M. Schechter published a series of articles that can be attributed to this subject
too (see, for instance, [4]). Systematic studies in the field began at the end of the 1980s
and were related to vibrations of string systems that have the form of a one-dimensional
stratified set (in other words, a geometric graph, quantum graph, or topological network;
see, for instance, [5]). Finally, in the 1990s, the first generalizing attempts were made to
construct the theory of differential equations describing the oscillations or equilibria of
intricate structures composed of elastic continua of arbitrary dimension that adjoin each
other like cells in a cell complex. Such a structure is called a stratified set.

Significant progress was made in the field of elliptic second-order partial differential
equations on stratified sets. The progress was achieved due to new principles for model-
ing such structures based on the concept of stratified measure and differential operators
induced by this measure (see [6]).

The description of removable singularities for solutions of partial differential equations
in a given functional space traditionally attracts significant attention from researchers.
The classical result in this direction is the theorem claiming the removability of a relatively
closed set of zero (harmonic) capacity for a bounded harmonic function on a domain of
Euclidean space Rn.

In this paper, we prove an analog of this theorem for bounded harmonic functions in
the sense of the “soft Laplacian” on stratified sets with flat interior strata.

The main result asserts that for a bounded harmonic function on an n-dimensional
stratified set satisfying the “strong sturdiness condition”, a relatively closed set is removable
whenever its intersection with the closure of any n-dimensional stratum has capacity zero
in that stratum.
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This result can become one of the main technical components for extending the well-
known Poincaré–Perron’s method of proving the solvability of the Dirichlet problem for a
soft Laplacian. Previously (see [7]), this could only be done in the two-dimensional case.

This paper is further organized as follows: In Section 2, we collect preliminary information,
including the definitions of a stratified set (Section 2.2); stratified measure (Section 2.2); and basic
differential operators: gradient, divergence, and Laplacian (Section 2.3). In Section 2.4, we recall
the mean value theorem and Harnack’s inequality for harmonic functions on stratified sets.

In Section 3, we establish our main result, namely, the removable singularity theorem,
which is a straightforward consequence of Lemmas 1 and 2. The proof of Lemma 2 relies
on Lemma 3, which has a rather long technical proof.

Section 4 is entirely devoted to the proof of Lemma 3. In Section 4.1, we present
estimates for the gradient of a harmonic function on a stratified set (Theorem 4). These
estimates generalize the corresponding results for harmonic functions in Euclidean space.
In Section 4.3, we prove Theorem 5, claiming that the gradient of a harmonic function has
zero flux through any admissible sphere. For harmonic functions in Euclidean space, this
fact is a direct consequence of the divergence theorem, but in the setting of stratified sets,
its proof becomes delicate in view of possible unboundedness of the gradient of a harmonic
function near strata of dimension ≤ n − 2, where n is the dimension of the stratified set
under consideration. The proof of Lemma 3 is finished in Section 4.3, and this completes
the proof of the main result.

In the closing Section 5, we formulate the conclusions of the research.

2. Preliminaries

In this section we collect preliminary information concerning stratified sets, basic
differential operators, and harmonic functions on stratified sets. In a more general setting,
the definitions for stratified set and related notions can be found in [8,9]. To a great extent,
these definitions are inspired by [10].

2.1. Stratified Sets

In this paper, by a stratified set Ω, we mean a connected subset of the Euclidean space
RN that consists of finitely many pairwise disjoint connected (boundaryless) submanifolds
called strata. The set of all strata is denoted by Σ, while the strata themselves are denoted
by σkj:

Ω =
⋃

σkj∈Σ
σkj.

The first subscript indicates the dimension of a stratum, while the second enumerates
the strata of the given dimension. We impose the following requirements on the mutual
disposition of strata:

• The closure σkj of every stratum is compact and the boundary ∂σkj = σkj \ σkj is the
union of some strata in Σ;

• For any two strata σkj, σmi ∈ Σ, the intersection of their closures σkj ∩ σmi is either
empty or consists of some strata in Σ.

Henceforth, the relation σkj ≺ σmi designates that σkj ⊂ ∂σmi. In this case, we say that
the strata are contiguous (to one another).

We use the interior metric d on Ω, where d(X, Y) is defined as usual to be the infimum
of the lengths of curves through X, Y ∈ Ω in Ω. It is easy to see that the metric topology
agrees with the topology induced in Ω by the inclusion Ω ⊂ RN . All topological notions
below refer to this topology.

Also, we represent Ω as the union Ω◦ ∪ ∂Ω◦ (“interior” and “boundary”), in which Ω◦

is an open connected subset of Ω composed of some strata in Σ and satisfies the equality
Ω◦ = Ω; the remaining part ∂Ω◦ = Ω \ Ω◦ is then the topological boundary of Ω◦.

In this paper, all interior strata are assumed to be flat in the following sense: every stratum
σkj ⊂ Ω◦ is a subdomain of a k-dimensional affine subspace of RN .
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2.2. Stratified Measure

We call a set ω ⊂ Ω µ-measurable if every intersection σkj ∩ ω is measurable with
respect to the k-dimensional Lebesgue measure on σkj. It is easy to see that the set MΩ of
all µ-measurable sets is a σ-algebra on Ω. The stratified measure µΩ on Ω (more precisely on
MΩ) is defined as

µΩ(ω) = ∑
σkj∈Σ

µk(ωkj),

where µk(ωkj) is the k-dimensional Lebesgue measure of the set ωkj = ω ∩ σkj. The
measurability of a function f : Ω → R is defined routinely: f is µ-measurable if all
Lebesgue sets L f (c) = {X ∈ Ω : f (X) ≤ c} belong to MΩ for c ∈ R. It is easy to see that
the Lebesgue integral of a µ-measurable function over a µ-measurable set ω reduces to
the sum ∫

ω

f dµΩ = ∑
σkj∈Σ

∫
ωkj

f dµk.

We frequently omit Ω in the notation µΩ, hoping that the stratified set under consideration
is uniquely identified by the context.

2.3. Gradient, Divergence, and Laplacian

Henceforth, by C⃗1(Ω◦), we mean the space of tangent vector fields F on Ω◦ whose
restrictions F⃗|σki to the strata σki ⊂ Ω◦ belong to the spaces C1(σkj).

The divergence of a vector field F⃗ ∈ C⃗1(Ω) at a point X ∈ σkj ⊂ Ω◦ is defined to be

∇ · F⃗(X) = ∇k · F⃗(X) + ∑
σk+1i≻σkj

F⃗(X + 0 · ν⃗i) · ν⃗i,

where the summation is carried out over all (k + 1)-dimensional strata σk+1i contiguous to
σkj. Here, ∇k on the right-hand side denotes the operator of the conventional k-dimensional
divergence applied to the restriction F⃗|kj of F⃗ to σkj, ν⃗i is the unit inward normal to σkj in
σk+1j at X, and F⃗(X + 0 · ν⃗i) is the limit of F⃗(Y) as Y ∈ σk+1i tends to X inside σk+1i ≻ σkj
in the direction of νi. See Figure 1 for an illustration.

Figure 1. Unit normals.

The so-defined divergence is a genuine analog of the classical one. It can be shown that
as in the ordinary setup, the divergence ∇ · F⃗(X) is the density of the flux of the vector field
F⃗ at X with respect to the stratified measure µ defined in the previous section. Furthermore,
for F ∈ C⃗1(Ω◦), we have the following stratified analog of the divergence theorem (see [6];
the sign “−” is caused by the choice of the inward normal):∫

Ω◦
∇ · F⃗ dµ = −

∫
∂Ω◦

F⃗ν dµ, (1)

where for X ∈ σkj ⊂ ∂Ω◦:
F⃗ν(X) = ∑ F⃗(X + 0 · νi) · νi
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with the summation taken over all σk+1i ≻ σkj not lying in ∂Ω◦.
For a sufficiently smooth scalar function u, its gradient ∇u is a tangent vector field (in

this case, ∇u is simply the collection of the gradients of the restrictions of u to the strata). It
would be rather natural to define the Laplacian on a stratified set as ∆u = ∇ · (∇u). The so-
defined Laplacian is often called “hard”. At present, the qualitative theory of harmonic
functions in the sense of this Laplacian is developed weakly. Therefore, here, we restrict
ourselves to considering the so-called “soft” Laplacian.

We call a stratum σkj free if it is not contiguous to any stratum of greater dimension.
The soft Laplacian of a function u on Ω◦ is defined to be

∆̃u = ∇ · (p∇u), (2)

where p = 1 on the free strata and p = 0 on the remaining strata.
The explicit expression of the soft Laplacian at the points of free strata coincides with

the ordinary Laplacian (in the case of nonflat strata, with the Laplace–Beltrami operator).
If the stratum σkj is not free but there exist free strata σk+1i ≻ σkj, then at a point

X ∈ σkj, the expression of the soft Laplacian looks like

∆̃u(X) = ∑
σk+1i≻σkj

∇u(X + 0 · ν⃗i) · ν⃗i,

where the summation is taken over all free strata σk+1i ≻ σkj.
Finally, if a stratum is neither free nor contiguous to any free stratum of dimension

greater by one, then, in accordance with (2), on this stratum, we have ∆̃u = 0.
For an open set U ⊂ Ω◦, we denote C̃2

loc(U) as the set of functions u : U → R that
satisfy the following conditions:

• u is continuous on U;
• For every free stratum σni, the restriction u|U∩σni is twice continuously differentiable

and the gradient ∇u of the restriction has a continuous extension to each point
X ∈ U ∩ σn−1j of any interior stratum σn−1j contiguous to σni.

A function u : U → R is said to be harmonic on U if u ∈ C̃2
loc(U) and u satisfies

the equation
∆̃u(X) = 0 (3)

for all X ∈ U.

2.4. Mean Value Theorem and Harnack’s Inequality

The functions on a stratified set that are harmonic in the sense of the soft Laplacian
inherit a number of important properties of the ordinary harmonic functions. In particular,
analogs of the mean value theorem and Harnack’s inequality are valid.

We call a ball Br(X0) = {X ∈ Ω : d(X, X0) < r} admissible, or, in more detail, an open
ball of admissible radius r > 0 with center X0, if r is less than the distance from X0 to any stratum
whose closure does not contain X0. In this event, the set Sr(X0) = {X ∈ Ω : d(X, X0) = r} is
called an admissible sphere. Figure 2 shows several examples of admissible balls.

Figure 2. Admissible balls.
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Admissible balls and spheres obtain a natural stratification from Ω. For example,
for an admissible sphere S, all nonempty intersections σkj ∩ S, σkj ∈ Σ, are its (k − 1)-
dimensional strata. The stratified measure µS on a stratified sphere S is defined as for any
other stratified set (see Section 2.2).

Let Ω be a stratified set in which all free strata have the same dimension n. Then p = 1
on all n-dimensional strata and p vanishes on all other strata in Σ.

For X0 ∈ Ω◦ and an admissible sphere Sr(X0), consider the spherical mean:

M[Sr(X0)]u =
1

|Sr(X0)|p

∫
Sr(X0)

pu dµS,

where |Sr(X0)|p =
∫

Sr(X0)
p dµS.

Theorem 1 ([11]). (Mean Value Theorem) Let Ω be a stratified set whose free strata have the same
dimension; let u be a harmonic function on Ω◦; and let Sr(X0), X0 ∈ Ω◦, be an admissible sphere. Then:

M[Sr(X0)]u = u(X0).

Remark 1. A similar assertion is true with the means calculated over admissible balls in place of
admissible spheres.

Theorem 2 ([12]). (Harnack’s Inequality) Let Ω be a stratified set and let K be an arbitrary compact
set in Ω◦. Then, the inequality

sup
X∈K

u(X) ≤ C inf
X∈K

u(X)

holds for every nonnegative harmonic function u on Ω◦ with a constant C = C(K, Ω◦) independent
of u.

3. The Main Result

In this section, we establish our main result, namely, the removable singularity theorem.
It is a straightforward consequence of Lemmas 1 and 2. The proof of Lemma 2 relies on
Lemma 3, which has a rather long technical proof. The proof of Lemma 3 is postponed to
Section 4.

Given a stratified set Ω, we define Σk as the union of all interior strata of dimension k
and define Σk as the union of all interior strata of dimension at most k:

Σk =
⋃

j:σkj⊂Ω◦
σkj, Σk =

k⋃
l=0

Σl .

A stratified set Ω is called sturdy (see [12]) if all free strata have the same dimension n
and the set Ω◦ \ Σn−2 is connected. Let us call Ω strongly sturdy if all free strata have the
same dimension n and, for every X ∈ Σn−2, there exists an admissible ball Br(X) such that
the set Br(X) \ Σn−2 is connected.

The following theorem is the main result of the present article.

Theorem 3 (Removable Singularity Theorem). Let Ω be a strongly sturdy stratified set, S ⊂ Ω◦

be a relatively closed set whose intersection with the closure of any free stratum has harmonic capacity
zero in the affine space including the stratum, and u : Ω◦ \ S → R be a bounded harmonic function.
Then, u has a harmonic extension to all of Ω◦.

The theorem is a straightforward consequence of the next two lemmas.

Lemma 1. Under the conditions of Theorem 3, the function u extends to a bounded harmonic
function on Ω◦ \ Σn−2.
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Lemma 2. Let Ω be a strongly sturdy stratified set of dimension n and u : Ω◦ \ Σn−2 → R be a
bounded harmonic function. Then, u has a harmonic extension to all of Ω◦.

Remark 2. The strong sturdiness condition is essential.

As an example, consider a two-dimensional set Ω composed of two planar triangles
with one common vertex σ01 and no other points in common (see Figure 3). Set ∂Ω◦ = ∅,
i.e., Ω◦ = Ω. The function u, which is equal to 0 on one triangle and to 1 on the other, is
harmonic on Ω \ σ01, but fails to have a harmonic extension to all of Ω.

Figure 3. Regarding Remark 2.

Proof of Lemma 1. It suffices to prove that for every point X0 ∈ Σn ∪ Σn−1 and any ad-
missible ball Br(X0), the restriction u|Br(X0)\S admits an extension to a bounded harmonic
function on Br(X0).

If X0 ∈ Σn, then the existence of a sought extension follows from the removability of a
relatively closed set of capacity zero for bounded harmonic functions on subdomains of Rn.
Therefore, suppose that X0 belongs to an (n − 1)-dimensional stratum σn−1 and let Br(X0)
be an admissible ball. Without loss of generality, we assume Ω to be the closed stratified
ball Br(X0) ∪ Sr(X0) in which Br(X0) serves as the interior and Sr(X0) as the boundary
(see Figure 4).

Figure 4. Stratified ball.

Let σn1, . . . , σnm be all strata contiguous to σn−1.
If we have exactly two strata, i.e., σn1 and σn2, then Br(X0) (with its interior metric) is

isometric to the usual Euclidean ball B of radius r in Rn; moreover, σn1 and σn2 go under
isometry into half-balls separated by the (n − 1)-dimensional disk that is the image of σn−1.
The function ũ corresponding to u under isometry is an ordinary harmonic function on
B \ S̃, where S̃ is the image of S ∩ Br(X0) under isometry. Applying the standard removable
singularity theorem to ũ, we obtain a harmonic extension of ũ to B. Executing the inverse
isometry, we obtain a harmonic extension of u to Br(X0).

If we have an odd number of strata, then we double their number by slightly rotating
the ball Br(X0) around σn−1 and extend u to the new strata by using this rotation.

Thus, we may assume that there are 2l strata in total, i.e., σnj, j = 1, . . . , 2l, that are
contiguous to σn−1. Again, we take a Euclidean ball B of radius r in Rn divided into two half-
balls B1 and B2 resting on an equatorial (n − 1)-dimensional disk D. Let J ⊂ {1, 2, . . . , 2l}
be an arbitrary collection of l distinct numbers and let J be the complementary collection.
Now, map σnj ∪ σn−1, j ∈ J, onto B1 ∪ D and map σnj ∪ σn−1, j ∈ J, onto B2 ∪ D isometrically
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so that the stratum σn−1 goes onto D. Let S̃ be the union of the images of (σnj ∪ σn−1) ∩ S
over all j under isometry. Translating u by isometry from σnj ∪ σn−1 to B1 ∪ D, we receive
functions uj, j ∈ J. Proceeding similarly, we also receive functions uj, j ∈ J. It is easily

seen that the function uJ , which is equal to ∑j∈J uj on (B1 ∪ D) \ S̃ and equal to ∑j∈J uj on

(B2 ∪ D) \ S̃ (notice that both the functions agree on the intersection of their domains), is
an ordinary harmonic function on B \ S̃. Applying to it the standard removable singularity
theorem, we obtain a harmonic extension of uJ to the whole ball B. Since this is true for
every collection J, easy combinatorics show that each individual function uj obtains an
extension rather than their combination. Returning to u, we obtain an extension of u to
the whole set σnj ∪ σn−1 for every j; furthermore, the resultant function is harmonic on the
whole ball Br(X0).

Proof of Lemma 2. Equation (3) imposes no conditions on the strata of dimension ≤ n − 2.
Thus, the lemma asserts, in fact, that u extends continuously to Ω◦.

We extend u from Ω◦ \ Σn−2 to Ω◦ by using spherical means. To this end, we state the
following lemma whose proof is postponed to the next section.

Lemma 3 (Equality of Means). Under the conditions of Theorem 3, for every X0 ∈ Ω◦ and any
admissible radii r1 and r2, the equality of means holds:

M[Sr1(X0)]u = M[Sr2(X0)]u.

Leaning on this lemma, we set

M(X) = M[Sr(X)]u, X ∈ Ω◦,

where r is any admissible radius.
Note that

u(x) = M(X) for X ∈ Ω◦ \ Σn−2.

Let us prove by induction on k decreasing from k = n − 1 to 0 that M(X) is continuous on
Ω◦ \ Σk−1. Then, M(X) gives us the sought after extension of u.

The induction base is trivial. Suppose that M(X) is continuous on Ω◦ \ Σk, k < n − 1,
and hence harmonic on Ω◦ \ Σk. Take X0 ∈ σk for a k-dimensional stratum σk ⊂ Ω◦. We
are to prove that

lim
X→X0

M(X) = M(X0). (4)

This justifies the induction step and, therefore, completes the proof of Lemma 2.
The proof of (4) is divided into Lemmas 4–6.

Lemma 4. lim
X→X0, X∈σk

M(X) = M(X0).

Proof. Let Xi ∈ σk, i = 1, 2, . . . , and Xi → X0 as i → ∞. Let Sr(X0) be an admissible sphere
and let BR(X0) be an admissible ball of a greater radius R > r. Since the points Xi lie on the
same stratum as X0, the translated spheres Sr(Xi) are admissible too and lie within BR(X0)
for large enough i. For Z ∈ BR(X0) \ Σn−2, define

ui(Z) = u(Z + (Xi − X0)).

The sequence ui converges pointwise to u and is uniformly bounded. Therefore,∫
Sr(X0)

pui dµS →
∫

Sr(X0)
pu dµS.

Hence,
M(Xi) = M[Sr(Xi)]u = M[Sr(X0)]ui → M[Sr(X0)]u = M(X),
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which finishes the proof of the lemma.

Lemma 5. m := lim inf
X→X0,X∈Ω\σk

M(X) = M(X0).

Proof. Choose Xi ∈ Ω \ σk so that Xi → X0 and M(Xi) → m. Let Lk be the k-dimensional
affine plane including σk. Let Yi be the projection of Xi to Lk. Since Xi → X0 and Yi → X0,
the balls Bri (Yi), ri = 2|Xi − Yi|, are admissible for large enough i (see Figure 5).

Figure 5. Regarding the proof of Lemma 5.

Since ri → 0, while m is the lower limit of M(X) at X0, it follows that

mi := inf
X∈Bri (Yi)\σk

M(X) → m as i → ∞. (5)

Indeed, for any ε > 0, there exists Zi ∈ Bri (Yi) \ σk such that

M(Zi)− ε < mi ≤ M(Xi).

Then
lim inf

i→∞
M(Zi)− ε ≤ lim inf

i→∞
mi, (6)

lim sup
i→∞

mi ≤ lim
i→∞

M(Xi) = m. (7)

Notice that Zi → X0 as i → ∞. Therefore,

lim inf
i→∞

M(Zi) ≥ m. (8)

Inequalities (6) and (8) imply the inequality

m − ε ≤ lim inf
i→∞

mi

which, by the arbitrariness of ε, yields

m ≤ lim inf
i→∞

mi. (9)

In turn, (9) and (7) imply the validity of (5).
Put

ui(X) := M(X)− mi, X ∈ Bri (Yi) \ σk.

Then, ui are nonnegative bounded functions that are harmonic on Bri (Yi) \ σk according to
the induction assumption; moreover, ui(Xi) → 0 as i → ∞.

Since all Yi and X0 lie on the same stratum, all (admissible) balls Bri (Yi) are similar to
one admissible ball Br(X0). Let Ti : Bri (Yi) → Br(X0) denote the corresponding similarity
transformation. Then,

Ti(Yi) = X0, dist(Ti(Xi), σk) = r/2, |Ti(Xi)− X0| = r/2.
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For Z ∈ Br(X0), define
ui(Z) := ui(T−1

i (Z)).

Then, ui are nonnegative bounded harmonic functions on Br(X0) \ σk.
Let H ⊂ Br(X0) \ σk be an arbitrary compact set. Since all points Ti(Xi) are at a positive

distance from the boundary of Br(X0) \ σk, there exists a compact set K ⊂ Br(X0) \ σk includ-
ing H, as well as all the points Ti(Xi). Taking it into account that ui(Ti(Xi)) = ui(Xi) → 0
as i → ∞ and applying Harnack’s inequality to the functions ui on Br(X0) \ σk and the
compact set K (it is here that we use the strong sturdiness condition of Ω), we conclude
that the functions ui converge uniformly to zero on K and, as a consequence, on H.

Since the compact set H can be taken arbitrarily close to σk and the ui are uniformly
bounded, the means of ui over the spheres with center X0 tend to zero. Indeed, let C be an
upper bound for the functions ui and let ε > 0 be arbitrary. For ρ > 0, set

σk(ρ) = {Z ∈ Br(X0) : dist(Z, σk) < ρ}.

Choose ρ so small that

|Sr/2(X0) ∩ σk(ρ)|p < ε|Sr/2(X0)|p/(2C).

Now, take the compact set
H = Sr/2 \ σk(ρ).

Choose N to have ui(Z) < ε/2, Z ∈ H, for i > N. Then, for i > N:

M[Sr/2(X0)ui] =
1

|Sr/2(X0)|p

{∫
H

pui dµS +
∫

Sr/2\H
pui dµS

}
<

1
|Sr/2(X0)|p

(
ε|H|p/2 + C|Sr/2(X0) \ H|p

)
≤ ε.

For Sri/2(Yi) = T−1
i Sr/2(X0), we obtain

M[Sri/2(Yi)]ui = M[Sr/2(X0)]ui → 0 (i → ∞).

Therefore, M(Yi) → m as i → ∞ because the spherical means of the functions M(X) and
u(X) coincide in view of the equality M(X) = u(X) for X ∈ Ω◦ \ Σn−2.

From Lemma 4, we also have M(Yi) → M(X0). Hence, m = M(X0).

Lemma 6. M(X0) = lim sup
X→X0,X∈Ω\σk

M(X).

For a proof, it suffices to apply Lemma 5 to the function −u, leaning upon the equality
lim inf(−u) = − lim sup u.

Lemmas 5 and 6 yield limX→X0 M(X) = M(X0). This and Lemma 4 imply (4), thus
finishing the Proof of Lemma 2.

4. Proof of Lemma 3

This section is entirely devoted to the proof of Lemma 3. In Section 4.1, we present
estimates for the gradient of a harmonic function on a stratified set (Theorem 4). These
estimates generalize the corresponding results for harmonic functions in Euclidean space.
In Section 4.2, we prove Theorem 5, claiming that the gradient of a harmonic function has
zero flux through any admissible sphere. For harmonic functions in Euclidean space, this
fact is a direct consequence of the divergence theorem, but in the setting of stratified sets,
its proof becomes delicate in view of possible unboundedness of the gradient of a harmonic
function near strata of dimension ≤ n − 2, where n is the dimension of the stratified set
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under consideration. The proof of Lemma 3 is finished in Section 4.3, and this completes
the proof of the main result.

4.1. Gradient Estimate

We need an estimate for the gradient of a harmonic function on a stratified set. In the
classical case when u is a bounded harmonic function on a domain G ⊂ Rn, we have the
following gradient estimate:

|∇u(X)| ≤ n
ρ(X)

sup
G

|u|,

where ρ(X) = dist(X, ∂G) (see, for instance, [13]). We prove a similar estimate in the
stratified setup.

Theorem 4 (Gradient Estimate). Let Ω be a stratified set whose free strata have the same dimen-
sion n and let u : Ω◦ \Σn−2 → R be a bounded harmonic function. Then, for every X ∈ Ω◦ \Σn−2,
the following estimate holds:

|∇u(X)| ≤ C
ρ(X)

sup
Ω◦\Σn−2

|u|,

where C = C(Ω) is a constant depending only on the structure of the stratified set Ω and
ρ(X) = dist(X, Σn−2 ∪ ∂Ω◦).

We first give an estimate over admissible balls.

Lemma 7. For every X0 ∈ Ω◦ \Σn−2 and any admissible ball Br(X0), the following estimate holds:

|∇u(X)| ≤ C
r

sup
Br(X0)

|u|, X ∈ Br/2(X0),

where C = C(Ω) is a constant depending only on the structure of Ω.

Proof. We use the same trick as in the proof of Lemma 1.
If X0 belongs to an n-dimensional stratum, then the required estimate follows from

the above-mentioned classical result. We, therefore, assume that X0 belongs to some
(n − 1)-dimensional stratum σn−1 and let Br(X0) be an admissible ball. Without loss of
generality, we consider Ω to be the closed stratified ball Br(X0) ∪ Sr(X0) in which Br(X0)
serves as the interior and Sr(X0) as the boundary (Figure 4).

Let σn1, . . . , σnm be all strata contiguous to σn−1.
If we have only two strata, namely, σn1 and σn2, then Br(X0) (with its interior metric)

is isometric to the ordinary Euclidean ball of radius r in Rn; moreover, under isometry,
the strata σn1 and σn2 go onto two half-balls separated by an (n − 1)-dimensional disk,
which is the image of σn−1. The function ũ corresponding to u under isometry is an
ordinary harmonic function on the Euclidean ball and the required estimate is valid for it.
By isometry, the required estimate holds for u too.

Proceeding as in the proof of Lemma 1, we may assume that we have 2l strata σnj,
j = 1, . . . , 2l, contiguous to σn−1. Repeating the construction from the proof of Lemma 1,
we take a Euclidean ball B of radius r in Rn divided into two half-balls B1 and B2 resting
on an (n − 1)-dimensional disk D. Next, for an arbitrary collection J ⊂ {1, 2, . . . , 2l} of l
distinct numbers and the complementary collection J, we obtain the functions uj on B1 ∪ D,
j ∈ J, and the functions uj on B2 ∪ D, j ∈ J, that correspond to the functions u|σnj∪σn−1 ,

j ∈ J, and the functions u|σnj∪σn−1 , j ∈ J, by isometry. Then, the function uJ , which is equal

to ∑j∈J uj on B1 ∪ D and equal to ∑j∈J uj on B2 ∪ D, is an ordinary harmonic function on B,
and for it, we have the required estimate. Since this is true for any J, easy combinatorics
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show that the sought estimate is valid for each function uj, j = 1, . . . , 2l, and for the function
u by isometry.

Another proof can be accessed by utilizing the Poisson integral representation in
admissible stratified balls centered at points of an (n − 1)-dimensional stratum.

The following lemma is geometrically quite evident.

Lemma 8. If X ∈ Σn, then dist(X, Σn−1 ∪ ∂Ω◦) is an admissible radius for X. There exists
α ∈ (0, 1] (depending on Ω) such that if X ∈ Σn−1, then αdist(X, Σn−2 ∪ ∂Ω◦) is an admissible
radius for X.

Proof of Theorem 4. Take X ∈ Ω◦ \ Σn−2 and

ρ = dist(X, Σn−2 ∪ ∂Ω◦).

If dist(X, Σn−1) < αρ/4, then there is an (n − 1)-dimensional stratum σn−1 and a
point X0 ∈ σn−1 such that X ∈ Bαρ/4(X0). Observe that dist(X0, Σn−2 ∪ ∂Ω◦) > ρ/2.
By Lemma 8, αρ/2 is an admissible radius for X0, and by Lemma 7,

|∇u(X)| ≤ 2C
αρ

sup
Bαρ/2(X0)

|u|.

If dist(X, Σn−1) ≥ αρ/4, then, by Lemma 8, αρ/4 is an admissible radius for X, and by
Lemma 7,

|∇u(X)| ≤ 4C
αρ

sup
Bαρ/4(X)

|u|.

Either way, we obtain the required estimate.

4.2. Gradient Flux

Theorem 5. Let Ω be a stratified set whose free strata have the same dimension n and let u:
Ω◦ \ Σn−2 → R be a bounded harmonic function. Then, ∇u has zero flux through any admissible
sphere Sr(X): ∫

Sr(X)
(p∇u)ν dµS = 0. (10)

Proof. If Br(X)∩ Σn−2 = ∅, then the conclusion of the lemma follows from the application
of the divergence theorem, which is expressed by (1), to the vector field p∇u ∈ C⃗1(Br(X)),
with the equality ∇ · (p∇u) = 0 taken into account.

Therefore, assume Br(X) ∩ Σn−2 ̸= ∅. Let

σd11, σd21, . . . , σd2 j2 , . . . , σdk1, . . . , σdk jk

be all strata whose closures contain X and dimensions do not exceed n − 2. Consider the
dimensions to increase:

d1 < d2 < · · · < dk ≤ n − 2.

Note that there is exactly one stratum, namely, σd11, of dimension d1, and X ∈ σd11.
Let 0 < ρ1 < r and

σd11(ρ1) = {Z ∈ Br(X) : dist(Z, σd11) < ρ1}.

Choose ρ2, 0 < ρ2 < ρ1, so that the sets

σd2 j(ρ2) = {Z ∈ Br(X) : dist(Z, σd2 j) < ρ2} \ σd11(ρ1)
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be pairwise disjoint for j = 1, . . . , j2 and do not intersect the strata σdi j, i > 2, that are not
contiguous to σd2 j.

Proceeding by induction, finally choose ρk, 0 < ρk < ρk−1, so that the sets

σdk j(ρk) = {Z ∈ Br(X) : dist(Z, σdk j) < ρk} \
⋃

i≤k−1,s

σdis(ρi)

are pairwise disjoint for j = 1, . . . , jk.
Set for l = 1, . . . , k

Σ(ρ1, . . . , ρl) =
⋃

i≤l,s

σdis(ρi)

and consider the stratified set

Pl =
(

Br(X) ∪ Sr(X)
)
\ Σ(ρ1, . . . , ρl)

with boundary

∂P◦
l =

(
Sr(X) \ Σ(ρ1, . . . , ρl)

)
∪

⋃
i≤l,s

Γl
dis,

where

Γl
dis = Γl

dis(ρ1, . . . , ρl) = {Z ∈ Br(X) : dist(Z, σdis) = ρi} \ Σ(ρ1, . . . , ρl).

Figure 6 shows what remains after erasing the “cylinders” σdk j(ρk) from the ball; in
three-dimensional space, the process of constructing Pl is not very diverse and might
involve only one or two steps that depend on the dimension of the stratum containing
the center of the ball. In this figure, the invisible part of the sphere is also included in the
boundary ∂P◦

l .

Figure 6. Regarding the construction of Pl .

Inducting on l decreasing from l = k to 0, let us prove that∫
∂P◦

l

(p∇u)ν dµ = 0, (11)

where dµ is the stratified measure on ∂P◦
l .

Take l = k. The set Σ(ρ1, . . . , ρk) represents a neighborhood of the set Σn−2 ∩ Br(X).
Then, p∇u ∈ C⃗1(P◦

k ), and the divergence theorem (see (1)) gives∫
∂P◦

k

(p∇u)ν dµ = 0,

which justifies the induction base.
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Assuming (11) is true, let us validate the equality for l − 1. We have

∂P◦
l =

(
∂P◦

l−1 \
⋃
s

σdl s(ρl)
)
∪

⋃
s

Γl
dls

.

Hence, ∫
∂P◦

l−1\
⋃jl

s=1 σdl s(ρl)
(p∇u)ν dµ =

jl

∑
s=1

∫
Γl

dl s

(p∇u)ν dµ, (12)

where the signs of the integrals on the right-hand side are chosen in accordance with the
fact that Γl

dls
is part of the boundary of σdls(ρl).

The next relations are justified below:

lim
ρl→0

∫
∂P◦

l−1\
⋃jl

s=1 σdl s(ρl)
(p∇u)ν dµ =

∫
∂P◦

l−1

(p∇u)ν dµ, (13)

lim
ρl→0

∫
Γl

dl s(ρ1,...,ρl)
(p∇u)ν dµ = 0. (14)

Applying them, we obtain the following from (12):∫
∂P◦

l−1

(p∇u)ν dµ = 0,

completing the validation of the induction step.
Since ∂P◦

0 = Sr(X), the equality (11) for l = 0 coincides with (10).
To finish the proof of the theorem, it remains to justify (13) and (14).
Since p = 1 on the strata of dimension n and p = 0 on the other strata, we have∫

∂P◦
l−1

(p∇u)ν dµ = ∑
j

∫
σnj∩∂P◦

l−1

(∇u)ν dµn−1, (15)

where the summation is over all n-dimensional strata whose closures contain X, and dµn−1

is the surface (n − 1)-measure.
By Theorem 4, the following estimate holds:

|∇u(Z)| ≤ C
dist(Z, Σn−2)

. (16)

The following lemma is rather obvious and we leave it without proof.

Lemma 9. Let Ld be a d-dimensional affine subspace ofRn, d ≤ n−2, and G be an (n−1)-dimensional
compact piecewise smooth surface in Rn, which is smooth in a neighborhood of the intersection
G ∩ Ld and is transversal to Ld. Then, the function

f (x) =
1

dist(x, Ld)

is integrable with respect to the surface (n − 1)-measure on G.

Note that for Z ∈ σnj:

1
dist(Z, Σn−2)

≤ ∑
i,s

1
dist(Z, Ldis)

,

where Ldis is the affine subspace including σdis, and dist(Z, Ldis) is the distance from Z
to Ldis inside Lnj. From (15) and (16) and Lemma 9, we then conclude that (p∇u)ν is
µ-integrable on ∂P◦

l−1. This proves (13).
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By analogy to (15), we have∫
Γl

dl s(ρ1,...,ρl)
(p∇u)ν dµ = ∑

j

∫
σnj∩Γl

dl s

(∇u)ν dµn−1, (17)

with the summation taken over the n-dimensional strata contiguous to σdls.
Fix a stratum σnj contiguous to σdl s and consider

φ(ρl) =
∫

σnj∩Γl
dl s(ρ1,...,ρl)

(∇u)ν dµn−1 =
∫

σnj∩Γl
dl s(ρ1,...,ρl)

∂u
∂ν

dµn−1. (18)

First, suppose that dl ≤ n − 3. In view of (16),

|φ(ρl)| ≤
∫

σnj∩Γl
dl s(ρ1,...,ρl)

C
dist(Z, Σn−2)

dµn−1. (19)

The following assertion is proven by straightforward calculations.

Lemma 10. Let Ld ⊂ Lm be a d-dimensional and an m-dimensional affine subspaces of Rn,
d ≤ m ≤ n − 2, let σd ⊂ Ld be a bounded open subset, and

Γ(ρ) = {x ∈ Rn : dist(x, σd) = ρ}.

Then, ∫
Γ(ρ)

1
dist(x, Lm)

dµn−1 = C(d, m, n)ρn−d−2µd(σd).

From (19) and Lemma 10, we obtain limρl→0 φ(ρl) = 0 when dl ≤ n − 3.
Now, we examine the case dl = n − 2. In this case, l = k and dk = n − 2. To simplify

the notations, we henceforth denote ρk by ρ, the stratum σnj by σn, the stratum σdks by σn−2,
and Γk

dks(ρ1, . . . , ρk) by Γ(ρ). Then,

Γ(ρ) = {Z ∈ σn ∩ Br(X) : dist(Z, σn−2) = ρ} \ Σ(ρ1, . . . , ρk−1)

and Σ(ρ1, . . . , ρk−1) is a neighborhood of ∂σn−2 ∩ Br(X).
Let us show that the limit limρ→0 φ(ρ) exists. Fix an arbitrary admissible value ρ̄ > 0

for ρk and, considering ρ ∈ (0, ρ̄), define the stratified set

Q = {Z ∈ σn ∩ Br(X) : ρ ≤ dist(Z, σn−2) ≤ ρ̄} \ Σ(ρ1, . . . , ρk−1),

whose interior Q◦ and boundary ∂Q are determined relative to the topology of Ω. Note
that p∇u ∈ C⃗1(Q), and by the divergence theorem:∫

∂Q
(p∇u)ν dµ = 0.

Hence,

φ(ρ) =
∫

Γ(ρ)

∂u
∂ν

dµn−1 =
∫

∂Q\Γ(ρ)
(p∇u)ν dµ.

The last integral can be treated in the same way as in the deduction of (13). This proves the
existence of the limit limρ→0 φ(ρ).

Suppose this limit is nonzero, say limρ→0 φ(ρ) > 0.
Denote by G the projection of Γ(ρ̄) to σn−2,

Γ̃(ρ) = {Z ∈ σn ∩ Br(X) : dist(Z, G) = ρ}
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and
φ̃(ρ) =

∫
Γ̃(ρ)

∂u
∂ν

dµn−1.

If ρ̄ is small enough, the (n − 2)-measure of the difference between G and the projection
of Γ(ρ) to σn−2 is arbitrarily small for ρ ∈ (0, ρ̄). In view of Theorem 4 and Lemma 10
applied with d = m = n − 2, we conclude that for sufficiently small ρ̄ > 0, the values of the
functions φ(ρ) and φ̃(ρ) differ by a quantity that is arbitrarily small for ρ ∈ (0, ρ̄) and, as
a consequence, the following inequality holds (with some δ):

φ̃(ρ) ≥ δ > 0, ρ ∈ (0, ρ̄). (20)

Look at the integral

∫ ρ̄

0

φ̃(ρ)

ρ
dρ =

∫ ρ̄

0

1
ρ

( ∫
Γ̃(ρ)

∂u
∂ν

dµn−1
)

dρ.

In the n-dimensional affine subspace Ln including σn, consider the coordinates (z′, ρ, θ),
where z′ are the Cartesian coordinates of the projection Z′ of Z ∈ Ln to the affine (n − 2)-
dimensional subspace Ln−2 including σn−2, and (ρ, θ) are the polar coordinates with center
Z′ in the plane orthogonal to Ln−2 in Ln.

Since
dµn−1 = ρ dz′dθ,

we have

∫ ρ̄

0

1
ρ

( ∫
Γ̃(ρ)

∂u
∂ν

dµn−1
)

dρ =
∫ ρ̄

0

∫
G

∫
Φ

∂u
∂ρ

(z′, ρ, θ) dθdz′dρ

=
∫

G

∫
Φ

(
u(z′, ρ̄, θ)− u(z′, 0, θ)

)
dθdz′ ≤ C sup

Br(X)\Σn−2

|u|, (21)

i.e., the integral is finite. On the other hand, by (20), the integral must diverge. This
contradiction completes the proof of relation (14), as well as the proof of Theorem 5.

4.3. Proof of Lemma 3

Without loss of generality, we assume Ω to have the structure of a stratified ball of
admissible radius with center at a point X0. Consider spherical coordinates (r, ϕ) with
center X0. Then,

1
rn−1 dµn−1 = dϕ.

For small enough δ > 0, we have

M[Sr+δ(X0)]u − M[Sr(X0)]u
δ

=
1
ω

∫
Φ

u(r + δ, ϕ)− u(r, ϕ)

δ
dϕ,

where Φ is the set of directions corresponding to the (n − 1)-dimensional regions of the
stratified sphere Sr(X0). Since u is smooth on the n-dimensional strata, it follows that as
δ → 0:

u(r + δ, ϕ)− u(r, ϕ)

δ
→ ∂u(r, ϕ)

∂r
.

By the finite increment formula, we have for some r∗ ∈ (r, r + δ):∣∣∣∣u(r + δ, ϕ)− u(r, ϕ)

δ

∣∣∣∣ = ∣∣∣∣∂u(r∗, ϕ)

∂r

∣∣∣∣ ≤ |∇u(r∗, ϕ)|.
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By Theorem 4:

|∇u(r∗, ϕ)| ≤ C
dist(X(r∗, ϕ), Σn−2 ∪ ∂Ω◦)

sup
Ω◦\Σn−2

|u|

≤ C
dist(X(r, ϕ), Σn−2 ∪ ∂Ω◦)

sup
Ω◦\Σn−2

|u|.

The last inequality holds because the distance from X to Σn−2 increases when X moves
from X0 along a radius. Thus,

u(r + δ, ϕ)− u(r, ϕ)

δ

is dominated by an integrable function. By Lebesgue’s dominated convergence theorem:

M[Sr+δ(X)]u − M[Sr(X)]u
δ

→ 1
ω

∫
Φ

∂u(r, ϕ)

∂r
dϕ =

1
ωrn−1

∫
Sr(X)

∂u(r, ϕ)

∂ν
dµn−1.

The last integral vanishes in virtue of Theorem 5.
Thus,

d
dr

M[Sr(X)] = 0

and the value of M[Sr(X)] does not depend on r, which completes the proof of Lemma 3.

5. Conclusions

The solutions of elliptic second-order partial differential equations on stratified sets
inherit many properties of solutions to such equations on domains of Euclidean space.
In particular, previous investigations show that analogs of the maximum priciple, the nor-
mal derivative lemma, Harnack’s inequality, etc., are valid. In this research, we established
that for harmonic functions on stratified sets, an analog of the removable singularity the-
orem is valid as well. This result can become one of the main technical components for
extending the well-known Poincaré–Perron’s method of proving the solvability of the
Dirichlet problem for a soft Laplacian.
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