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Abstract: In this paper, we study pursuit and evasion differential game problems of one pursuer/one
evader and many pursuers/one evader, respectively, in the space Rn. In both problems, we obtain
sufficient conditions that guarantee the completion of a pursuit and an evasion. We construct the
players’ optimal strategies in both problems, and we estimate the possible distance that an evader
can preserve from pursuers. Lastly, we illustrate our results via some numerical examples.
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1. Introduction

In differential games, pursuit and evasion conflicts represent challenging problems
with important applications in the fields of aerospace and robotics. In pursuit–evasion
problems, the synthesis of intelligent actions must consider the adversary’s potential
strategies. Differential game theory provides an adequate framework to analyze possible
outcomes of a conflict without assuming particular behaviors by the opponent [1].

The problems usually involve two key players (namely, pursuer and evader) or au-
tonomous agents with conflicting objectives; generalizations are typical in the sense of
multiple players divided into two teams—the pursuer team and the evader team. The
main purpose is to construct strategies and provide sufficient conditions that enable an
autonomous agent to perform a set of actions against the opponent; for instance, the
pursuer aims at determining a strategy that will result in the capture or interception of
the evader. The dynamics of the players are often described by system ordinary (partial)
differential equations. The players’ control functions or strategies are usually subjected to
integral, geometric, and mixed (that is, both integral and geometric) constraints. In this
work, we are interested in pursuit and evasion differential game problems where players’
dynamics are governed by ordinary differential equations and control functions subject to
integral constraints.

2. Preliminaries

Among the early works on linear differential games is the work of Pshennichnyi and
Onopchuk [2], where the dynamics of the game are described by the linear equation

·
z (t) = Az(t) + bu(t)− cv(t),

where the coefficients A and b (as well as c) are a constant n× n matrix and an n dimensional
vector, respectively, and the control functions of the pursuer and the evader, u(·) and v(·),
are subject to the integral constraints
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∫ ∞

0
|u(t)|2dt ≤ ρ2,

∫ ∞

0
|v(t)|2dt ≤ σ2,

respectively, where ρ and σ are given positive numbers (usually interpreted as the max-
imum energy resources of the pursuer and the evader, respectively). The authors [2]
obtained some conditions for the completion of a pursuit. To this end, they proposed a
formula for the optimal pursuit time and constructed optimal strategies for the pursuer.

Motivated by the results in [2], some authors [3–14] studied this class of problem
and proposed various methods of solving the pursuit and evasion problems with integral
or other form of the aforementioned constraints on the players’ control functions. For
instance, Rakhmanov et al. [3] studied a linear pursuit differential game of one pursuer
and one evader. Controls of the pursuer and the evader are subjected to integral and
geometric constraints, respectively. Conditions of completion of a pursuit in the game from
all initial points of players are obtained. Ibragimov et al. [4] recently studied an evasion
differential game of one evader and many pursuers with players’ dynamics described
by linear differential equations. The control functions of players are subjected to integral
constraints. They solved the evasion problem under the assumption that the total energy
of pursuers does not exceed the energy of an evader. The rest of the papers [11,13,14] are
concerned with a pursuit and evasion problem where geometric constraints are imposed
on the players’ control functions. A generalized case of the geometric constraints (that is,
Gronwall–Bellman-type constraints) was proposed in the work of Samatov [5], where a sim-
ple pursuit differential game was considered. Here, we are more interested in differential
game problems with integral constraints.

In [6], the authors obtained sufficient conditions that guarantee a pursuit and also
an evasion in a differential game with integral constraints. To this end, pursuers’ and
evader’s optimal strategies are constructed. The results are demonstrated with some
illustrative examples.

Chikrii and Belousov [7] proposed a scheme that uses the ideas of the method of
resolving functions and established sufficient conditions for the termination of a pursuit in
some guaranteed time.

Azimov [8] studied the evasion version of the pursuit problem in [7] with integral
constraints on players’ control functions, and obtained sufficient conditions for an evasion
from any given point in the phase space.

Ibragimov et al. [15] considered both pursuit and evasion problems with the control
function of the players subject to integral constraints. The case where the control resources
of the pursuer are less than or equal to that of the evader is studied. For this case, the
authors proposed a new method for solving the evasion problem. For construction, the
strategy of the evader information about the state of the system and the control resources
of the players is used.

Ibragimov and Hasim [16] studied a pursuit–evasion differential game in the space ℓ2
with the dynamic equation of the players described by

.
zk (t) = −λkzk(t) + wk(t), wk(t) = vk(t)− uk(t), (1)

where λk is a scalar, zk(·), wk(·) ∈ ℓ2; integral constraints were imposed on the players’
controls and solved an evasion problem when the total resource of the pursuers was less
than that of the evader. Ibragimov et al. [9] also examined a pursuit–evasion differential
game in the space Rn with players’ motion described by

.
z (t) = A(t)z + B(t)(v(t)− u(t)) z(0) = z0, z(·), z0, u(·), v(·) ∈ Rn, (2)

where A(t) and B(t) are n × n matrices; players’ control functions were subject to integral
constraints. The authors constructed optimal strategies of the players (pursuer and evader)
when the control resource of the pursuer was greater than that of the evader and obtained
the optimal pursuit time.
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Recently, Ahmed et al. [10] studied a pursuit differential game on a closed convex
subset K of Rn with dynamic equations of the players described by

.
x (t) = η(t)u(t) x(0) = x0

.
y (t) = η(t)v(t) y(0) = y0,

where η(t) is a scalar function, t ≥ 0; control functions of the players were subject to the
more general integral constraints∫ ∞

0
|u(s)|pds < ρp ,

∫ ∞

0
|v(s)|pds < σp, (3)

where p ≥ 1, ρ and σ are given positive numbers. The authors [10] obtained a sufficient
condition for the completion of a pursuit. Rilwan et al. [6] also studied an evasion version
of the problem [10] with p = 2 and obtained sufficient conditions that guaranteed the
avoidance of contact of the evader from the pursuers. To this end, they constructed the
evader’s optimal strategy.

It is worth mentioning that the dynamic equations in [10] above can be transformed
to the form (2) by simply letting A(t) = 0 and B(t)=η(t) be scalars. This transforma-
tion and also the fact that the integral constraints (3) generalize the existing integral con-
straints in the literature motivated the following research question: is it possible to solve
a pursuit and evasion problem with players’ dynamics described in [9] with the integral
constraints (3) imposed on players’ control function? Answering this question will in-
deed generalize some results on pursuit and evasion problems in the literature (see, for
example, [3–6,8–12,14,16,17]).

Players’ dynamics in pursuit and evasion problems are not always restricted to the lin-
ear differential Equation (2). Badakaya et al. [18] investigated a pursuit–evasion differential
game involving a countable number of pursuers and one evader with players’ dynamics
described by certain nth-order differential equations and the constructed players’ optimal
strategies. Jamilu et al. [19] also studied a pursuit–evasion differential game problem in
which countably many pursuers chase one evader in the Hilbert space ℓ2 for a fixed period
of time. The control function for each of the players satisfies an integral constraint; the
dynamic equations of the pursuers and evader were governed by first- and second-order
differential equations, respectively, and constructed optimal strategies for the players and
found the value of the game. Azimov et al. [20] studied a differential game of many
pursuers and one evader, where all the players moved only along the one-skeleton graph of
an orthoplex of the dimension d + 1. The authors obtained the optimal number of pursuers
in the game. In [21], a two-player pursuit evasion differential game and a time optimal
zero control problem in ℓ2 were considered. The optimal control for the corresponding zero
control problem was found. A strategy for the pursuer that guaranteed a solution for the
pursuit problem was constructed.

In summary, the main objective of this paper is to address the above research question.
More precisely, we find sufficient conditions for the completion of a pursuit and also for an
evasion in the differential game described as in (2) with the integral constraints (3) imposed
on players’ control function.

The rest of this paper is organized as follows: In Section 3, we present the players’
dynamics and the definitions of some basic terms. This is followed by the main results in
Section 4, which comprises two subsections: one of the sections, Section 4.1, is concerned
with pursuit problems where we give sufficient conditions for the completion of the pursuit,
while Section 4.2 presents sufficient conditions that guarantee evasion. Section 5 presents
examples to illustrate our results, and Section 6 concludes the paper.
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3. Statement of the Problem

Consider the space Rn with the norm || · || : Rn → [0,+∞) defined as

∥α∥ =

(
n

∑
k=1

|αk|p
) 1

p

, α ∈ Rn.

The dynamic equations of pursuers and an evader are given by

.
xj (t) =A(t)xj(t) + B(t)uj(t), xj(0) = x0

j j = 1, 2, 3, · · · , m (4)
.
y (t) =A(t)y(t) + B(t)v(t), y(0) = y0, (5)

where xj(t), y(t) ∈ Rn is the state of the pursuers and the evader at time t, and uj(t)
and v(t) are the control functions of the pursuer and evader, respectively. The dynamic
Equations (4) and (5) can be expressed in closed form as

.
zj (t) = A(t)zj(t) + B(t)wj(t), zj(0) = z0

j , (6)

where zj(t) = y(t) − xj(t), wj(t) = v(t) − uj(t), A(t), and B(t) are continuous n × n
matrices, and uj(t), j = 1, 2, · · · , m and v(t) are the control functions of the pursuers and
the evader, respectively. The pursuers’ aim at any point in time is to to force the state
towards the origin of the space Rn (that is, zj(t) = 0 for all t ≥ 0) against any action of the
evader who, on the other hand, tries to avoid this. We find the possibilities/conditions for
which the conflicting players can achieve their aims in this work.

Definition 1 ([22], p. 43). Let (X,M) be a measurable space. A real- or complex-valued function
f is said to be M-measurable, or just measurable, if it is (M,BR) or (M,BC) measurable,
where BR and BC are the σ-algebra in the range space unless otherwise specified. In particular,
f : R → C is Lebesgue (resp. Borel) measurable if it is (L,BC) (resp. (BR,BC)) measurable:
likewise, f : R → R.

Let Lp(0, ∞) be the set of Lebesgue measurable functions and (1 ≤ p, q < ∞) be such
that 1

p + 1
q = 1. Then

∥ f ∥ =

(∫ ∞

0
∥ f (t)∥p dt

) 1
p
< ∞

for any f ∈ Lp(0, θ).

Definition 2. A function uj(·), uj : [0, ∞) → Rn (resp. v(·), v : [0, ∞) → Rn) with measurable
coordinates (uj1(·), uj2(·), . . . , ujn(·)) (resp.(v1(·), v2(·), . . . , vn(·)) such that

∫ ∞

0
||uj(t)||pdt ≤ ρ

p
j , j = 1, 2, · · · , m

(
resp.

∫ ∞

0
||v(t)||pdt ≤ σp

)
, (7)

where ρj, j = 1, 2, · · · , m (and also σ) are positive numbers, is called the admissible control of the
jth pursuer (evader, respectively).

Definition 3. A function Uj(t, v), Uj : [0, ∞)×Rn → Rn, is called a strategy of the jth pursuer if
the system (6) has a solution zj(t) = zj(t, z0

j , Uj, v(·)), t ≥ 0, at uj = Uj(t, v) for every admissible
control of the evader v(·). If each control generated by this strategy is admissible, then the pursuer’s
strategy is admissible.

Definition 4 ([16]). A function V(u1, u2, · · · , um), V : Rn ×Rn × · · · ×Rn → Rn, is referred
to as the strategy of the evader if
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• For any admissible control of the pursuers, uj = uj(t), j = 1, 2, · · · , m, t ≥ 0, the system (6)
has a unique solution at v = V(u1(t), u2(t), · · · , um(t)), t ≥ 0;

• The inequality ∫ ∞

0
∥V(u1(t), u2(t), · · · , um(t))∥pdt ≤ σp (8)

holds.

Definition 5. Pursuit is said to be completed at some time τ ≥ 0 in the games (6) and (7) if there
exists an admissible strategy of the jth pursuer that guarantees zj(τ) = 0.

Definition 6 ([6]). Evasion is possible in the games (6) and (7) with the initial position z0
j if

there exists a strategy V of the evader such that for all admissible controls of the pursuers uj(·),
j = 1, 2, · · · , m, the relation zj(t) ̸= 0, 0 ≤ t ≤ ∞ holds for all j = 1, 2, · · · , m.

According to Definition 6, we have xj(t) ̸= y(t), since zj(·) = y(·)− xj(·). That is, the
state variable of the jth pursuer and evader does not coincides at all times t ≥ 0.

Problems:

i. Find sufficient conditions that guarantee the completion of the pursuit in the games (9) and
(10).

ii. Find sufficient conditions that guarantee the possibility of evasion in the games (9) and (10).
iii. Estimate the least possible distance the evader can preserve from the pursuers in the games (9)

and (10).

4. Main Results

In this section, we address the research problems stated in Section 3. To this end, we
will construct the respective players’ admissible strategies and find the conditions required
in the problems i and ii, and then estimate the distance in the problem iii.

4.1. Conditions That Guarantee Completion of Pursuit

By dropping the index j in (4), we consider the differential game problem of one
pursuer and one evader in this section. That is, the players’ dynamics (4) now reduce to

.
z (t) = A(t)z(t) + B(t)w(t), z(0) = z0, (9)

where z(t) = y(t)− x(t), w(t) = v(t)− u(t), A(t), and B(t) are continuous n × n matrices,
and u(t) and v(t) are the control functions of the pursuer and the evader subject to∫ ∞

0
||u(t)||pdt ≤ ρp and

∫ ∞

0
||v(t)||pdt ≤ σp, (10)

respectively; 1
p + 1

q = 1, (1 ≤ p, q < ∞).

Assumption 1. The matrix A(·) is diagonal.

Lemma 1. The following properties hold for all square matrices A, B, and C.

i. eAeB = eA+B;
ii. A(BC) = (AB)C;
iii. AB = BA, for all diagonal matrices A, B.

It follows from Assumption 1 and Lemma 1 that the solution of Equation (9) is

z(t) = e
∫ t

0 A(s)ds
(

z0 +
∫ t

0
e−
∫ s

0 A(r)drB(s)(v(s)− u(s))ds
)

. (11)
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It is worth mentioning that in this problem, q belongs to the set of natural numbers
and the matrix B(·) is not necessarily a diagonal matrix.

Let

η(t) := z0 +
∫ t

0
C(s)(v(s)− u(s))ds (12)

and

Λq(t) :=
∫ t

0
Cq(s)ds, t > 0, (13)

where
C(s) := e−

∫ s
0 A(r)drB(s).

Assumption 2. The matrix Λq(t) is nonsingular for all t > 0.

Lemma 2. For any square matrix function Q : [0, ∞) → Rn×n and a constant vector v̄ ∈ Rn,
we have ∫ t

0
Q(s)v̄ds =

(∫ t

0
Q(s)ds

)
v̄, t ∈ [0, ∞). (14)

Lemma 3. In Rn, ∥x∥q ≤ ∥x∥p whenever p ≤ q.

Lemma 4. Let A be an n × n matrix and v̄ be an n-vector with the norm ∥ · ∥ : Rn×n → R and
∥ · ∥ : Rn → [0, ∞), respectively, defined by

∥A∥ :=

(
n

∑
i=1

n

∑
j=1

∣∣aij
∣∣p) 1

p

and ∥v̄∥ :=

(
n

∑
k=1

|vk|p
) 1

p

,

respectively, then

∥Av̄∥ ≤ ∥A∥∥v̄∥.

Lemma 5. The exponential of a diagonal matrix M is equal to the exponential of its entries.

In view of Lemmas (2)–(5), we state sufficient conditions for the completion of a
pursuit in the games (6) and (7) as follows.

Theorem 1. Let Assumptions 1 and 2 hold. Suppose ρ > σ, then a pursuit is possible in the
games (9) and (10) at the time θ, satisfying

∫ θ

0

∥∥∥Cq−1(s)
∥∥∥p

ds ≤
(

ρ − σ

∥Λ−q(θ)z0∥

)p
,

where ρ and σ are the energy resources of the pursuer and evader, respectively.

Proof. Let the hypotheses of the theorem hold. We construct a pursuer’s strategy as
follows:

u(t) =


Cq−1(t)Λ−q(θ)z0 + v(t), 0 ≤ t ≤ θ,

0, t > θ.
(15)

To employ the strategy (15) for showing a completion pursuit, we first establish its
admissibility as follows:
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(∫ ∞

0
∥u(t)∥pdt

) 1
p
=

(∫ θ

0

∥∥∥Cq−1(t)Λ−q(θ)z0 + v(t)
∥∥∥p

dt + 0
) 1

p

≤
(∫ θ

0

∥∥∥Cq−1(t)Λ−q(θ)z0

∥∥∥p
dt
) 1

p

+

(∫ θ

0
∥v(t)∥pdt

) 1
p

≤
(∫ θ

0

∥∥∥Cq−1(t)Λ−q(θ)z0

∥∥∥p
dt
) 1

p

+ σ.(∫ ∞

0
∥u(t)∥pdt

) 1
p
≤
(∫ θ

0

∥∥∥Cq−1(t)Λ−q(θ)z0

∥∥∥p
dt
) 1

p

+ σ. (16)

By applying Lemma 4, the inequality (16) becomes

(∫ ∞

0
∥u(t)∥pdt

) 1
p
≤
(∫ θ

0

∥∥∥Cq−1(t)
∥∥∥p∥∥Λ−q(θ)z0

∥∥pdt
) 1

p

+ σ

=

(∥∥Λ−q(θ)z0
∥∥p
∫ θ

0

∥∥∥Cq−1(t)
∥∥∥p

dt
) 1

p

+ σ

=
∥∥Λ−q(θ)z0

∥∥(∫ θ

0

∥∥∥Cq−1(t)
∥∥∥p

dt
) 1

p

+ σ

≤
∥∥Λ−q(θ)z0

∥∥(( ρ − σ

∥Λ−q(θ)z0∥

)p) 1
p

+ σ

=ρ.

This implies that

(∫ ∞

0
∥u(t)∥pdt

) 1
p
≤ ρ.

Hence, it follows from Definition 2 that the strategy (15) is admissible.
Suppose that the pursuer employs the admissible strategy (15) on the interval [0, θ],

then from Equation (12), we have

η(θ) =z0 +
∫ θ

0
C(s)

(
v(s)− Cq−1(s)Λ−q(θ)z0 − v(s)

)
ds

=z0 +
∫ θ

0
C(s)

(
−Cq−1(s)Λ−q(θ)z0

)
ds

=z0 −
∫ θ

0
Cq(s)Λ−q(θ)z0ds.

That is,

η(θ) =z0 −
∫ θ

0
Cq(s)dsΛ−q(θ)z0. (17)

Note that the equality (17) follows from (14).
This implies

η(θ) = z0 − Λq(θ)Λ−q(θ)z0 = 0.

Consequently, from (11), we have

z(θ) = 0.
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This implies x(θ) = y(θ). Hence, the conclusion of Theorem 1 follows. That is, a
pursuit is completed at the time θ as long as Assumptions 1 and 2 hold, and the total energy
resources of the pursuer ρ are greater than that of the evader σ.

Remark 1. As mentioned earlier, we note here that if the matrices A(t) = 0 and B(t) = η(t)
(some scalar function), the result obtained here reduces to that of Ahmed et al. [10]. Additionally,
if A(t) = 1, B(t) = −λi, where λi > 0, i = 1, 2, · · · , m, · · · and p = 2, the pursuit problem
considered here reduces to that of Ibragimov and Hasim [16]. The authors [16] solved the pursuit
problem by partitioning the time interval and established the completion of the pursuit problem
by induction, which is a bit tedious. Here, we solve a more general case via a comprehensive and
straightforward method of proof. Moreover, the symmetric conditions on the matrices A(·) and B(·)
play an important role in the construction of the pursuer’s strategies in this section.

In the next section, Section 4.2, which concerns an evasion problem, we consider the
case of m pursuers and one evader with players’ dynamics and constraints on players’
control functions as stated in (6) and (7), respectively.

4.2. Conditions That Guarantee Evasion

Consider the differential game problems (6) and (7). Let B(·) be a diagonal matrix and

C(s) := e−
∫ s

0 A(r)drB(s).

It follows from Assumption 1 that C(·) is also diagonal with the entries (cii(·)),
i = 1, 2, 3, . . . , n.

Observe that the vector zj(t) = (zj1(t), zj2(t), · · · , zjn(t)) has the coordinates

zji(t) = e
∫ t

0 aii(s)ds
(

z0
ji +

∫ t

0
cii(s)wji(s)ds

)
, i = 1, 2, 3, · · · , n. (18)

Let

ρ :=

(
m

∑
j=1

ρ
p
j

) 1
p

and λj(t) :=
∫ t

0
∥C(s)wj(s)∥ds. (19)

We now state the following sufficient conditions that guarantee evasion in the differ-
ential game problems (6) and (7) below.

Theorem 2. If Assumption 1 holds and σp > ρp, then an evasion is possible in the games (6)
and (7) with initial positions of the players z0 =

{
z0

1, z0
2, z0

3, · · · , z0
m
}

.

Proof. The proof will be presented in three parts, namely, construction of an evader’s
strategy, evasion, and estimation of the distance between the evader and the pursuers.

• Construction of evader’s strategy
Consider the kth octant (that is, a coordinate axis that divides an n dimensional space
into 2n regions) in Rn given by

Ok := {(δ1, δ2, δ3, · · · , δn, ) ∈ Rn| δi = 0 or sign(δi) = βki i f δi ̸= 0, i = 1, 2, · · · , n},

where βki = sign
(
(−1)⌊

k−1
2i−1 ⌋

)
f or i = 1, 2, 3, · · · , n.

Let

Oω = {(δ1, δ2, δ3, · · · , δn, ) ∈ Rn| δi < 0, i = 1, 2, · · · , n}

be the octant with negative coordinates. Since there are 2n octants in the space Rn,
then there exists an octant that does not contain z0

j . Let Oω be the octant that does
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not contain z0
j ; that is, z0

j = (z0
j1, z0

j2, z0
j3, ·, z0

jn) is a vector in a region with at least one
non-negative coordinate.
Let the evader use the following strategy, v(·) = (v1(·), v2(·), · · · , vn(·)), where the
coordinates

vi(t) =



(
m

∑
j=1

|uji(t)|p +
(σp − ρp)

(2i − 2i−n)θ

) 1
P

, 0 ≤ t ≤ θ,

0, t > θ,

(20)

for all i = 1, 2, · · · , n.
According to the strategy (20), for each ith coordinate, the evader applies a control
which allows keeping its distance on this coordinate from any of the pursuers moving
in the direction of the ith coordinate. This is further illustrated in the space R3 as in
the Figure 1 below.
Next, we show the admissibility of the strategy (20):

∫ ∞

0
∥v(s)∥pds =

∫ θ

0

n

∑
i=1

|vi(s)|pds

=
∫ θ

0

n

∑
i=1

∣∣∣∣∣ m

∑
j=1

|uji(s)|p +
(σp − ρp)

(2i − 2i−n)θ

∣∣∣∣∣ds

≤
∫ θ

0

n

∑
i=1

(∣∣∣∣∣ m

∑
j=1

|uji(s)|p
∣∣∣∣∣+
∣∣∣∣ (σp − ρp)

(2i − 2i−n)θ

∣∣∣∣
)

ds

≤
∫ θ

0

n

∑
i=1

(
m

∑
j=1

∣∣uji(s)
∣∣p + (σp − ρp)

(2i − 2i−n)θ

)
ds

=
m

∑
j=1

∫ θ

0

n

∑
i=1

|uji(s)|pds +
(σp − ρp)

(1 − 2−n)θ

n

∑
i=1

1
2i

∫ θ

0
ds

=
m

∑
j=1

∫ θ

0
∥uj(s)∥pds +

(σp − ρp)

(1 − 2−n)θ

n

∑
i=1

1
2i

∫ θ

0
ds

≤
m

∑
j=1

ρ
p
j + σp − ρp = σp.

That is ∫ θ

0
∥v(s)∥pds ≤ σp.

Hence, the strategy is admissible.
• Evasion

Here, we show that evasion is possible for any given initial position of the players
z0=
{

z0
1, z0

2, · · · , z0
m
}

, z0
j ∈ Rn, j = 1, 2, 3, · · · , m. That is, zj(t) ̸= 0 holds for all t ∈ [0, θ],

j = 1, 2, 3, · · · , m.
Let

Ii =
{

j : z0
jk < 0, k = 1, 2, 3, · · · , i − 1; z0

jl ≥ 0, l = i, i + 1, i + 2, · · · , n
}

be the set of octants with at least one non-negative coordinate. That is, if, for instance,
h ∈ I3, then z0

h = (z0
h1, z0

h2, z0
h3, · · · , z0

hn) : z0
hk < 0, for all k < 3 and z0

hk ≥ 0, k ≥ 3.
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Now consider the point zg(t) ∈ Rn, where g ∈ Ii and i is chosen in such a way that z0
g

has coordinates z0
gi ≥ 0. It is easy to see that

m

∑
j=1

∣∣uji(s)
∣∣p ≥ ∑

j∈Ii

up
ji(s) ≥ up

gi(s). (21)

We now show that evasion is guaranteed if the evader’s strategy (20) is employed. To
this end, we substitute (20) in (18) and use the inequality (21) as follows:

zgi(t) =e
∫ t

0 aii(s)ds
(

z0
gi +

∫ t

0
cii(s)wgi(s)ds

)
=e
∫ t

0 aii(s)ds
(

z0
gi +

∫ t

0
cii(s)

(
vi(s)− ugi(s)

)
ds
)

≥e
∫ t

0 aii(s)ds

∫ t

0
cii(s)

( m

∑
j=1

|uji(s)|p +
(σp − ρp)

(2i − 2i−n)θ

) 1
P

− ugi(s)

ds


≥e
∫ t

0 aii(s)ds

(∫ t

0
cii(s)

((
up

gi(s) +
(σp − ρp)

(2i − 2i−n)θ

) 1
P
− ugi(s)

)
ds

)

>e
∫ t

0 aii(s)ds
(∫ t

0
cii(s)

((
up

gi(s)
) 1

P − ugi(s)
)

ds
)
= 0.

That is, zg(t) > 0, which implies zg(t) ̸= 0, for all t ≥ 0. Since the point zg(t) is
arbitrary, then it follows from Definition 6 that evasion is possible for the evader in
the games (6) and (7). This completes the proof of Theorem 2.
The smallest possible distance the evader can maintain from any of the m pursuers is
estimated in the section below.

• Estimation of the distance of the evader from the pursuers
We already have zj(t) ̸= 0 for all j = 1, 2, 3, · · · , m and for all t ∈ [0, θ]. Let ∥z0

j ∥
denote the initial distance of the evader from the jth pursuer; then

∥zj(t)∥ =

∥∥∥∥z0
j +

∫ t

0
C(s)wj(s)ds

∥∥∥∥
≥∥z0

j ∥ −
∥∥∥∥∫ t

0
C(s)wj(s)ds

∥∥∥∥
≥∥z0

j ∥ −
∫ t

0

∥∥C(s)wj(s)
∥∥ds

≥∥z0
j ∥ − λj(θ).

Note that ∥zj(t)∥ ≥ |zji(t)| for all t ∈ [0, θ] and for all i = 1, 2, 3, · · · , n.
Since z0

j /∈ Oω for all j, then we have

zji(t) =z0
ji +

∫ t

0
cii(s)wji(s)ds

≥z0
ji.

This implies
∥zj(t)∥ ≥ |z0

ji|

for all t ∈ [0, θ].
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Set

dj =


|z0

ji|, i f ∥z0
j ∥ − λj(θ) ≤ 0,

min
{
|z0

ji|, ∥z0
j ∥ − λj(θ)

}
, i f ∥z0

j ∥ − λj(θ) > 0,

for all i = 1, 2, 3, · · · , n; then we have ∥zj(t)∥ ≥ dj, 0 ≤ t ≤ θ. That is, the smallest
distance the evader can maintain from the jth pursuer is the value dj.

Figure 1. Illustration of the evader’s strategy (20).

Remark 2. It is worth noting that if the matrices A(t) = 0 and B(t) = η(t) (some scalar function),
the result obtained here for an evasion problem reduces to that of Rilwan et al. [6] irrespective of
the space considered. Additionally, if A(t) = 1, B(t) = −λi where λi > 0, i = 1, 2, · · · , m and
p = 2, the evasion problem considered here reduces to that of Ibragimov and Hasim [16] and also
Ibragimov et al. [4]. We employ a similar method of proof as in [16], but with more general dynamic
equations and also constraints in our work. The method of proof employed in this section is indeed an
improvement of the proposed method of solving an evasion problem in [9], where a similar dynamic
equation is considered with p = 2.

5. Illustrative Examples

This section presents examples to illustrate our results. Numerical values are assigned
to the players’ initial positions and also to all the parameters employed. In addition, the
matrix functions A(·) and B(·) are specified.

5.1. Example (Pursuit Problem)
Consider a differential game with the initial positions of the pursuer and evader given

as x0 = (1, 0) and y0 = (1, 1), respectively, and a fixed time θ = 1 with a dynamic equation
described by

·
z (t) = A(t)z(t) + B(t)(v(t)− u(t)), z(0) = z0, (22)

where

A(t) =
[
−2t 0

0 −2t

]
, B(t) =

[ √
t

√
t

2
√

t 0

]
.

Then from the definition of C(t) in (14),

C(t) =e−
∫ t

0 A(r)drB(t)

=

[
et2

0
0 et2

][ √
t

√
t

2
√

t 0

]

=

[ √
tet2 √

tet2

2
√

tet2
0

]
.
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The control functions of players are subject to

(∫ ∞

0
|u(s)|2ds

) 1
2
≤ 20,

(∫ ∞

0
|v(s)|2ds

) 1
2
≤ 11.

This implies that ρ = 20, σ = 11, p = q = 2.
First, we verify the hypothesis of Theorem 1 as follows, since it is required that

∫ θ

0

∥∥∥Cq−1(s)
∥∥∥p

ds ≤
(

ρ − σ

∥Λ−q(θ)z0∥

)p
. (23)

L.H.S.

∥Cq−1(t)∥p =∥C2−1(t)∥2

=|
√

tet2 |2 + |
√

tet2 |2 + |2
√

tet2 |2

=te2t2
+ te2t2

+ 4te2t2

=6te2t2

∫ 1

0
∥C(t)∥2dt =

∫ 1

0
6te2t2

dt

=
3
2

e2(1)2 − 3
2

e2(0)2

∫ 1

0
∥C(t)∥2dt =10.08. (24)

R.H.S.

Λ−2(θ) =
(

Λ2(1)
)−1

=

(∫ 1

0
C2(t)dt

)−1

=

(∫ 1

0

[
3te2t2

te2t2

2te2t2
2te2t2

])−1

=

([
4.79 1.6
3.19 3.19

])−1

Λ−2(1) =
[

0.31 −0.16
−0.31 0.47

]
.

∥Λ−2(1)z0∥ =

∥∥∥∥[ 0.31 −0.16
−0.31 0.47

][
0
1

]∥∥∥∥
=

∥∥∥∥[−0.16
0.47

]∥∥∥∥
=0.4965.(

ρ − σ

∥Λ−q(θ)z0∥

)p
=

(
20 − 11
0.4965

)2

=

(
9

0.4965

)2
(25)

=328.58.

Thus, ∫ θ

0

∥∥∥Cq−1(s)
∥∥∥p

ds <
(

ρ − σ

∥Λ−q(θ)z0∥

)p
.
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Hence, a pursuit is possible at time θ = 1 since the hypothesis in Theorem 1 is satisfied.
From Equation (11), we have

z(t) = e
∫ t

0 A(s)ds
(

z0 +
∫ t

0
e−
∫ s

0 A(r)drB(s)(v(s)− u(s))ds
)
= e

∫ t
0 A(s)ds(η(t)),

where

η(t) = z0 +
∫ t

0 C(s)(v(s)− u(s))ds.

Now η(t) = 0 is equivalent to z(t) = 0.
Applying the following strategy,

u(t) =


C(t)Λ−2(1)z0 + v(t), 0 ≤ t ≤ 1,

0, t > 1,

we have

η(t) =z0 +
∫ t

0
C(s)(v(s)− u(s))ds

η(1) =z0 +
∫ 1

0
C(s)

(
−C(s)Λ−2(1)z0

)
ds

=

[
0
1

]
−
∫ 1

0

[
3te2t2

te2t2

2te2t2
2te2t2

][
0.31 −0.16
−0.31 0.47

][
0
1

]
dt

=

[
0
1

]
−
∫ 1

0

[
−0.01te2t2

0.62te2t2

]
dt

=

[
0
1

]
−
[
−0.01

4 e2t2

0.62
4 e2t2

]1

0

=

[
0
1

]
−
([

−0.018
1.145

]
−
[
−0.003
0.155

])
=

[
0
1

]
−
[
−0.015

0.99

]
=

[
0.015
0.01

]
≈
[

0
0

]
,

which shows that a pursuit is completed.

5.2. Example (Evasion Problem)

Consider the motions of countably many pursuers pj, j ∈ {1, 2, 3, · · · , m} and an
evader E in the space R3 governed by the equation

.
z (t) = A(t)zj(t) + B(t)wj(t), zj(0) = z0

j , (26)

where

A(t) =

1 0 0
0 −2t 0
0 0 −3t2

, B =

2t 0 0
0 t 0

0 0 et
3

.

C(t) =e−
∫ t

0 A(r)drB(t)

=

2te−t 0 0
0 tet2

0
0 0 e2t3





Symmetry 2024, 16, 513 14 of 16

where c11(t) = 2te−t, c22(t) = tet2
, c33(t) = e2t3

. The control functions uj(·) and v(·) are
subject to ∫ ∞

0
||uj(t)||3dt ≤

(
3(

2j − 2j−3m
))3

and
∫ ∞

0
||v(t)||3dt ≤ 8,

respectively.
Given the initial position of the pursuers and evader as x0

j =
(
21, 22,−23) and y0 =

(0, 0, 0), respectively, observe that z0
j = y0 − x0

j =
(
−2,−22, 23) is not contained in the

octant Oω for each j ∈ Ii and

ρ = 3

√√√√ m

∑
j=1

(
3(

2j − 2j−3m
))3

=
3

(1 − 2−3m)
3

√√√√ m

∑
j=1

1
23j

=
3

(1 − 2−3m)
3

√
1
7
(1 − 2−3m)

=
3

7(1 − 2−3m)
.

Let θ = 4 since ρ < σ = 3
√

8 = 2; then by Theorem 2, if the evader adopts the
admissible strategy v(t) = (v1(t), v2(t), v3(t), where

vi(t) =



(
m

∑
j=1

|uji(t)|3 +
(σ − ρ)

(2i − 2i−3)4

) 1
3

, 0 ≤ t ≤ 4,

0, t > 4,

(27)

avoidance of contact from all the pursuers is guaranteed for all t > 0. That is, for any
arbitrary point zg(t) = (zg1(t), zg2(t), zg3(t)), g ∈ Ii, we have

zgi(t) =e
∫ t

0 aii(s)ds
(

z0
gi +

∫ t

0
cii(s)wgi(s)ds

)
=e
∫ t

0 aii(s)ds
(

z0
gi +

∫ t

0
cii(s)

(
vi(s)− ugi(s)

)
ds
)

≥e
∫ t

0 aii(s)ds

∫ t

0
cii(s)

( m

∑
j=1

|uji(t)|3 +
(σ − ρ)

(2i − 2i−1)4

) 1
3

− ugi(s)

ds


≥e
∫ t

0 aii(s)ds

(∫ t

0
cii(s)

((
u3

gi(s) +
(σ − ρ)

(2i − 2i−1)4

) 1
3
− ugi(s)

)
ds

)

>e
∫ t

0 aii(s)ds
(∫ t

0
cii(s)

((
u3

gi(s)
) 1

3 − ugi(s)
)

ds
)
= 0.

Hence, zg(t) ̸= 0, ∀ t ≥ 0.

6. Conclusions

We have studied the pursuit and evasion differential game of many pursuers and
one evader in Rn, with generalized integral constraints imposed on the players’ control
functions. Given some sufficient conditions and a finite time θ, we solved the pursuit
problem through the construction of an admissible pursuer’s strategy and showed that,
indeed, the strategy guarantees a completion of a pursuit at time θ. To solve the evasion
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problem, we constructed a coordinate-wise evader’s strategy in such a way that for each
coordinate, the evader keeps its distance away from any of the pursuers on the coordinate.
We further estimated the smallest possible distance the evader can preserve from any
of the pursuers at a given finite time. Compared with some of the problems studied in
the literature [2,4,6,7,10,12,14,16,23], which are actually particular cases of the problems
in this paper, we have solved both pursuit and evasion problems described by more
general dynamic equations and more general integral constraints via a comprehensive and
straightforward method of proof.

Following this research, we propose the following interesting problems for future
study: the first is to construct the guaranteed pursuit time, and the second is to estimate
the value of the game with respect to the game dynamics and constraints considered in
this work.
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