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Abstract: Autonomy of breast cancer classification is a challenging problem, and early diagnosis is
highly important. Histopathology images provide microscopic-level details of tissue samples and play
a crucial role in the accurate diagnosis and classification of breast cancer. Moreover, advancements in
deep learning play an essential role in early cancer diagnosis. However, existing techniques involve
unique models for each classification based on the magnification factor and require training numerous
models or using a hierarchical approach combining multiple models irrespective of the focus of the
cell features. This may lead to lower performance for multiclass categorization. This paper adopts
the DenseNet161 network by adding a learnable residual layer. The learnable residual layer enhances
the features, providing low-level information. In addition, residual features are obtained from the
convolution features of the preceding layer, which ensures that the future size is consistent with the
number of channels in DenseNet’s layer. The concatenation of spatial features with residual features
helps better learn texture classification without the need for an additional texture feature extraction
module. The model was validated for both binary and multiclass categorization of malignant images.
The proposed model’s classification accuracy ranges from 94.65% to 100% for binary and multiclass
classification, and the error rate is 2.78%. Overall, the suggested model has the potential to improve
the survival of breast cancer patients by allowing precise diagnosis and therapy.

Keywords: cancer; deep learning; image classification; health risk; decision making; artificial intelligence

1. Introduction

Breast cancer is a widespread disease affecting millions of women worldwide. Early
detection and diagnosis of breast cancer can significantly improve the chances of successful
treatment and patient survival. Medical imaging is one of the primary methods used for
diagnosing breast cancer. The most common techniques are as follows.

1. Mammography: Mammography is an X-ray imaging technique used to examine
breast tissue.

2. Ultrasound: Ultrasound imaging uses high-frequency sound waves to produce images
of the breast tissue.

3. Magnetic resonance imaging (MRI): MRI is a noninvasive imaging technique that uses
powerful magnetic fields and radio waves to produce detailed images of breast tissue.

4. Histopathological images: Histopathological images involve examining tissue sam-
ples from a patient’s breast to identify the presence of cancerous cells.

Histopathological images are preferable for breast cancer detection over other imaging
techniques because they provide high-resolution images of tissue samples obtained from
the breast. These images allow pathologists to examine tissue at the cellular level and
identify the presence of cancerous cells. In contrast, mammography, ultrasound, and MRI
are imaging techniques that provide images of the breast tissue as a whole and can detect
abnormalities in the tissue, but they cannot definitively diagnose cancer [1]. Further testing,
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such as a biopsy, is typically required to confirm the presence of cancer. Pathologists can
examine the size, shape, and characteristics of cancerous cells and determine the stage
and grade of cancer, which is important for determining the appropriate treatment plan.
Additionally, histopathological images can be used to analyze biomarkers, such as hormone
receptor status and HER2/neu expression, which can provide important information about
cancer and help guide treatment decisions [2]. Overall, histopathological images are a
crucial tool in the diagnosis and treatment of breast cancer, and they provide a more
comprehensive assessment of cancerous tissue than other imaging techniques.

The analysis of histopathological images is a challenging task that requires significant
expertise and experience from the pathologist. Deep-learning algorithms can be trained
on large datasets of histopathological images to classify breast tissue as either cancerous
or noncancerous. These algorithms can learn to identify features such as the shape, size,
and texture of cancerous cells and clusters of cells, which can indicate breast cancer. The
use of deep-learning-based breast cancer classification on histopathological images has
the potential to improve the accuracy and speed of breast cancer diagnosis, leading to
earlier detection and better patient outcomes. Moreover, pathologists can assist in the
interpretation of histopathological images, potentially reducing the burden on healthcare
systems and improving patient care. Although deep-learning models are efficient at
performing image classification, their spatial features are sensitive to shape and position.
Thus, classifying histopathological images with texture patterns using spatial feature-
oriented deep CNNs is inefficient.

Deep learning allows for the exploration of symmetry in data and models. When
training a machine learning model, it might be challenging, if not impossible, to get the
weights to vary if they are all initially set to the same value. The "symmetry" happens
here. By setting the model’s initial values to tiny, arbitrary numbers, we can disrupt
the symmetry and let the various weights learn separately. Liu et al. [3] demonstrated
the significance of orderless encoding for texture pattern representation. Zhang et al. [4]
integrated Fisher vector encoding with a pretrained CNN model for texture classification.
However, the benefits of end-to-end learning are not completely leveraged because the
methods suggested in [4] require many phases, including feature extraction, orderless
encoding, and dimension reduction. Furthermore, all these approaches operate on large
matrices due to the high dimensionality of the features they extract. For effective feature
transfer for pattern recognition, a complete learning approach that incorporates the residual
pooling layer into any pretrained CNN model was proposed in [5]. This paper aims to
classify cancerous histopathological images using this approach. The strength of the
encoding in the CNN layers is targeted in the proposed structure to use spatial and spectral
features, improving the overall classification accuracy. In the proposed method, residual
layer-based encoding and concatenation of features from the previous layers are performed
to make the method a learnable layer and to reduce the feature size. The DenseNet161
network is adopted, and learnable residual pooling layers are added for encoding and
dimension reduction to learn from the texture features. The overall contributions of the
paper are as follows:

• A residual feature that represents spatial features from the present layers is integrated
with the spatial features of previous layers. The retention of residual features before
integrating them with the features of previous layers helps us better learn texture
classification [5].

• A complete framework integrating learnable residual features with a pretrained
DenseNet161 network is presented for histopathological image classification. An
experimental evaluation using binary classification and multiclass classification
is presented.

• A state-of-the-art comparison with other residual and CNN networks classifying
benign and malignant images and malignant image subclass categorization for the
benchmark dataset used is presented.
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The remainder of the paper is structured as follows: An overview of residual network-
related work and histopathological image classification using a deep CNN are presented in
Section 2. Section 3 describes the proposed network and its layer structure. The experimen-
tal results, discussion, and comparative analysis are presented in Section 4. The conclusion
is presented in Section 5.

2. Related Work

CNNs are effective in approximating functions for a wide range of tasks and have
shown successful results in different fields. Increasing the number of layers in a CNN
can help improve its accuracy, but there is a limit to how many layers can be added
before the accuracy starts to decrease. Traditional CNNs can also suffer from issues such
as loss of spatial features and decreased accuracy for deep networks, as well as large
learnable parameter counts that can make training difficult. To overcome these challenges,
an integrated approach that combines different techniques may be necessary. Prushty
et al. presented a comparison of machine-learning models on four diagnosis approaches,
including Schiller, Hinselmann, cytology, and biopsy [6]. The random forest outperformed
all traditional machine-learning approaches.

A transformer-based architecture, i.e., the ScoreNet network, was designed for histopatho-
logical image classification [7]. By leveraging local and global attention mechanisms, ScoreNet
extracts features at both the cell and tissue levels. Moreover, a novel data augmentation
technique called ScoreMix is introduced, which generates coherent sample-label pairs based
on the semantic distribution of the image. ScoreNet achieves state-of-the-art results on the
BRACS dataset and demonstrates high efficiency compared to other transformer-based ar-
chitectures, such as TransPath and the Swin Transformer. A ResNet152 network was used
to detect whether an image was cancerous by Gandomkar et al. [8]. ResNet was trained
individually for each magnification factor, and a decision tree was subsequently constructed
by combining the outcomes of all the trained networks to determine whether the image was
malignant. In reference [9], the authors proposed an optimization of the DenseNet architecture
and experimental accuracy for binary classification with a 99% classification rate using the
BreakHis dataset. However, the classification rate at each magnification factor and multiclass
classification were not evaluated. The optimization and fine-tuning of the DenseNet network
using fast AI and one cycle are presented in [10]. This optimized network was used to classify
the positive and negative samples from the BreakHis datasets, achieving an accuracy of 92%.

Texture features play a vital role in enhancing multiclass classification accuracy. The
wavelet transform provides a multiresolution framework that can extract structural infor-
mation well. Wavelet transforms providing both spatial and spectral information were
integrated with convolution features by Mewada et al. [11] and validated using the BCC2015
dataset with an accuracy of 97%. Liu et al. observed that histopathological images gen-
erated using an optical microscope contain noise that may impact CNN classification.
Therefore, an adaptive thresholding-based wavelet transformation was adopted with CNN
for denoising during the network training. Their model received 94.37% binary classifica-
tion on the BreakHis dataset [12]. In [13], authors preprocessed images for noise removal
and enhancement using weighted guided filtering and Gamma correction. Later, a hier-
archical approach was presented to extract optimal structural features using superpixel
mixed clustering, GLCM, and optimization algorithms. Finally, features were used to train
a dense capsule network for the classification.

Histopathological images have many features because of the presence of texture re-
gions. Dictionary-based sparse representation can increase the discrimination capability
of algorithms [14]; therefore, a class-level dictionary-based classification model was pre-
sented in [15], and a validated model with a 93.33% binary classification rate was used.
Another deep-learning strategy based on the FE-BkCapsNet model was developed by
Wang et al. [16]. This method merged the CNN model (which focuses on semantics) and
the CapsNet model (which focuses on spatial characteristics). The success rate ranged
between 92.71% and 94.52% for image categorization in the BreakHis dataset. However,
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to produce correct results, these CNN models employ many convolutional layers and
parameters, which consumes computer resources and time. Pandey et al. [17] developed
three distinct models for binary, benign, and malignant category classifications. In the first
phase, the model separates benign from malignant images. This method is repeated for
all magnification factors separately, resulting in the training and validation of 12 unique
models. The authors employed a pretrained Xception [18] model with classification layers
added according to the categorization at hand.

To reduce the complexity of the CNN, a convolution autoencoder was proposed
and trained from scratch using the BreakHis dataset [19]. However, the model accuracy,
precision, and recall rate are limited to 84.72%, 86.87%, and 80.23%, respectively. A squeeze-
and-excitation block was integrated with the residual layer of ResNet, reducing the size of
the network by 33% at the cost of accuracy for multiclass classification [20]. Their model
performed well for binary classification at all magnification levels, with a maximum accu-
racy of 99.34% at the 200X level. This model achieved accuracies ranging between 90.66%
and 93.81% for multiclass classification. A similar hybrid architecture using ResNet18 and
a squeeze-and-excitation block was presented by Liu et al., who focused on minimizing the
difference in distribution between labeled and unlabeled samples [21]. They validated their
model for eight-class classification, achieving 93.24% accuracy. A tiny swin transformer that
operates on nonoverlapping patches of images was used with a SoftMax classifier at the end
for eight-class classification [22]. However, a smaller model size impacts complex pattern
handling and may impact the model capacity. A complex hierarchical model was presented
in [23], where an SVM was initially used to screen image patch labels, i.e., benign patches
obtained from malignant images; subsequently, these labeled images were used to train the
resolution adaptive network. SURF features were used in the SVM classifier to label the
patches from the images. The model achieved 91.14% accuracy for multiclass classification,
and there is a need to improve the classification accuracy at the 400X magnification level.

The preceding study emphasized the significance of employing pretrained models
and data augmentation strategies to improve model performance. However, traditional
CNNs may suffer from issues such as loss of spatial features, decreased accuracy for deep
networks, and large learnable parameter counts that can make training difficult. Hybrid
approaches with many layers in CNN may enhance classification at the cost of increased
resources and time consumption. In addition, the performance of some models varies
depending on the magnification factor used. Although most models classify malignant
and benign images well, there is room for improvement in the use of the multiclass model
for categorizing malignant images. The next section presents the proposed network,
which aims to address the multiclass classification problem by adding texture information
with spatial information without the need for an additional algorithm. Furthermore, a
straightforward yet efficient integrated approach allows for the classification of breast
cancer histopathology at multiple levels within a single model.

3. Proposed Method

Histopathology images, used for diagnosing and studying diseases at the cellular
level, contain various texture regions. These textures can hold important information for
classifying and analyzing images. While the global convolutional features of a CNN can
capture overall patterns and structures in an image, they may not be sufficient to capture
the local variations and repetitions of patterns that are characteristic of different textures. To
accurately classify histopathology images, a tactful approach that combines both local and
global information fusion is needed. This integration of both local and global information
allows for a comprehensive understanding of the image, considering both the fine details
within specific regions and the overall context of the image. A learnable residual approach
is adopted in the proposed network to extract the local features, and spatial features are
subsequently integrated with residual features for classification. The proposed model is
as follows:
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3.1. Residual Feature Extraction

A traditional CNN uses pretrained layers and trainable convolutional layers to extract
spatial features from the image plane. These layers provide global (or spatial) features,
ignoring local (or spectral) features. Since texture image classification requires local pat-
terns, traditional CNNs do not perform well in texture pattern classification. There is
a need to pass texture-specific features to the classification layer while still maintaining
global features because they are effective at identifying texture patterns. This architecture
configuration allows for completely connected layers with useful texture features and aids
in more accurate class boundary estimation. Global average pooling eliminates dependency
on spatial location by averaging all features and can add robustness to spatial features
obtained from traditional CNN layers [24]. However, simple averaging features completely
ignore features’ spatial layout, resulting in inefficient encoding of discrimination features.
An alternative approach is a multistep model that employs global feature extraction, local
feature extraction (i.e., orderless encoding), and dimension reduction models simultane-
ously for classification. A similar approach was presented in [5] using texture encoding
model integration in a residual network. A residual block learns from the difference in the
features of two consecutive layer blocks in the residual network. This traditional residual
block is shown in Figure 1.
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If x represents the features obtained from the previous layer of the CNN, Xl gives the
output features if Xl−1 passes through the current layers l of the CNN with weights of
Wl−1 = {Wl−1, k}, it can be expressed as

Xl = R(Xl−1, Wl−1) + Xl−1 (1)

where 1< k < K gives the number of layers in one unit, R(·) represents a residual function
that captures the desired transformation of the input. Then, the residual feature can be
expressed as

R = Xl − Xl−1 (2)

The skip connection has a larger gradient. Therefore, the residual layer also helps
in minimizing the vanishing gradient problem during backpropagation due to its skip
connection. ResNet is a popular deep network that provides residual features. However,
the interpretability of these features is limited because skip connections do not interpret
meaningful information as nontrainable connections.

The primary objective is to extract and use local features in addition to global features.
In the proposed method, a pretrained DenseNet161 architecture is modified by adding the
proposed residual layers after the last convolutional layer. The spatial features obtained
from the final convolutional layer of the DenseNet161 network are used to compute the
residual. In the proposed residual layer, a skip connection is adopted with a kernel size of
1 × 1, stride of 1, and sigmoid activation function, as explained in [5]. The role of the kernel
(K) in the skip connection is to provide new learning features from the pretrained features
at each pixel location in the image, and its size is similar to the input. Later, the sigmoid
function (σ) emphasizes the difference between the newly learned features and pretrained
features. Thus, residual features providing local information can be calculated as

RL, ij = XL−1, ij − σ
(
K ∗ XL−1, ij

)
(3)
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Thus, the adopted skip connection provides learnable features for each pixel. The
dropout and batch normalization in this connection help to solve the problem of overfitting.
This structure is shown in Figure 2.
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As explained, global average pooling is mostly used to obtain robustness to spatial
position in global features. In the adopted network, ReLU is used to force negative residual
features to zero, followed by batch normalization and global average pooling, which
aggregate features, restricting the dimension of features to the number of channels in the
pretrained network’s last convolutional layer. Thus, it protects the extension of feature
dimensions in contrast to Fisher vector-oriented CNNs [24] and deep-ten networks [4].

3.2. Concatenation of Global Spatial Features and Residual Features

The convolutional features are obtained from the pretrained DenseNet161 layers,
which represent global features. These features act as inputs for learnable residual layers,
as shown in Figure 2, which serve as local features at each pixel in the image plane. We
concatenated these residual features with global features. The concatenation serves the
purpose of obtaining both local and global feature requirements to classify the texture
patterns in histopathological images. The overall structure is as follows (Figure 3).
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This extension is versatile and applicable to any image size since the initial layers are
DenseNet layers. The learnable residual layers give fixed-dimensional features for arbitrary
image sizes. Thus, for larger images, more detailed local information can be fetched using
this architecture.

4. Results and Discussion

We used the proposed extension of the DenseNet network for breast cancer classifica-
tion using histopathological images. The publicly available BreakHis dataset [25] consists
of benign and malignant classes, and magnification factors of 40X, 100X, 200X and 400X are
used to test and validate the network. Overall, there are 7909 images in the BreakHis dataset,
including 2480 benign types and 5429 malignant types, each with 700 × 460 resolution.
The malignant images were further classified as ductal carcinoma (DC), lobular carcinoma
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(LC), mucinous carcinoma (MC), or papillary carcinoma (PC). The sample images from the
BreakHis dataset are shown in Figure 4.
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Table 1 shows the distribution of images according to their class. The proposed model
is validated in two phases. First, the model is tested for binary classification; second, it is
tested for multiclass classification for malignant images. To obtain local and global features
efficiently, these large images are divided into 512 × 512 patches. To increase the size of
the datasets, augmentation is applied to each patch via rotation, mirroring, and shifting
operations. The histopathological images have different color channels; therefore, the mean
value of each color channel is subtracted for each channel individually to normalize each
patch, after which rotation and vertical mirroring are applied to each patch during the
augmentation process. This augmentation can help to overcome the overfitting problem in
the training stage. In data loading, it is configured such that it randomly shuffles the data
samples each time a new epoch starts. This randomization helps in reducing any potential
bias or overfitting that may arise from the order of the samples. The model’s performance
is evaluated on unseen data that is independent of both the training and test sets. This
ensures that the evaluation is conducted on data that the model has not been exposed to
during training, reducing the potential for bias and overfitting. This strategy will ensure
the study’s reliability.

In experimentation, any pretrained model can be extended using these learnable
residual layers. A comparison of the texture image classification results presented in [5]
shows that DenseNet161 learns faster than the ResNet101 network in the learnable pooling
layer, and DenseNet performs better texture classification than ResNet101. Therefore, we
used DenseNet161’s pretrained network, which was extended using learnable residual
layers, as shown in Figure 3.

In the first phase, the network is verified for binary classification, i.e., benign and
malignant type images, where malignant images include all four classes. A hold-out
technique is used in simulation. The dataset is divided into two nonoverlapping subsets:
a training and a test set. The training set is used to train the CNN model, while the test
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set is used to evaluate the model’s performance. The experiment is repeated for each
magnification factor individually, and the model is analyzed using its training-testing
accuracy and loss. Figures 5–8 plot the accuracy and loss over epochs for both the training
and testing datasets.

Table 1. Distribution of images in the BreakHis dataset.

Classes Subclasses No. of
Patients

Magnification Factor
Total

40X 100X 200X 400X

Benign (B)

Adenosis (A) 4 114 113 111 106 444
Fibroadenoma (F) 10 253 260 264 237 1014

Phyllodes Tumor (PT) 7 149 150 140 130 569
Tubular Adenoma (TA) 3 109 121 108 115 453

Total 24 625 644 623 588 2480

Malignant (M)

Ductal Carcinoma (DC) 38 864 903 896 788 3451
Lobular Carcinoma (LC) 5 156 170 163 137 626

Mucinous Carcinoma (MC) 9 205 222 196 169 792
Papillary Carcinoma (PC) 6 145 142 135 138 560

Total 58 1370 1437 1390 1232 5429
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Figure 5. Accuracy and loss analysis of the proposed network at a 40X magnification factor for
binary classification.
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Figure 6. Accuracy and loss analysis of the proposed network at a 100X magnification factor for
binary classification.
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Figure 7. Accuracy and loss analysis of the proposed network at a 200X magnification factor for
binary classification.
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Figure 8. Accuracy and loss analysis of the proposed network at a magnification factor of 400X for
binary classification.

A stable training and testing accuracy was achieved after 12 epochs, and more than
90% accuracy was achieved after approximately 12 epochs. For 40X magnified images, the
model’s accuracy is maximized, i.e., 99%, and for the remaining magnification factor, it
achieved 96% accuracy. Thus, the extension of DenseNet using learnable residual network
results in faster learning and better classification. The binary classification results are again
evaluated using a confusion matrix to determine the detailed performance of the model.
The results represent the performance of the classifier on test datasets whose true labels are
known. Table 2 shows the performance evaluation using precision, recall, accuracy and
F1 score, where TP represents the number of correct identifications of positive instances
(i.e., the number of correct classifications of benign types), FP represents the number of
negative instances classified as positive types (i.e., benign types misidentified as malignant
types), FN represents the number of positive instances classified as negative types (i.e.,
malignant types misidentified as benign types), and TN represents the number of correct
identifications of negative instances (i.e., correct classifications of malignant types). Using
these four parameters, the model’s precision, recall, accuracy, and F1 score are calculated
as follows.

Precision = TP/(TP + FP), (4)

Recall = TP/(TP + FN), (5)

Accuracy = (TP + TN)/(TP + FP + TN + FN) (6)
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F1-Score = 2 TP/(2xTP + FP + FN) (7)

Table 2. Proposed model’s performance analysis using test dataset for binary classification.

Magnification Factor TP FP FN TN Precision Recall Accuracy F1 Score

40X 42 0 0 52 100 100 100 100
100X 163 19 2 272 89.56 98.78 95.39 93.94
200X 147 18 1 274 89.09 99.32 95.68 93.92
400X 142 14 7 230 91.02 95.30 94.65 93.11

Table 2 shows that the model succeeded with an average accuracy of 96% among all the
magnified factored images. The model received 100% test accuracy on images magnified at
40X and 94.65% accuracy for 400X magnification factor. The algorithm uses patches from
high-resolution images, which could hinder its capability to extract features well. In cancer
classification, malignant images are not misclassified, and high recalls are needed. The
experiment showed that the average recall attained a significantly large value, i.e., 98.32%.
The second phase of the experiment involved verifying the class of malignant images. The
BreakHis dataset includes four types of malignant images, namely ductal carcinoma (DC),
lobular carcinoma (LC), mucinous carcinoma (MC), and papillary carcinoma (PC) images.
The same model is adopted for multiclass classification, changing its classification layer.
Table 3 shows the training and testing images of the malignant lesions used to train and
test the model.

Table 3. Training and test datasets of malignant images for each magnification factor.

Magnification Factor 40X 100X 200X 400X

Training dataset 1073 1148 893 912

Test dataset 270 269 227 241

The model was trained over 250 epochs, and its accuracy and loss were analyzed for
both the training and testing datasets. Figures 9–12 show the accuracy and loss variation
over time for each magnification factor. It is evident that training and test accuracies are
increasing over epochs, and a small deviation between them shows that the model is not
overfitted. The model received more than 95% accuracy at 73 epochs. At 400X magnification
factor, the loss continuously decreases and eventually reaches 0.2% for the test dataset, and
further training might not significantly improve its performance. The loss curve exhibits
little fluctuations. This could be due to noisy images.

Table 4 shows the performance of the model in classifying malignant images. The
average test accuracy for all magnification factors is 97.21%. The experiment shows that
the proposed model identified DC, LC, and MC types of cancerous images well for all
magnification factors. The F1-score for MC-type images slightly deviates at 100X and
200X magnification factors. The precision score for the PC class is less than that of the
four classes. The lowest precision score is 82.86% for PC images at 100X magnification.
There is no harmony between the precision and recall rate for PC classes, and therefore,
its F1 score is lower than that of other types of classes. The classification accuracy for
PC images is greater than 95%, which indicates that the model correctly predicts true
classes. The lowest accuracy and F1 scores obtained by the model were 95.55% and 86.57%,
respectively. Overall, the model is trained well for most sets of images; therefore, it can
classify the negative class more accurately.
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Figure 9. Accuracy and loss analysis of the proposed network at a 40X magnification factor for
malignant image classification.
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Figure 10. Accuracy and loss analysis of the proposed network at a 100X magnification factor for
malignant image classification.
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Figure 11. Accuracy and loss analysis of the proposed network at a magnification factor of 200X for
malignant image classification.
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Figure 12. Accuracy and loss analysis of the proposed network at a magnification factor of 400X for
malignant image classification.

Table 4. Performance analysis of the proposed model for multiclass classification of malignant images.

Magnification Factor TP FP FN TN Precision Recall Accuracy F1 Score

DC 40X 154 3 8 105 98.09 95.06 95.93 96.55
DC 100X 168 6 7 111 96.55 96.00 95.55 96.28
DC 200X 38 1 2 186 97.44 95.00 98.68 96.20
DC 400X 35 3 3 200 92.11 92.11 97.51 92.11

LC 40X 35 2 3 230 94.59 92.11 98.15 93.33
LC 100X 34 2 3 253 94.44 91.89 98.29 93.15
LC 200X 116 3 7 101 97.48 94.31 95.59 95.87
LC 400X 134 5 8 94 96.40 94.37 94.61 95.37

MC 40X 40 4 1 225 90.91 97.56 98.15 94.12
MC 100X 42 5 5 240 89.36 89.36 96.58 89.36
MC 200X 31 4 3 189 88.57 91.18 96.92 89.86
MC 400X 31 2 3 205 93.94 91.18 97.93 92.54

PC 40X 28 4 1 237 87.50 96.55 98.15 91.80
PC 100X 29 6 3 231 82.86 90.63 96.65 86.57
PC 200X 30 4 0 193 88.24 100.00 98.24 93.75
PC 400X 30 1 2 208 96.77 93.75 98.76 95.24

Figure 13 shows the analysis of all the quantitative parameters for each class. Figure 13
shows that the precision and F1 scores for the PC images are lower than those for the other
classes, and the model predicts six PC images as either DC or MC type. Overall, the model
achieved good performance for all the classes, with a 2.78% error rate. To validate the
model, the proposed model is compared with the results of other studies that presented
classification on the BreakHis dataset. The proposed model relies on DenseNet and a
learnable residual layer; therefore, Table 5 shows a comparison of the proposed model
with DenseNet or residual network-based networks for detecting malignant images, and
Figure 14 shows a visual comparison.

In [26], a VGG-16 network with a traditional classifier, SVM and RF, was proposed for
cancer classification, and the model was validated for binary classes. Three different SVM
kernel functions were tested for each magnification factor, and SVM using a polynomial
kernel obtained the highest accuracy of 95.23% at the 200X magnification level. They
observed that stain normalization of images in the network eventually reduces the accuracy
of the model. In [27], a ResHist network, which uses a 152-layered convolutional neural
network, was proposed to classify breast cancer histopathological images as binary only,
achieving good accuracy and superiority over pretrained networks. The authors showed
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that ResNet outperformed the AlexNet, VGG16, and GoogLeNet deep-learning networks.
The authors also evaluated ResNet features using different machine-learning classifiers,
including K-nearest neighbors, support vector machines, and random forests. The authors
achieved a maximum accuracy of 92.46% at the 200X zoom level using an SVM classifier.
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Table 5. Accuracy comparison of benign and malignant image classifications (binary classification).

Method 40X 100X 200X 400X

ResHist Model [27] 86.38 87.28 91.35 86.29
DenseNet CNN [28] 93.64 97.42 95.87 94.67

MuDeRN (Residual Network) [29] 95.60 94.89 95.69 94.63
Interleaved DenseNet121 [30] 81.8 79.3 81.4 83.2

ResNet [31] 96.3 95 95 95.4
Fisher vector + CNN [32] 90.2 91.2 87.8 87.4

VGGNet [26] 92.22 93.40 95.23 92.80
BiCNN [33] 97.89 93.62 94.54 94.42
CNN [24] 94.65 94.07 94.54 93.77

DenseNet 201 [15] 92.61 92 93.93 91.73
Proposed method 100 95.39 95.68 94.65

Nawaz et al. [34] used the DenseNet architecture for multiclass classification of ma-
lignant images and obtained a 95.4% classification rate. DenseNet uses a dense layer and
transition layer instead of traditional convolutional, nonlinear, or pooling layers. In the
dense block, outputs from previous layers are concatenated, allowing for the learning
of features at different stages without the need for compression. This helps to avoid the
explosion of parameters and reduces the complexity of the training process. Additionally,
DenseNet can naturally scale to hundreds of layers without optimization difficulties, mak-
ing it suitable for processing high-resolution images. By modifying the DenseNet model to
handle histopathology images and using transfer learning, the proposed approach achieves
high performance in breast cancer classification.

Li et al. [30] suggested the integration of DenseNet, a squeeze-and-excitation module,
and a classification subnetwork for robust BC histological image classification. They tested
the model on the BreakHis dataset, and the experiment was limited to binary classification.
Experiments on the BreakHis dataset show improved performance compared to traditional
CNN methods; however, their model’s maximum accuracy is 83.2% on the 400X dataset.
In [32], the authors used Fisher vectors to obtain discriminative features from the texture
region of histopathological images and embedded these features with a multilayer CNN
network. Their model achieved 90.2% accuracy at all zoom levels. Eltoukhy et al. [31] used a
residual learning approach to solve the problem of deep layers in the network and classified
the BreakHis dataset into eight classes, namely, four benign types and four malignant
types. This residual network succeeded with 96% average accuracy. Gandomkar et al. [29]
designed a deep residual network to classify malignant images. They trained three different
residual networks consisting of 50, 101, and 152 layers. Initially, images were classified as
binary or malignant, and later, further subclassification of images was performed using a
voting-based method.

In reference [33], the authors presented the BiCNN network using the GoogLeNet
network, which provides a network-in-network architecture comparable to that of the
AlexNet and VGG16 networks. The authors validated the model for the binary class with
a maximum accuracy of 97%. Subclass classification is not presented. Bardou et al. [35]
used handcrafted features, i.e., SURF and DSIFT, for classification and tested two models,
i.e., SVM and CNN. Later, they configured CNNs and SVMs to improve the classification
rate. Their CNN model was able to classify benign and malignant images at a rate of
94.65%; however, the model did not perform well for multiclass classification. Zerouaoui
and Idri [15] tested various deep-learning models for feature extraction, including VGG,
Inception V3, MobileNet V2, ResNet50, ResNet V2, and DenseNet 201, along with various
classifiers, including MLP, SVM, DT, and KNN. They observed the best classification rate
for DenseNet 201 with the MLP classifier. The multiclass classification was not presented
by the author.

In reference [36], a semisupervised CNN model was proposed by the author. Initially,
the model was trained for labeled data. Later, the trained model was tested for unlabeled
data, and pseudolabels were generated from the prediction. These labeled images were
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used along with the training dataset to retrain the model. Thus, the model was trained
twice, and it achieved 99.47% accuracy, with the top 5% to 10% of the images being
pseudolabeled during retraining. However, the model did not perform well for multiclass
classification. Joseph et al. [37] used handcrafted features with a deep CNN network. They
obtained Hu-moment, colored histogram, and Haralick texture features from the images,
and the CNN was trained using these features for multiclass classification. It was observed
that their approach achieved accuracies of 90.87%, 89.57%, 91.58%, and 88.67% for each
magnification factor.

Alkassar et al. [38] initially obtained shallow features and deep features using Dense
and Xception architectures for binary and multiclass classification. Later, they used an
ensemble of classifiers with the maximum rule to make a prediction. They observed
that shallow features obtained using separable convolution in a dense network gave
better classification than deep features for multiclass classification. The accuracies of these
algorithms are listed in Table 6. A transfer learning approach on ResNet 18 was used
in [39]. Initially, the images were normalized, and a trained ResNet 18 model was fine-
tuned on images from the BreakHis dataset for multiclass classification. They evaluated
and compared different ResNet architectures. ResNet18 achieved an average accuracy of
92.03%. The proposed model uses a learnable residual network after the convolutional layer
of DenseNet. The DenseNet model provides spatial features, and the learnable residual
network provides residual features from the convolutional features and pretrained features.
The integration of both features helps to obtain distinct features for classification. Overall,
the learning of the residual network helps to efCNNs valuate the booth course and find
details from the histopathology images; therefore, the proposed model trained well and
was able to classify better than other DenseNet and ResNet architectures. Table 6 shows
that the model succeeded with average accuracies of 97.59%, 96.76%, 97.35%, and 97.20%
for magnification factors of 40X, 100X, 200X and 400X, respectively.

Table 6. Comparison of multiclass classification results at each magnification factor.

Method
Magnification

40X 100X 200X 400X

CNN [33] 78.30 80.68 72.13 74.79
[36] 92.87 90.41 92.19 91.40

Handcrafted features + CNN [37] 90.87 89.57 91.58 88.67
Inception network + ECmax [38] 92.2 88.2 89.4 88.5

ResNet-18 [39] 94.49 93.27 91.29 89.56
Proposed method 97.59 96.76 97.35 97.20

5. Conclusions

Among the many cancer disorders, breast cancer is at the top of the list. The prevalence
of this illness is increasing daily, particularly among women. The death rate is relatively
significant if this condition is not recognized in a timely manner. CNN models, which
have powerful classification ability for images, can yield faster and better classifications
than conventional methods. This paper aimed to improve breast cancer classification
using histopathological images. A BreakHis dataset providing histopathological images
at four magnification factors and multiclass categorization of both normal and malignant
images were used in the experiment. The DenseNet architecture is modified by adding
a residual learning network. A learnable residual network enhances the ability of the
model to generate low-dimensional distinctive features. Thus, DenseNet’s convolution
layers, followed by a learnable residual layer, maximize the chance of discriminating
texture patterns. Later, the concatenation of both spatial features with residual features
helps improve the overall classification rate. The experimental analysis of both the binary
classification and malignant multiclass classification results revealed improvements in the
classification results compared to those of other variants of the DenseNet architecture and
various CNN models. One of the limitations of the network is that the precision score
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for PC images is lesser compared to other classes. Therefore, preprocessing these images
can provide harmony between the precision and recall rate for PC images. The model is
validated on a single dataset. The effectiveness of the model on diverse datasets would
provide more robust evidence of its reliability. Future high-performance computer-aided
diagnosis systems for other medical imaging tasks can be designed using the suggested
method, which can be generalized. Another limitation of the proposed methodology is
its inability to leverage multi-size training, as it relies on trained feature sets of pretrained
networks. This dependency on pretrained models may limit applicability if the pretrained
model is not trained well. This will be addressed in the future.
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