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Abstract: Exploring the ocean’s resources requires finding underwater objects, which is a challenging
task due to blurry images and small, densely packed targets. To improve the accuracy of underwater
target detection, we propose an enhanced version of the YOLOv7 network called YOLOv7-SN. Our
goal is to optimize the effectiveness and accuracy of underwater target detection by introducing a
series of innovations. We incorporate the channel attention module SE into the network’s key part
to improve the extraction of relevant features for underwater targets. We also introduce the RFE
module with dilated convolution behind the backbone network to capture multi-scale information.
Additionally, we use the Wasserstein distance as a new metric to replace the traditional loss function
and address the challenge of small target detection. Finally, we employ probe heads carrying implicit
knowledge to further enhance the model’s accuracy. These methods aim to optimize the efficacy of
underwater target detection and improve its ability to deal with the complexity and challenges of
underwater environments. We conducted experiments on the URPC2020, and RUIE datasets. The
results show that the mean accuracy (mAP) is improved by 5.9% and 3.9%, respectively, compared to
the baseline model.

Keywords: deep learning; underwater target detection; YOLOv7; symmetry

1. Introduction

The ocean occupies most of the Earth’s surface solution and is the habitat of tens
of thousands of marine organisms. Additionally, they hold immense potential as a valu-
able reservoir of resources, including minerals, oil, natural gas, and a variety of other
aquatic resources. Underwater image target detection research is gaining momentum
due to the growing need for intelligent underwater detection in academic, industrial, and
military applications [1]. This includes various underwater tasks such as target localiza-
tion, object search, aquatic life detection, seabed modeling, salvage and rescue, anti-mine,
anti-submarine, etc. [2]. Complex underwater environments can affect detection results.
Factors such as insufficient light due to weather conditions and variations in underwater
brightness due to water depth can increase the difficulty of detection. In addition, the
process of acquiring and transmitting underwater images is costly, further increasing the
complexity of this research problem [3].

In the field of artificial intelligence and deep learning, symmetry plays an important
role in helping to optimize model performance, simplify problems, and improve training
efficiency. The concept of symmetry includes the property that the input data or model
remains unchanged under certain transformations, such as spatial translation, rotation,
scaling invariance, etc. Symmetry is utilized to reduce the model complexity, improve the
generalization ability, and reduce the amount of data required.

In image processing, the symmetry of image translation, rotation, and other symme-
tries is used to design neural network structures with corresponding invariance, such as
convolutional neural networks, to effectively capture image features and realize recog-
nition and processing under symmetry transformation. In natural language processing,
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the symmetry of sentence structure is utilized to design models with positional coding or
attention mechanisms to improve semantic understanding and task performance. In deep
learning, the symmetry of the environment is utilized to reduce the training complexity
and improve the learning efficiency of the intelligences, e.g., learning symmetric strategies
in symmetric environments to reduce state space search. In summary, symmetry is of
great significance in AI and deep learning. By using symmetry to design efficient models,
we can improve generalization ability and training efficiency and promote technology
development and application.

Target detection can be classified into two main categories: traditional techniques
and deep learning-based techniques. Traditional techniques use established algorithms
and analytical methods to detect targets, while deep learning-based techniques employ
complex neural networks to learn and recognize targets from data. The process of finding
the object of interest in an image involves two subtasks: target localization and target
classification. Along with classifying the object, it is also necessary to determine its position.
The traditional method for detection involves using the sliding window method, which
requires more accurate traversal for higher accuracy detection. However, this method also
results in greater time overhead required for detection. Additionally, there is an issue with
the binary classification samples not being balanced due to the large number of background
images compared to foreground images. There is a significant difference between the
frames corresponding to the background and foreground in a single image. The problems
with traditional detection methods can be summarized into two points: high accuracy,
demanding a lot of time and complex operations, and a large number of samples needing
to be generated manually [4]. These advantages include the ability to effectively adapt
to the complexity and variability of detection targets, reduced dependency on human
intervention, and improved generalization capabilities. Currently, deep learning-based
target detection algorithms are mainly classified into two categories: two-stage target
recognition algorithms and single-stage target recognition algorithms. The R-CNN (area-
CNN) [5] family of algorithms, which combines convolutional neural networks (CNNs)
and area suggestions to achieve a notable performance boost, represents the former class
of methods. However, this algorithm’s poor computing performance makes it unsuitable
for most real-world underwater target detection applications. Single-stage algorithms
are currently the subject of extensive research in the field of target detection, and people
have been working to improve their accuracy and performance. Numerous studies and
experiments are being conducted to explore novel techniques and methodologies that can
further improve the effectiveness of these algorithms. Researchers are actively looking for
ways to optimize the existing single-stage algorithms by addressing various challenges
and limitations associated with them. These endeavors aim to elevate the accuracy and
overall performance of single-stage algorithms, making them a promising avenue for future
advancements in target detection research. This is because single-stage algorithms may
directly anticipate categorization and localization, which leads to faster detection speeds.
The representative algorithms of this type are the SSD (Single Shot MultiBox Detector) [6]
algorithm and the YOLO (You Only Look Once) [7] series algorithms (YOLO, YOLO9000 [8],
YOLOv3 [9], YOLOv4 [10], YOLOv5 [11], YOLOv6 [12], and YOLOv7 [13]).

In recent years, the field of underwater target identification has seen remarkable
advancements driven by numerous professionals, academics, and researchers. Li et al.
(2015) utilized Fast R-CNN [14] to identify and detect fish species. To expedite the fish
detection process, Faster R-CNN was subsequently employed. Zhou et al. [15] introduced
a Faster R-CNN network with feature mapping in 2017. To address the challenge of
underwater image blurring on extremely noisy backgrounds, Long Chen et al. proposed a
novel sample-weighted super network called Fast Processing in 2020 [16]. In the same year,
Qiao et al. [17] presented a combination of LWAP and MLP neural networks. Lei et al. [18]
made significant improvements to the YOLO-v5s model through three key modifications:
replacing the backbone network with a Swin Transformer.
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However, the underwater environment poses numerous challenges, including se-
vere color distortion and low visibility due to image capture in motion. These factors
significantly impede the field of underwater target detection. As a more advanced algo-
rithm within the YOLO family, YOLOv7 proves to be better suited for industrial appli-
cations. Based on the YOLOv7 model, this paper proposes an innovative approach for
underwater imaging.

The innovative contributions of this paper are as follows:

1. Some of the MP and ELAN modules have been modified, and the SE attention module
has been embedded in some of the modules to increase the model’s focus on regions
of interest, and SE layers have been added at specific locations in the model to further
enhance the model’s focus on regions of interest. As a result, the model can focus its
computational power on regions of interest;

2. To enhance detection accuracy, a decoupling head with implicit knowledge is em-
ployed, replacing the original detection head. This decoupling head captures addi-
tional implicit information without requiring additional processing steps;

3. To assess the similarity of BBox, a new metric called the Normalized Wasserstein
Distance (NWD) is introduced, replacing the traditional IoU metric. The NWD is
more appropriate for assessing similarity between small targets because it measures
distributional resemblance independent of target overlap.

The following sections of this paper are organized as follows: Section 2 outlines
the necessary knowledge for this paper. In Section 3, the theoretical foundations of the
proposed YOLOv7-SN model are introduced. Section 4 details the experimental evaluation
and performance analysis conducted on the underwater image dataset. Finally, Section 5
provides a summary of this work.

2. Related Work
2.1. YOLOv7

YOLOv7 is an algorithm for target detection that introduces model reparameteriza-
tion [19], a label assignment strategy [20], an ELAN-efficient network architecture [21],
and a training method with auxiliary heads in the network architecture. YOLOv7 and
YOLOv5 are similar in general, but with replacements and improvements in the internal
components of the network structure, the auxiliary training head, and the label assignment
idea. According to Figure 1, the YOLOv7 network consists of three different parts.
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The primary function of the input module in YOLOv7 is to perform essential pro-
cessing tasks on the input image, such as data augmentation, adaptive image scaling, and
anchor frame calculation. These tasks are crucial for pre-processing the input image and
preparing it for further analysis and detection.

The main feature extraction module in the YOLOv7 network is called the backbone
module. Its job is to acquire the input image and extract high-level semantic features that
will be used in the target detection task. The backbone module in YOLOv7 employs several
convolutional and other network layers to progressively decrease the resolution of the
input image. Simultaneously, it extracts increasingly abstract and significant features.

The Head module in the YOLOv7 model is mainly responsible for the final regression
prediction, which receives the multi-scale features from the Neck module and processes
them through a series of operations to finally generate the output of target detection.
The Head module usually includes convolutional layers, global average pooling layers,
fully connected layers, etc., which convert the feature maps into the target’s location and
category information. As an integral component of the Head module, the prediction
module typically encompasses convolutional and fully connected layers.

To enhance the YOLOv7 model, the proposed YOLOv7-SN network preserves the
overall structure of YOLOv7 while integrating a channel attention mechanism. This mecha-
nism introduces a dilated convolution module, which effectively replaces the conventional
detection head. The inclusion of a channel focus mechanism is intended to improve the
detection performance of the model by enhancing the network’s ability to selectively focus
on relevant features.

2.2. Attention Mechanisms

In the domain of computer vision, the human visual system tends to concentrate on
salient objects, disregarding irrelevant parts of the visual field that do not contribute to
object recognition [22]. Similar to this mechanism, the attention mechanism [23] in object
detection models guides the model to focus on important objects and their respective
locations within the acquired image [24]. Previous research has successfully integrated
attention mechanisms into deep neural networks with promising results in various tasks
such as object classification [25], image segmentation [26], and target detection [27].

Several attention modules have been proposed, including the SK module [28], the
CBAM module [29], and the TA module [30]. The CBAM module is an attention module
designed specifically for feedforward convolutional neural networks. By incorporating
both spatial and channel attention, the CBAM module enhances the model’s classification
performance. Another commonly used channel attention module is the SK module, which
was proposed in 2019. It leverages a convolutional kernel mechanism to assign varying
levels of importance to different convolutional kernels concerning additional input images.

Momenta’s Squeeze–Excite (SE) [31] network module, introduced in 2017, is another
attention module that has achieved notable success in the ImageNet image recognition
competition. The SE module models the interdependencies between feature channels and
learns the significance of each channel by assigning weights to features. This process
highlights key features while suppressing less-related ones. The SE module enhances
the representativeness of the model and improves the detection of blurred images while
maintaining a lightweight structure and minimal computational overhead.

2.3. Bounding Box Regression Loss Function

The Bounding Box Regression Loss Function [32] is a loss function used to measure
the difference between the predicted box and the real box in a target detection task. Its
goal is to optimize the accuracy of the target detection model by minimizing the distance
between the predicted box and the real box.

In recent years of research, the Bounding Box Regression Loss Function has undergone
an evolutionary process and mainly includes the following forms [33]:
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SmoothL1 Loss: SmoothL1 Loss is a smooth L1 loss function that uses L2 loss when
the difference between the predicted box and the real box is small and L1 loss when the
difference is large to reduce the influence of outliers. IoU Loss: IoU Loss is a measure of the
degree of overlap between the predicted and true frames by calculating the intersection
and concurrency ratio (IoU) between them. GIoU Loss: GIoU Loss is an improved IoU
Loss that takes into account information about the size and position of the bounding box
between the predicted and true boxes. DIoU Loss: DIoU Loss is a further improved IoU
Loss that takes into account the centroid distance between the predicted and real frames on
top of GIoU Loss. CIoU Loss: CIoU Loss is a further improvement of DIoU Loss, which
takes into account the difference in aspect ratio between the predicted frame and the real
frame based on DIoU Loss.

2.4. Implicit Knowledge

Implicit knowledge refers to knowledge that is acquired and utilized subconsciously.
However, there is currently no standard description or framework that comprehensively
explains the mechanisms of implicit learning and the acquisition of implicit knowledge.
In the context of neural networks, feature information acquired from shallow levels is
often called explicit knowledge, while feature information learned from deeper levels is
considered tacit knowledge. Implicit knowledge, on the other hand, is derived from deeper
layers and encompasses the model’s latent knowledge that is not directly related to the
observed data or specific comments. Explicit knowledge corresponds directly to observable
data and observations.

A network with implicit learning is a single, cohesive network that integrates the
encoding of implicit and explicit knowledge [34], similar to how the human brain acquires
knowledge through both conventional and subconscious learning. A unified network
can produce a unified representation that fulfills multiple purposes at once. Kernel space
alignment, multi-task learning convolutional neural networks, and prediction refinement
are all possible.

3. Method

This section presents the methodology for underwater target identification utilizing
the enhanced YOLOv7. The initial step involves dataset processing, encompassing both
data labeling and augmentation. Following this, the enhanced YOLOv7 network is utilized
to enhance the precision of the model’s detection. To be more specific, we substituted
the original detection header with the Efficient Decoupled Head with Implicit Learning,
integrated a module featuring null convolution into the backbone network, amalgamated
the SE attention mechanism with multiple modules, and ultimately bolstered the confidence
loss function.

3.1. The Proposed YOLOv7-SN Model

The proposed YOLOv7-SN model incorporates the new ELAN-S and MP-S modules,
replacing the original ELAN and MP-C3 modules. The SE attention mechanism is intro-
duced to enhance the channel characteristics of the input feature maps and thus improve
the accuracy and performance of the model. Following this, the RFE module [35], com-
prising three distinct dilated convolutions with varying dilated rates, is integrated after
the SPPCSPC module. This addition serves to capture additional multi-scale information,
expand the sensory area, and reduce the number of parameters, thus reducing the chance
of overfitting. Furthermore, the accuracy of model detection is heightened through the
replacement of the initial detection head with an efficient decoupling head utilizing implicit
learning. The location of these attention modules concerning the RFE module and the
structure of the modified YOLOv7-SN is illustrated in Figure 2.
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Figure 2. Structure of the proposed YOLO-SN network.

In terms of spectral feature extraction, the proposed YOLOv7-SN model is better
suited for complex underwater environments. First, the image to be detected is input into
the model. Through a series of improved convolutional and pooling layers, the model can
extract the feature information of the image. These features can include edges, textures,
etc. Then, after the convolutional layers, the model uses a fully connected layer to further
process the feature information. The fully connected layer can map the features of the image
to the target category. After the fully connected layer, the YOLO model uses a softmax
function to make probabilistic predictions for each target category. Finally, in addition
to the prediction of target categories, the model predicts bounding boxes for each target.
These bounding boxes are used to locate the position of the target in the image.

3.1.1. Improvements Based on the Attention Mechanism

The model can extract higher-level characteristics and more information thanks to the
enhanced backbone network’s introduction of the ELAN-S structure, which substitutes
the SE attention module for the CBS convolution module in the ELAN structure following
the contact module. This will be more beneficial in navigating the intricate and crowded
underwater landscape. The specific ELAN-S modules are shown in Figure 3.
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Furthermore, we use two enhanced MP-S modules to replace the original MP-C3
module. The MP-S module enables the network to adaptively adjust the channel weights,
while the header network can learn and capture contextual information more effectively.
The specific MP-S modules are shown in Figure 4.

The structural details of the SE Attention module are depicted in Figure 5. The module
starts with a global pooling layer and passes through a series of fully connected layers that
linearly transform the features using a weight matrix to achieve a nonlinear combination.
The ReLU activation function is used to solve the vanishing gradient problem and increase
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the sparsity of the model. Another activation function, Sigmoid, transforms the input
into a probability distribution. The “Scale” operation then normalizes the information to
ensure that the elements are appropriately weighted. By adaptively recalibrating the feature
response, the attention module can effectively catch and emphasize important features.
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3.1.2. RFE

After the SPPCSPC module, the upgraded head network adds an RFE module made
up of a dilated convolution [36] module. The RFE module (Receptive Field Enhancement
Module) makes full use of the different widths of the receptive fields of the feature maps
to obtain multi-scale information through dilated convolution. As seen in Figure 6, the
structure comprises two parts: an aggregated weighted layer based on dilated convolution
and a multi-branch. In the first part of the structure, features are extracted using three
different dilated convolutions with different dilated rates (1, 2, and 3). A fixed convolution
kernel of 3 × 3 size is used to extract multi-scale information, and residual concatenation is
used to avoid the gradient explosion problem. The output feature layer is finally obtained
by adding the characteristics of the four branches.

Target detection tasks require a large practical receptive domain, which can be further
increased using dilated convolution with several convolution kernels. The demand for
shape information in the target identification task necessitates a greater number of convolu-
tional kernels to extract more shape features. Therefore, models equipped with multiple
kernel convolutions are more suitable for intense downstream detection tasks.

3.1.3. Implicit Leaning-Based Detection Head

In terms of detection head improvement, we replace the original detection head with
an efficient decoupled head with implicit learning, applying implicit learning to multi-task
deep learning. Implicit learning, as the name suggests, refers to learning outside of normal
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learning (which we call epiphenomenal knowledge), just like the subconscious learning
of the brain, where the subconsciously learned experiences will be encoded and stored in
the brain. Utilizing this wealth of experience as a huge database, humans can efficiently
process data, even if it is not seen beforehand. In this paper, we encode implicit and explicit
knowledge together through a unified network to generate a unified representation that
serves both underwater detection tasks.
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The technique adds relatively little extra cost (less than 10,000 parameters and calcu-
lations) while improving the performance of the model. The combination of implicit and
display learning is used to complete various tasks, as seen in Figure 7.
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where x is observation, θ is the set of parameters of a neural network, fθ represents the
operation of the neural network, ϵ is the error term, and y is the target of a given task.

We use the joint network, which is based on the traditional network described above.
Together, we use explicit and implicit knowledge to model the error term and then use it
to guide the training process of the multipurpose network. The corresponding training
Formula (2) is as follows:

y = fθ(x) + ϵ + gϕ(ϵex(x), ϵim(z))
minϵ + gϕ(ϵex(x), ϵim(z))

(2)

where ϵex and ϵim are the arithmetic operations that model the explicit and implicit errors
of the observation x and latent code z, respectively. n is a mission-specific operation for
selectively integrating information from explicit and tacit knowledge. There are now some
ways to incorporate explicit knowledge, so we can further write (2) into (3).

y = fθ(x)⊗ gϕ(z) (3)

where ⊗ represents some possible operators that can combine fθ and gϕ. When ⊗ repre-
sents a multiplication operator, if the subsequent layer is a convolutional layer, then use
(4) for the integration. When ⊗ represents an addition operation, if the preceding layer
is a convolutional layer and there is no activation function. In this case, use (5) for the
integral operation.

x(l+1) = σ(Wl(gϕ(z)xl) + bl)

= σ(W ′
l(xl) + bl), where W ′

l = Wl gϕ(z)
(4)

x(l+1) = Wl(xl) + bl + gϕ(z)
= Wl(xl) + b′ l , where b′ l = bl + gϕ(z)

(5)

3.2. NWD-Based Loss Function Improvement

The original YOLOv7 model employs the CIoU (Compatible Intersection on Union)
bounding box loss function [37], which aims to address the potential instability associated
with typical IoU loss functions for bounding box regression by combining IoU with a
distance factor. Despite its good performance in many target detection applications, CIoU
loss still has certain shortcomings in tiny target recognition.

Due to the small size and few pixels of underwater targets, the distance and angle
differences between their bounding boxes are relatively small, and a slight localization
error can have a significant impact on the IoU, and the CIoU loss function may not be
able to effectively distinguish the differences between their components. Therefore, the
performance of CIoU in underwater target detection will be slightly insufficient.

To mitigate these issues, a Normalized Gaussian Wasserstein distance (NWD) [38] is
used instead of a loss function. The NWD is defined by the Wasserstein distance between
two normal distributions, as shown in Equation (6) below. This equation serves as the
mathematical definition of the NWD loss function.

NWD(Na, Nb) = exp

−

√
W2

2 (Na, Nb)

C

 (6)

where Na, Nb is the number of true frames in the neighborhood of each prediction frame,
and the coefficient W22(Na, Nb) is calculated as follows:

W2
2 (Na, Nb) =

∥∥∥∥∥
([

cxa, cya,
wa

2
,

ha

2

]T
,
[

cxb, cyb,
wb
2

,
hb
2

]T
)∥∥∥∥∥

2

2

(7)

Furthermore, the relative significance of actual and predicted frame loss is determined
by representing the height, width, and centroid coordinates of the two frames.
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In terms of small object recognition, the NWD loss function is superior to the CIoU in
the following ways:

1. Stability: The model is more stable since the NWD loss function explicitly accounts for
the distribution variations, making it more resistant to modest item localization mistakes;

2. Feature sensitivity: By better capturing the distinctive characteristics of small items,
the NWD loss function raises the model’s accuracy in identifying small objects;

3. Global Consideration: The model can better comprehend the relationship between
small things and other objects in the image because the NWD loss function considers
the global information of every object in the picture.

4. Experimental Verification and Analysis

This section describes the configuration of the experimental environment, hyperpa-
rameters, test datasets, and the optimization of the anchoring box. The experimental results
show that the proposed YOLOv7-SN model improves the accuracy and speed of under-
water target detection, thus verifying its effectiveness and superiority in the challenging
underwater detection environment.

4.1. Experimental Platform

The experimental hardware comprised an Intel (R) Xeon (R) CPU E5-2630 v3 @2.40
GHz and an NVIDIA GeForce RTX 3090 GPU, and PyTorch was utilized for debugging.
All experiments were trained for 200 episodes, and the performance of the YOLOv7-SN
model was assessed by training and testing with the specified hyperparameters provided
in Table 1.

Table 1. Experimental configuration.

Parameter Configuration

learning rate 0.01
momentum 0.9

weight decay 0.0005
batch size 16
image size 640 × 640

training epochs 200

4.2. Evaluation Metrics

In this paper, two metrics, detection accuracy and speed, are used to evaluate model
performance. Precision (P) and recall (R) are defined as follows:

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

where FP indicates the number of targets that were incorrectly detected, FN indicates the
number of targets that were not detected, and TP indicates the number of targets that were
correctly detected.

The performance of a model can be measured by observing the interaction between
precision and recall. Ideally, a model with high precision and increasing recall signifies
improved performance. The average precision (AP) is used to combine these metrics and
quantify detection accuracy, as formulated in Equation (10).

AP =
∫ 1

0
Precision(Recall)dRecall (10)

AP corresponds to the area under the precision–recall curve, with larger values repre-
senting higher network precision. In a multi-class target detection task, the average of all
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types of AP is the overall detection precision of the model, which is referred to as the mean
accuracy (mAP) in Equation (11).

mAP =
1

class_number

class_number

∑
1

AP (11)

4.3. Experimental Results and Analysis of the URPC Dataset
4.3.1. The URPC2020 Dataset

The dataset URPC2020 comprises 5543 pictures categorized into four groups: echinus,
holothurian, scallop, and starfish. To facilitate the training and testing of the proposed
algorithm, the dataset underwent partitioning into training and testing sets in an 8:2 pro-
portion. This division resulted in 4434 images allocated for training and 1109 images
designated for testing purposes. Within this dataset, various intricate scenarios are pre-
sented, including the clustering of underwater creatures leading to visual obstruction,
disparities in illumination, and blurring due to motion shots. These complexities render the
dataset a true-to-life depiction of the underwater setting, thereby enhancing the model’s
capacity for generalization. Nonetheless, the imbalanced distribution of samples across
categories, coupled with variations in their resolutions, presents notable hurdles during
model training. As shown in Figure 8a, the category statistics plot analyzes the number
of targets, in which the largest number is echinus, followed by scallops and starfish, and
the smallest number is holothurian. The boxplot demonstrates that the target box sizes
are relatively concentrated, and the regularized target location plot shows that the targets
are mainly concentrated in the horizontal direction, which is denser, while in the vertical
direction, they are relatively dispersed. The normalized target size map shows that the
target size is relatively concentrated, and most of them are small targets. Figure 8b shows
some sample images from the URPC dataset.
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4.3.2. Ablation Experiments of the URPC Dataset

We tested each module in YOLOv7-SN on the URPC dataset and investigated how it
affects the model in the ablation experiments. Table 2 displays the results of the ablation
experiments, with “

√
” denoting the application of a specific improvement technique.

According to the experimental results, the ELAN-S and MP-S modules, the RFE module,
and the NWD, with the addition of the SE attention mechanism, improved the mAP
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accuracy of the models by 1.3%, 2.4%, and 1.6%, respectively. In addition, the mAP@0.5:0.95
values increased by 0.7%, 0.5%, and 3.5%, respectively. By adding the RFE module and
replacing the loss function NWD based on ELAN-S and MP-S, the accuracy of mAP@0.5 is
improved by 5.4% and 4.3%, respectively. mAP@0.5:0.95 rose 3.2 percent and 1.5 percent,
respectively. The three parts are added at the same time, based on replacing the detection
head. The accuracy of mAP@0.5 is increased by 5.9%, and the value of mAP@0.5:0.95
is increased by 4.8%. Overall, the addition of several modules improved the detection
accuracy of the model.

Table 2. Ablation comparison of model performance improvement on the URPC dataset.

Model ELAN-S MP-S RFE NWD EDH mAP@0.5 (%) mAP@0.5:0.95 (%)

83.2 48.6
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pare it with popular target detection models such as YOLOv7, YOLOv6, YOLOv5s, and 
Faster-RCNN. The URPC dataset is trained and tested, and their evaluation metrics, such 
as mean average precision (mAP), are compared. The comparison results are shown in 
Table 3. From the table, it can be seen that the YOLOv7-AC model outperforms other 
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The accuracy of mAP@0.5 is increased by 5.9%, and the value of mAP@0.5:0.95 is increased 
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4.3.3. Comparison Experiments of the URPC Dataset 
To further demonstrate the superiority of the proposed YOLOv7-SN model, we com-

pare it with popular target detection models such as YOLOv7, YOLOv6, YOLOv5s, and 
Faster-RCNN. The URPC dataset is trained and tested, and their evaluation metrics, such 
as mean average precision (mAP), are compared. The comparison results are shown in 
Table 3. From the table, it can be seen that the YOLOv7-AC model outperforms other 
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4.3.2. Ablation Experiments of the URPC Dataset 
We tested each module in YOLOv7-SN on the URPC dataset and investigated how it 

affects the model in the ablation experiments. Table 2 displays the results of the ablation 
experiments, with “√” denoting the application of a specific improvement technique. Ac-
cording to the experimental results, the ELAN-S and MP-S modules, the RFE module, and 
the NWD, with the addition of the SE attention mechanism, improved the mAP accuracy 
of the models by 1.3%, 2.4%, and 1.6%, respectively. In addition, the mAP@0.5:0.95 values 
increased by 0.7%, 0.5%, and 3.5%, respectively. By adding the RFE module and replacing 
the loss function NWD based on ELAN-S and MP-S, the accuracy of mAP@0.5 is improved 
by 5.4% and 4.3%, respectively. mAP@0.5:0.95 rose 3.2 percent and 1.5 percent, respec-
tively. The three parts are added at the same time, based on replacing the detection head. 
The accuracy of mAP@0.5 is increased by 5.9%, and the value of mAP@0.5:0.95 is increased 
by 4.8%. Overall, the addition of several modules improved the detection accuracy of the 
model. 

Table 2. Ablation comparison of model performance improvement on the URPC dataset. 

Model ELAN-S MP-S RFE NWD EDH mAP@0.5 (%) mAP@0.5:0.95 (%) 
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      85.6 49.1 

YOLOv7      84.8 52.1 
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4.3.3. Comparison Experiments of the URPC Dataset 
To further demonstrate the superiority of the proposed YOLOv7-SN model, we com-

pare it with popular target detection models such as YOLOv7, YOLOv6, YOLOv5s, and 
Faster-RCNN. The URPC dataset is trained and tested, and their evaluation metrics, such 
as mean average precision (mAP), are compared. The comparison results are shown in 
Table 3. From the table, it can be seen that the YOLOv7-AC model outperforms other 
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4.3.2. Ablation Experiments of the URPC Dataset 
We tested each module in YOLOv7-SN on the URPC dataset and investigated how it 

affects the model in the ablation experiments. Table 2 displays the results of the ablation 
experiments, with “√” denoting the application of a specific improvement technique. Ac-
cording to the experimental results, the ELAN-S and MP-S modules, the RFE module, and 
the NWD, with the addition of the SE attention mechanism, improved the mAP accuracy 
of the models by 1.3%, 2.4%, and 1.6%, respectively. In addition, the mAP@0.5:0.95 values 
increased by 0.7%, 0.5%, and 3.5%, respectively. By adding the RFE module and replacing 
the loss function NWD based on ELAN-S and MP-S, the accuracy of mAP@0.5 is improved 
by 5.4% and 4.3%, respectively. mAP@0.5:0.95 rose 3.2 percent and 1.5 percent, respec-
tively. The three parts are added at the same time, based on replacing the detection head. 
The accuracy of mAP@0.5 is increased by 5.9%, and the value of mAP@0.5:0.95 is increased 
by 4.8%. Overall, the addition of several modules improved the detection accuracy of the 
model. 

Table 2. Ablation comparison of model performance improvement on the URPC dataset. 

Model ELAN-S MP-S RFE NWD EDH mAP@0.5 (%) mAP@0.5:0.95 (%) 
      83.2 48.6 
      83.6 49.6 
      84.5 49.3 
      85.6 49.1 

YOLOv7      84.8 52.1 
      88.6 51.8 
      87.5 50.1 
      88.3 50.5 
      89.1 53.4 

4.3.3. Comparison Experiments of the URPC Dataset 
To further demonstrate the superiority of the proposed YOLOv7-SN model, we com-

pare it with popular target detection models such as YOLOv7, YOLOv6, YOLOv5s, and 
Faster-RCNN. The URPC dataset is trained and tested, and their evaluation metrics, such 
as mean average precision (mAP), are compared. The comparison results are shown in 
Table 3. From the table, it can be seen that the YOLOv7-AC model outperforms other 
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4.3.2. Ablation Experiments of the URPC Dataset 
We tested each module in YOLOv7-SN on the URPC dataset and investigated how it 

affects the model in the ablation experiments. Table 2 displays the results of the ablation 
experiments, with “√” denoting the application of a specific improvement technique. Ac-
cording to the experimental results, the ELAN-S and MP-S modules, the RFE module, and 
the NWD, with the addition of the SE attention mechanism, improved the mAP accuracy 
of the models by 1.3%, 2.4%, and 1.6%, respectively. In addition, the mAP@0.5:0.95 values 
increased by 0.7%, 0.5%, and 3.5%, respectively. By adding the RFE module and replacing 
the loss function NWD based on ELAN-S and MP-S, the accuracy of mAP@0.5 is improved 
by 5.4% and 4.3%, respectively. mAP@0.5:0.95 rose 3.2 percent and 1.5 percent, respec-
tively. The three parts are added at the same time, based on replacing the detection head. 
The accuracy of mAP@0.5 is increased by 5.9%, and the value of mAP@0.5:0.95 is increased 
by 4.8%. Overall, the addition of several modules improved the detection accuracy of the 
model. 

Table 2. Ablation comparison of model performance improvement on the URPC dataset. 

Model ELAN-S MP-S RFE NWD EDH mAP@0.5 (%) mAP@0.5:0.95 (%) 
      83.2 48.6 
      83.6 49.6 
      84.5 49.3 
      85.6 49.1 

YOLOv7      84.8 52.1 
      88.6 51.8 
      87.5 50.1 
      88.3 50.5 
      89.1 53.4 

4.3.3. Comparison Experiments of the URPC Dataset 
To further demonstrate the superiority of the proposed YOLOv7-SN model, we com-

pare it with popular target detection models such as YOLOv7, YOLOv6, YOLOv5s, and 
Faster-RCNN. The URPC dataset is trained and tested, and their evaluation metrics, such 
as mean average precision (mAP), are compared. The comparison results are shown in 
Table 3. From the table, it can be seen that the YOLOv7-AC model outperforms other 
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4.3.2. Ablation Experiments of the URPC Dataset 
We tested each module in YOLOv7-SN on the URPC dataset and investigated how it 

affects the model in the ablation experiments. Table 2 displays the results of the ablation 
experiments, with “√” denoting the application of a specific improvement technique. Ac-
cording to the experimental results, the ELAN-S and MP-S modules, the RFE module, and 
the NWD, with the addition of the SE attention mechanism, improved the mAP accuracy 
of the models by 1.3%, 2.4%, and 1.6%, respectively. In addition, the mAP@0.5:0.95 values 
increased by 0.7%, 0.5%, and 3.5%, respectively. By adding the RFE module and replacing 
the loss function NWD based on ELAN-S and MP-S, the accuracy of mAP@0.5 is improved 
by 5.4% and 4.3%, respectively. mAP@0.5:0.95 rose 3.2 percent and 1.5 percent, respec-
tively. The three parts are added at the same time, based on replacing the detection head. 
The accuracy of mAP@0.5 is increased by 5.9%, and the value of mAP@0.5:0.95 is increased 
by 4.8%. Overall, the addition of several modules improved the detection accuracy of the 
model. 

Table 2. Ablation comparison of model performance improvement on the URPC dataset. 

Model ELAN-S MP-S RFE NWD EDH mAP@0.5 (%) mAP@0.5:0.95 (%) 
      83.2 48.6 
      83.6 49.6 
      84.5 49.3 
      85.6 49.1 

YOLOv7      84.8 52.1 
      88.6 51.8 
      87.5 50.1 
      88.3 50.5 
      89.1 53.4 

4.3.3. Comparison Experiments of the URPC Dataset 
To further demonstrate the superiority of the proposed YOLOv7-SN model, we com-

pare it with popular target detection models such as YOLOv7, YOLOv6, YOLOv5s, and 
Faster-RCNN. The URPC dataset is trained and tested, and their evaluation metrics, such 
as mean average precision (mAP), are compared. The comparison results are shown in 
Table 3. From the table, it can be seen that the YOLOv7-AC model outperforms other 
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4.3.2. Ablation Experiments of the URPC Dataset 
We tested each module in YOLOv7-SN on the URPC dataset and investigated how it 

affects the model in the ablation experiments. Table 2 displays the results of the ablation 
experiments, with “√” denoting the application of a specific improvement technique. Ac-
cording to the experimental results, the ELAN-S and MP-S modules, the RFE module, and 
the NWD, with the addition of the SE attention mechanism, improved the mAP accuracy 
of the models by 1.3%, 2.4%, and 1.6%, respectively. In addition, the mAP@0.5:0.95 values 
increased by 0.7%, 0.5%, and 3.5%, respectively. By adding the RFE module and replacing 
the loss function NWD based on ELAN-S and MP-S, the accuracy of mAP@0.5 is improved 
by 5.4% and 4.3%, respectively. mAP@0.5:0.95 rose 3.2 percent and 1.5 percent, respec-
tively. The three parts are added at the same time, based on replacing the detection head. 
The accuracy of mAP@0.5 is increased by 5.9%, and the value of mAP@0.5:0.95 is increased 
by 4.8%. Overall, the addition of several modules improved the detection accuracy of the 
model. 

Table 2. Ablation comparison of model performance improvement on the URPC dataset. 

Model ELAN-S MP-S RFE NWD EDH mAP@0.5 (%) mAP@0.5:0.95 (%) 
      83.2 48.6 
      83.6 49.6 
      84.5 49.3 
      85.6 49.1 

YOLOv7      84.8 52.1 
      88.6 51.8 
      87.5 50.1 
      88.3 50.5 
      89.1 53.4 

4.3.3. Comparison Experiments of the URPC Dataset 
To further demonstrate the superiority of the proposed YOLOv7-SN model, we com-

pare it with popular target detection models such as YOLOv7, YOLOv6, YOLOv5s, and 
Faster-RCNN. The URPC dataset is trained and tested, and their evaluation metrics, such 
as mean average precision (mAP), are compared. The comparison results are shown in 
Table 3. From the table, it can be seen that the YOLOv7-AC model outperforms other 
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4.3.2. Ablation Experiments of the URPC Dataset 
We tested each module in YOLOv7-SN on the URPC dataset and investigated how it 

affects the model in the ablation experiments. Table 2 displays the results of the ablation 
experiments, with “√” denoting the application of a specific improvement technique. Ac-
cording to the experimental results, the ELAN-S and MP-S modules, the RFE module, and 
the NWD, with the addition of the SE attention mechanism, improved the mAP accuracy 
of the models by 1.3%, 2.4%, and 1.6%, respectively. In addition, the mAP@0.5:0.95 values 
increased by 0.7%, 0.5%, and 3.5%, respectively. By adding the RFE module and replacing 
the loss function NWD based on ELAN-S and MP-S, the accuracy of mAP@0.5 is improved 
by 5.4% and 4.3%, respectively. mAP@0.5:0.95 rose 3.2 percent and 1.5 percent, respec-
tively. The three parts are added at the same time, based on replacing the detection head. 
The accuracy of mAP@0.5 is increased by 5.9%, and the value of mAP@0.5:0.95 is increased 
by 4.8%. Overall, the addition of several modules improved the detection accuracy of the 
model. 

Table 2. Ablation comparison of model performance improvement on the URPC dataset. 

Model ELAN-S MP-S RFE NWD EDH mAP@0.5 (%) mAP@0.5:0.95 (%) 
      83.2 48.6 
      83.6 49.6 
      84.5 49.3 
      85.6 49.1 

YOLOv7      84.8 52.1 
      88.6 51.8 
      87.5 50.1 
      88.3 50.5 
      89.1 53.4 

4.3.3. Comparison Experiments of the URPC Dataset 
To further demonstrate the superiority of the proposed YOLOv7-SN model, we com-

pare it with popular target detection models such as YOLOv7, YOLOv6, YOLOv5s, and 
Faster-RCNN. The URPC dataset is trained and tested, and their evaluation metrics, such 
as mean average precision (mAP), are compared. The comparison results are shown in 
Table 3. From the table, it can be seen that the YOLOv7-AC model outperforms other 
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4.3.2. Ablation Experiments of the URPC Dataset 
We tested each module in YOLOv7-SN on the URPC dataset and investigated how it 

affects the model in the ablation experiments. Table 2 displays the results of the ablation 
experiments, with “√” denoting the application of a specific improvement technique. Ac-
cording to the experimental results, the ELAN-S and MP-S modules, the RFE module, and 
the NWD, with the addition of the SE attention mechanism, improved the mAP accuracy 
of the models by 1.3%, 2.4%, and 1.6%, respectively. In addition, the mAP@0.5:0.95 values 
increased by 0.7%, 0.5%, and 3.5%, respectively. By adding the RFE module and replacing 
the loss function NWD based on ELAN-S and MP-S, the accuracy of mAP@0.5 is improved 
by 5.4% and 4.3%, respectively. mAP@0.5:0.95 rose 3.2 percent and 1.5 percent, respec-
tively. The three parts are added at the same time, based on replacing the detection head. 
The accuracy of mAP@0.5 is increased by 5.9%, and the value of mAP@0.5:0.95 is increased 
by 4.8%. Overall, the addition of several modules improved the detection accuracy of the 
model. 

Table 2. Ablation comparison of model performance improvement on the URPC dataset. 

Model ELAN-S MP-S RFE NWD EDH mAP@0.5 (%) mAP@0.5:0.95 (%) 
      83.2 48.6 
      83.6 49.6 
      84.5 49.3 
      85.6 49.1 

YOLOv7      84.8 52.1 
      88.6 51.8 
      87.5 50.1 
      88.3 50.5 
      89.1 53.4 

4.3.3. Comparison Experiments of the URPC Dataset 
To further demonstrate the superiority of the proposed YOLOv7-SN model, we com-

pare it with popular target detection models such as YOLOv7, YOLOv6, YOLOv5s, and 
Faster-RCNN. The URPC dataset is trained and tested, and their evaluation metrics, such 
as mean average precision (mAP), are compared. The comparison results are shown in 
Table 3. From the table, it can be seen that the YOLOv7-AC model outperforms other 
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4.3.2. Ablation Experiments of the URPC Dataset 
We tested each module in YOLOv7-SN on the URPC dataset and investigated how it 

affects the model in the ablation experiments. Table 2 displays the results of the ablation 
experiments, with “√” denoting the application of a specific improvement technique. Ac-
cording to the experimental results, the ELAN-S and MP-S modules, the RFE module, and 
the NWD, with the addition of the SE attention mechanism, improved the mAP accuracy 
of the models by 1.3%, 2.4%, and 1.6%, respectively. In addition, the mAP@0.5:0.95 values 
increased by 0.7%, 0.5%, and 3.5%, respectively. By adding the RFE module and replacing 
the loss function NWD based on ELAN-S and MP-S, the accuracy of mAP@0.5 is improved 
by 5.4% and 4.3%, respectively. mAP@0.5:0.95 rose 3.2 percent and 1.5 percent, respec-
tively. The three parts are added at the same time, based on replacing the detection head. 
The accuracy of mAP@0.5 is increased by 5.9%, and the value of mAP@0.5:0.95 is increased 
by 4.8%. Overall, the addition of several modules improved the detection accuracy of the 
model. 

Table 2. Ablation comparison of model performance improvement on the URPC dataset. 

Model ELAN-S MP-S RFE NWD EDH mAP@0.5 (%) mAP@0.5:0.95 (%) 
      83.2 48.6 
      83.6 49.6 
      84.5 49.3 
      85.6 49.1 

YOLOv7      84.8 52.1 
      88.6 51.8 
      87.5 50.1 
      88.3 50.5 
      89.1 53.4 

4.3.3. Comparison Experiments of the URPC Dataset 
To further demonstrate the superiority of the proposed YOLOv7-SN model, we com-

pare it with popular target detection models such as YOLOv7, YOLOv6, YOLOv5s, and 
Faster-RCNN. The URPC dataset is trained and tested, and their evaluation metrics, such 
as mean average precision (mAP), are compared. The comparison results are shown in 
Table 3. From the table, it can be seen that the YOLOv7-AC model outperforms other 
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4.3.2. Ablation Experiments of the URPC Dataset 
We tested each module in YOLOv7-SN on the URPC dataset and investigated how it 

affects the model in the ablation experiments. Table 2 displays the results of the ablation 
experiments, with “√” denoting the application of a specific improvement technique. Ac-
cording to the experimental results, the ELAN-S and MP-S modules, the RFE module, and 
the NWD, with the addition of the SE attention mechanism, improved the mAP accuracy 
of the models by 1.3%, 2.4%, and 1.6%, respectively. In addition, the mAP@0.5:0.95 values 
increased by 0.7%, 0.5%, and 3.5%, respectively. By adding the RFE module and replacing 
the loss function NWD based on ELAN-S and MP-S, the accuracy of mAP@0.5 is improved 
by 5.4% and 4.3%, respectively. mAP@0.5:0.95 rose 3.2 percent and 1.5 percent, respec-
tively. The three parts are added at the same time, based on replacing the detection head. 
The accuracy of mAP@0.5 is increased by 5.9%, and the value of mAP@0.5:0.95 is increased 
by 4.8%. Overall, the addition of several modules improved the detection accuracy of the 
model. 

Table 2. Ablation comparison of model performance improvement on the URPC dataset. 

Model ELAN-S MP-S RFE NWD EDH mAP@0.5 (%) mAP@0.5:0.95 (%) 
      83.2 48.6 
      83.6 49.6 
      84.5 49.3 
      85.6 49.1 

YOLOv7      84.8 52.1 
      88.6 51.8 
      87.5 50.1 
      88.3 50.5 
      89.1 53.4 

4.3.3. Comparison Experiments of the URPC Dataset 
To further demonstrate the superiority of the proposed YOLOv7-SN model, we com-

pare it with popular target detection models such as YOLOv7, YOLOv6, YOLOv5s, and 
Faster-RCNN. The URPC dataset is trained and tested, and their evaluation metrics, such 
as mean average precision (mAP), are compared. The comparison results are shown in 
Table 3. From the table, it can be seen that the YOLOv7-AC model outperforms other 
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4.3.2. Ablation Experiments of the URPC Dataset 
We tested each module in YOLOv7-SN on the URPC dataset and investigated how it 

affects the model in the ablation experiments. Table 2 displays the results of the ablation 
experiments, with “√” denoting the application of a specific improvement technique. Ac-
cording to the experimental results, the ELAN-S and MP-S modules, the RFE module, and 
the NWD, with the addition of the SE attention mechanism, improved the mAP accuracy 
of the models by 1.3%, 2.4%, and 1.6%, respectively. In addition, the mAP@0.5:0.95 values 
increased by 0.7%, 0.5%, and 3.5%, respectively. By adding the RFE module and replacing 
the loss function NWD based on ELAN-S and MP-S, the accuracy of mAP@0.5 is improved 
by 5.4% and 4.3%, respectively. mAP@0.5:0.95 rose 3.2 percent and 1.5 percent, respec-
tively. The three parts are added at the same time, based on replacing the detection head. 
The accuracy of mAP@0.5 is increased by 5.9%, and the value of mAP@0.5:0.95 is increased 
by 4.8%. Overall, the addition of several modules improved the detection accuracy of the 
model. 

Table 2. Ablation comparison of model performance improvement on the URPC dataset. 

Model ELAN-S MP-S RFE NWD EDH mAP@0.5 (%) mAP@0.5:0.95 (%) 
      83.2 48.6 
      83.6 49.6 
      84.5 49.3 
      85.6 49.1 

YOLOv7      84.8 52.1 
      88.6 51.8 
      87.5 50.1 
      88.3 50.5 
      89.1 53.4 

4.3.3. Comparison Experiments of the URPC Dataset 
To further demonstrate the superiority of the proposed YOLOv7-SN model, we com-

pare it with popular target detection models such as YOLOv7, YOLOv6, YOLOv5s, and 
Faster-RCNN. The URPC dataset is trained and tested, and their evaluation metrics, such 
as mean average precision (mAP), are compared. The comparison results are shown in 
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4.3.3. Comparison Experiments of the URPC Dataset

To further demonstrate the superiority of the proposed YOLOv7-SN model, we com-
pare it with popular target detection models such as YOLOv7, YOLOv6, YOLOv5s, and
Faster-RCNN. The URPC dataset is trained and tested, and their evaluation metrics, such as
mean average precision (mAP), are compared. The comparison results are shown in Table 3.
From the table, it can be seen that the YOLOv7-AC model outperforms other detection
algorithms, with a mAP that is 5.9% higher than that of YOLOv7 and 6.5%, 9.3%, and 9.4%
higher than that of YOLOv6, YOLOv5s, and Faster-RCNN, respectively. We also conducted
experiments on YOLOv8, which is more novel than YOLOv7, and as shown by the results,
our proposed network is 3.1% and 2.0% more accurate than YOLOv8n and YOLOv8s on the
URPC2020 dataset, respectively. These experimental results demonstrate the superiority of
the method for underwater target detection.

Table 3. Performance comparison of target detection model on the URPC2020 dataset.

Model Precision (%) Recall (%) mAP@0.5 (%) mAP@0.5:0.95 (%)

SSD [39] 74.2 68.7 75.4 38.8
RetinaNet [40] 75.2 66.8 73.4 32.9
Faster-RCNN 78.8 73.1 76.1 35.4
YOLOX [41] 73.3 64.1 69.5 31.3

YOLOv5s 78.9 75.3 80.8 47.7
YOLOv6 81.7 79.1 80.4 45.1
YOLOv7 82.9 78.3 83.2 48.6

YOLOv8n 83.8 79.2 85.7 50.5
YOLOv8s 86.4 82.1 87.1 51.7

YOLOv7-SN 88.2 84.8 89.1 53.4

4.4. Experimental Results and Analysis of the RUIE Dataset
4.4.1. The RUIE Dataset

The RUIE dataset was proposed by Liu et al. [42]. The dataset is characterized by
large data volumes, diverse scattering levels, rich color casts, and rich detection targets. It
includes three subsets, UIQS (Underwater Image Quality Set), UCCS (Underwater Color
Cast Set), and UHTS (Underwater Higher-Level Task-Driven Set), which can be used for
underwater image enhancement, color correction, and target detection tasks, respectively.
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The UIQS includes 3630 images, the UCCS includes 300 images, and the UHTS includes
300 images. Notably, 80% of the images were randomly sampled as the training set, and
the remaining 20% were used as the testing set for validation. As shown in Figure 9a, the
category statistic map analyzes the number of targets in three categories, in which the
largest number is urchin, followed by holothurian, and the smallest number is scallop. The
boxplot demonstrates that the target box sizes are relatively dispersed; the regularized
target location map shows that the centroids of the target boxes show a relatively discrete
distribution in the region, with no obvious aggregation or regularity. The normalized target
size map shows that the target sizes are relatively concentrated, most of which are small
targets. Figure 9b shows some sample images from the RUIE dataset.
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4.4.2. Ablation Experiments of the RUIE Dataset

In the second ablation experiment, we used the RUIE underwater dataset, focusing
on the effect of the detection head with implicit learning (EHD) on the model. The results
of the experiment are shown in Table 4, where the mAP@0.5 of the model is improved
by 1.3% when only the detection head is modified and by 0.5%, 1.2%, and 0.7% when the
modification network is added together with the other three modules. The addition of EHD
was a 1.2% increase in the model’s mAP@0.5 with the addition of the other three models.
When several modules are added to the modified network at the same time, the mAP of
the model is increased by 4.9%, and the value of mAP@0.5:0.95 is increased by 6.7%. In
summary, our proposed YOLOv7-SN also works well on the RUIE underwater dataset.

4.4.3. Comparison Experiments of the RUIE Dataset

The model’s validity was confirmed through comparison with many benchmark
models. YOLOv5s, Faster-RCNN, YOLOv6, and YOLOv7 models used include Faster-
RCNN, YOLOv6, and YOLOv7, among others. The same undersea dataset was used
for testing, and each model was trained in the same context with identical parameter
configurations. Table 5 displays the dataset and the comparison experiment findings. Our
enhanced YOLOv7 detection framework outperforms all previous original YOLO models,
achieving 83.5% for mAP@0.5. These results also show that it performs 7.0% and 8.9%
better than RetinaNet and Faster-RCNN, respectively. We also conducted experiments on
YOLOv8, which is more novel than YOLOv7, and as shown by the results, our proposed
network is 0.8% and 1.1% more accurate than YOLOv8n and YOLOv8s on the RUIE dataset,
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respectively. Based on these results, our proposed novel YOLOv7 network architecture
exhibits excellent performance.

Table 4. Ablation comparison of model performance improvement on the RUIE dataset.

Model ELAN-S MP-S RFE NWD EDH mAP@0.5 (%) mAP@0.5:0.95 (%)

79.6 43.1
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4.3.2. Ablation Experiments of the URPC Dataset 
We tested each module in YOLOv7-SN on the URPC dataset and investigated how it 

affects the model in the ablation experiments. Table 2 displays the results of the ablation 
experiments, with “√” denoting the application of a specific improvement technique. Ac-
cording to the experimental results, the ELAN-S and MP-S modules, the RFE module, and 
the NWD, with the addition of the SE attention mechanism, improved the mAP accuracy 
of the models by 1.3%, 2.4%, and 1.6%, respectively. In addition, the mAP@0.5:0.95 values 
increased by 0.7%, 0.5%, and 3.5%, respectively. By adding the RFE module and replacing 
the loss function NWD based on ELAN-S and MP-S, the accuracy of mAP@0.5 is improved 
by 5.4% and 4.3%, respectively. mAP@0.5:0.95 rose 3.2 percent and 1.5 percent, respec-
tively. The three parts are added at the same time, based on replacing the detection head. 
The accuracy of mAP@0.5 is increased by 5.9%, and the value of mAP@0.5:0.95 is increased 
by 4.8%. Overall, the addition of several modules improved the detection accuracy of the 
model. 

Table 2. Ablation comparison of model performance improvement on the URPC dataset. 

Model ELAN-S MP-S RFE NWD EDH mAP@0.5 (%) mAP@0.5:0.95 (%) 
      83.2 48.6 
      83.6 49.6 
      84.5 49.3 
      85.6 49.1 

YOLOv7      84.8 52.1 
      88.6 51.8 
      87.5 50.1 
      88.3 50.5 
      89.1 53.4 

4.3.3. Comparison Experiments of the URPC Dataset 
To further demonstrate the superiority of the proposed YOLOv7-SN model, we com-

pare it with popular target detection models such as YOLOv7, YOLOv6, YOLOv5s, and 
Faster-RCNN. The URPC dataset is trained and tested, and their evaluation metrics, such 
as mean average precision (mAP), are compared. The comparison results are shown in 
Table 3. From the table, it can be seen that the YOLOv7-AC model outperforms other 
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Figure 8. The sample information for URPC2020 is (a) labels: Upper left is the distribution of cate-
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box centroids; lower right is the distribution of box aspect ratios. (b) example images. 

4.3.2. Ablation Experiments of the URPC Dataset 
We tested each module in YOLOv7-SN on the URPC dataset and investigated how it 

affects the model in the ablation experiments. Table 2 displays the results of the ablation 
experiments, with “√” denoting the application of a specific improvement technique. Ac-
cording to the experimental results, the ELAN-S and MP-S modules, the RFE module, and 
the NWD, with the addition of the SE attention mechanism, improved the mAP accuracy 
of the models by 1.3%, 2.4%, and 1.6%, respectively. In addition, the mAP@0.5:0.95 values 
increased by 0.7%, 0.5%, and 3.5%, respectively. By adding the RFE module and replacing 
the loss function NWD based on ELAN-S and MP-S, the accuracy of mAP@0.5 is improved 
by 5.4% and 4.3%, respectively. mAP@0.5:0.95 rose 3.2 percent and 1.5 percent, respec-
tively. The three parts are added at the same time, based on replacing the detection head. 
The accuracy of mAP@0.5 is increased by 5.9%, and the value of mAP@0.5:0.95 is increased 
by 4.8%. Overall, the addition of several modules improved the detection accuracy of the 
model. 

Table 2. Ablation comparison of model performance improvement on the URPC dataset. 

Model ELAN-S MP-S RFE NWD EDH mAP@0.5 (%) mAP@0.5:0.95 (%) 
      83.2 48.6 
      83.6 49.6 
      84.5 49.3 
      85.6 49.1 

YOLOv7      84.8 52.1 
      88.6 51.8 
      87.5 50.1 
      88.3 50.5 
      89.1 53.4 

4.3.3. Comparison Experiments of the URPC Dataset 
To further demonstrate the superiority of the proposed YOLOv7-SN model, we com-

pare it with popular target detection models such as YOLOv7, YOLOv6, YOLOv5s, and 
Faster-RCNN. The URPC dataset is trained and tested, and their evaluation metrics, such 
as mean average precision (mAP), are compared. The comparison results are shown in 
Table 3. From the table, it can be seen that the YOLOv7-AC model outperforms other 
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Figure 8. The sample information for URPC2020 is (a) labels: Upper left is the distribution of cate-
gories; upper right is a visualization of all box sizes; lower left is the distribution of the position of 
box centroids; lower right is the distribution of box aspect ratios. (b) example images. 

4.3.2. Ablation Experiments of the URPC Dataset 
We tested each module in YOLOv7-SN on the URPC dataset and investigated how it 

affects the model in the ablation experiments. Table 2 displays the results of the ablation 
experiments, with “√” denoting the application of a specific improvement technique. Ac-
cording to the experimental results, the ELAN-S and MP-S modules, the RFE module, and 
the NWD, with the addition of the SE attention mechanism, improved the mAP accuracy 
of the models by 1.3%, 2.4%, and 1.6%, respectively. In addition, the mAP@0.5:0.95 values 
increased by 0.7%, 0.5%, and 3.5%, respectively. By adding the RFE module and replacing 
the loss function NWD based on ELAN-S and MP-S, the accuracy of mAP@0.5 is improved 
by 5.4% and 4.3%, respectively. mAP@0.5:0.95 rose 3.2 percent and 1.5 percent, respec-
tively. The three parts are added at the same time, based on replacing the detection head. 
The accuracy of mAP@0.5 is increased by 5.9%, and the value of mAP@0.5:0.95 is increased 
by 4.8%. Overall, the addition of several modules improved the detection accuracy of the 
model. 

Table 2. Ablation comparison of model performance improvement on the URPC dataset. 

Model ELAN-S MP-S RFE NWD EDH mAP@0.5 (%) mAP@0.5:0.95 (%) 
      83.2 48.6 
      83.6 49.6 
      84.5 49.3 
      85.6 49.1 

YOLOv7      84.8 52.1 
      88.6 51.8 
      87.5 50.1 
      88.3 50.5 
      89.1 53.4 

4.3.3. Comparison Experiments of the URPC Dataset 
To further demonstrate the superiority of the proposed YOLOv7-SN model, we com-

pare it with popular target detection models such as YOLOv7, YOLOv6, YOLOv5s, and 
Faster-RCNN. The URPC dataset is trained and tested, and their evaluation metrics, such 
as mean average precision (mAP), are compared. The comparison results are shown in 
Table 3. From the table, it can be seen that the YOLOv7-AC model outperforms other 
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Figure 8. The sample information for URPC2020 is (a) labels: Upper left is the distribution of cate-
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box centroids; lower right is the distribution of box aspect ratios. (b) example images. 

4.3.2. Ablation Experiments of the URPC Dataset 
We tested each module in YOLOv7-SN on the URPC dataset and investigated how it 

affects the model in the ablation experiments. Table 2 displays the results of the ablation 
experiments, with “√” denoting the application of a specific improvement technique. Ac-
cording to the experimental results, the ELAN-S and MP-S modules, the RFE module, and 
the NWD, with the addition of the SE attention mechanism, improved the mAP accuracy 
of the models by 1.3%, 2.4%, and 1.6%, respectively. In addition, the mAP@0.5:0.95 values 
increased by 0.7%, 0.5%, and 3.5%, respectively. By adding the RFE module and replacing 
the loss function NWD based on ELAN-S and MP-S, the accuracy of mAP@0.5 is improved 
by 5.4% and 4.3%, respectively. mAP@0.5:0.95 rose 3.2 percent and 1.5 percent, respec-
tively. The three parts are added at the same time, based on replacing the detection head. 
The accuracy of mAP@0.5 is increased by 5.9%, and the value of mAP@0.5:0.95 is increased 
by 4.8%. Overall, the addition of several modules improved the detection accuracy of the 
model. 

Table 2. Ablation comparison of model performance improvement on the URPC dataset. 

Model ELAN-S MP-S RFE NWD EDH mAP@0.5 (%) mAP@0.5:0.95 (%) 
      83.2 48.6 
      83.6 49.6 
      84.5 49.3 
      85.6 49.1 

YOLOv7      84.8 52.1 
      88.6 51.8 
      87.5 50.1 
      88.3 50.5 
      89.1 53.4 

4.3.3. Comparison Experiments of the URPC Dataset 
To further demonstrate the superiority of the proposed YOLOv7-SN model, we com-

pare it with popular target detection models such as YOLOv7, YOLOv6, YOLOv5s, and 
Faster-RCNN. The URPC dataset is trained and tested, and their evaluation metrics, such 
as mean average precision (mAP), are compared. The comparison results are shown in 
Table 3. From the table, it can be seen that the YOLOv7-AC model outperforms other 
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Figure 8. The sample information for URPC2020 is (a) labels: Upper left is the distribution of cate-
gories; upper right is a visualization of all box sizes; lower left is the distribution of the position of 
box centroids; lower right is the distribution of box aspect ratios. (b) example images. 

4.3.2. Ablation Experiments of the URPC Dataset 
We tested each module in YOLOv7-SN on the URPC dataset and investigated how it 

affects the model in the ablation experiments. Table 2 displays the results of the ablation 
experiments, with “√” denoting the application of a specific improvement technique. Ac-
cording to the experimental results, the ELAN-S and MP-S modules, the RFE module, and 
the NWD, with the addition of the SE attention mechanism, improved the mAP accuracy 
of the models by 1.3%, 2.4%, and 1.6%, respectively. In addition, the mAP@0.5:0.95 values 
increased by 0.7%, 0.5%, and 3.5%, respectively. By adding the RFE module and replacing 
the loss function NWD based on ELAN-S and MP-S, the accuracy of mAP@0.5 is improved 
by 5.4% and 4.3%, respectively. mAP@0.5:0.95 rose 3.2 percent and 1.5 percent, respec-
tively. The three parts are added at the same time, based on replacing the detection head. 
The accuracy of mAP@0.5 is increased by 5.9%, and the value of mAP@0.5:0.95 is increased 
by 4.8%. Overall, the addition of several modules improved the detection accuracy of the 
model. 

Table 2. Ablation comparison of model performance improvement on the URPC dataset. 

Model ELAN-S MP-S RFE NWD EDH mAP@0.5 (%) mAP@0.5:0.95 (%) 
      83.2 48.6 
      83.6 49.6 
      84.5 49.3 
      85.6 49.1 

YOLOv7      84.8 52.1 
      88.6 51.8 
      87.5 50.1 
      88.3 50.5 
      89.1 53.4 

4.3.3. Comparison Experiments of the URPC Dataset 
To further demonstrate the superiority of the proposed YOLOv7-SN model, we com-

pare it with popular target detection models such as YOLOv7, YOLOv6, YOLOv5s, and 
Faster-RCNN. The URPC dataset is trained and tested, and their evaluation metrics, such 
as mean average precision (mAP), are compared. The comparison results are shown in 
Table 3. From the table, it can be seen that the YOLOv7-AC model outperforms other 
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Figure 8. The sample information for URPC2020 is (a) labels: Upper left is the distribution of cate-
gories; upper right is a visualization of all box sizes; lower left is the distribution of the position of 
box centroids; lower right is the distribution of box aspect ratios. (b) example images. 

4.3.2. Ablation Experiments of the URPC Dataset 
We tested each module in YOLOv7-SN on the URPC dataset and investigated how it 

affects the model in the ablation experiments. Table 2 displays the results of the ablation 
experiments, with “√” denoting the application of a specific improvement technique. Ac-
cording to the experimental results, the ELAN-S and MP-S modules, the RFE module, and 
the NWD, with the addition of the SE attention mechanism, improved the mAP accuracy 
of the models by 1.3%, 2.4%, and 1.6%, respectively. In addition, the mAP@0.5:0.95 values 
increased by 0.7%, 0.5%, and 3.5%, respectively. By adding the RFE module and replacing 
the loss function NWD based on ELAN-S and MP-S, the accuracy of mAP@0.5 is improved 
by 5.4% and 4.3%, respectively. mAP@0.5:0.95 rose 3.2 percent and 1.5 percent, respec-
tively. The three parts are added at the same time, based on replacing the detection head. 
The accuracy of mAP@0.5 is increased by 5.9%, and the value of mAP@0.5:0.95 is increased 
by 4.8%. Overall, the addition of several modules improved the detection accuracy of the 
model. 

Table 2. Ablation comparison of model performance improvement on the URPC dataset. 

Model ELAN-S MP-S RFE NWD EDH mAP@0.5 (%) mAP@0.5:0.95 (%) 
      83.2 48.6 
      83.6 49.6 
      84.5 49.3 
      85.6 49.1 

YOLOv7      84.8 52.1 
      88.6 51.8 
      87.5 50.1 
      88.3 50.5 
      89.1 53.4 

4.3.3. Comparison Experiments of the URPC Dataset 
To further demonstrate the superiority of the proposed YOLOv7-SN model, we com-

pare it with popular target detection models such as YOLOv7, YOLOv6, YOLOv5s, and 
Faster-RCNN. The URPC dataset is trained and tested, and their evaluation metrics, such 
as mean average precision (mAP), are compared. The comparison results are shown in 
Table 3. From the table, it can be seen that the YOLOv7-AC model outperforms other 
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Figure 8. The sample information for URPC2020 is (a) labels: Upper left is the distribution of cate-
gories; upper right is a visualization of all box sizes; lower left is the distribution of the position of 
box centroids; lower right is the distribution of box aspect ratios. (b) example images. 

4.3.2. Ablation Experiments of the URPC Dataset 
We tested each module in YOLOv7-SN on the URPC dataset and investigated how it 

affects the model in the ablation experiments. Table 2 displays the results of the ablation 
experiments, with “√” denoting the application of a specific improvement technique. Ac-
cording to the experimental results, the ELAN-S and MP-S modules, the RFE module, and 
the NWD, with the addition of the SE attention mechanism, improved the mAP accuracy 
of the models by 1.3%, 2.4%, and 1.6%, respectively. In addition, the mAP@0.5:0.95 values 
increased by 0.7%, 0.5%, and 3.5%, respectively. By adding the RFE module and replacing 
the loss function NWD based on ELAN-S and MP-S, the accuracy of mAP@0.5 is improved 
by 5.4% and 4.3%, respectively. mAP@0.5:0.95 rose 3.2 percent and 1.5 percent, respec-
tively. The three parts are added at the same time, based on replacing the detection head. 
The accuracy of mAP@0.5 is increased by 5.9%, and the value of mAP@0.5:0.95 is increased 
by 4.8%. Overall, the addition of several modules improved the detection accuracy of the 
model. 

Table 2. Ablation comparison of model performance improvement on the URPC dataset. 

Model ELAN-S MP-S RFE NWD EDH mAP@0.5 (%) mAP@0.5:0.95 (%) 
      83.2 48.6 
      83.6 49.6 
      84.5 49.3 
      85.6 49.1 

YOLOv7      84.8 52.1 
      88.6 51.8 
      87.5 50.1 
      88.3 50.5 
      89.1 53.4 

4.3.3. Comparison Experiments of the URPC Dataset 
To further demonstrate the superiority of the proposed YOLOv7-SN model, we com-

pare it with popular target detection models such as YOLOv7, YOLOv6, YOLOv5s, and 
Faster-RCNN. The URPC dataset is trained and tested, and their evaluation metrics, such 
as mean average precision (mAP), are compared. The comparison results are shown in 
Table 3. From the table, it can be seen that the YOLOv7-AC model outperforms other 
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Figure 8. The sample information for URPC2020 is (a) labels: Upper left is the distribution of cate-
gories; upper right is a visualization of all box sizes; lower left is the distribution of the position of 
box centroids; lower right is the distribution of box aspect ratios. (b) example images. 

4.3.2. Ablation Experiments of the URPC Dataset 
We tested each module in YOLOv7-SN on the URPC dataset and investigated how it 

affects the model in the ablation experiments. Table 2 displays the results of the ablation 
experiments, with “√” denoting the application of a specific improvement technique. Ac-
cording to the experimental results, the ELAN-S and MP-S modules, the RFE module, and 
the NWD, with the addition of the SE attention mechanism, improved the mAP accuracy 
of the models by 1.3%, 2.4%, and 1.6%, respectively. In addition, the mAP@0.5:0.95 values 
increased by 0.7%, 0.5%, and 3.5%, respectively. By adding the RFE module and replacing 
the loss function NWD based on ELAN-S and MP-S, the accuracy of mAP@0.5 is improved 
by 5.4% and 4.3%, respectively. mAP@0.5:0.95 rose 3.2 percent and 1.5 percent, respec-
tively. The three parts are added at the same time, based on replacing the detection head. 
The accuracy of mAP@0.5 is increased by 5.9%, and the value of mAP@0.5:0.95 is increased 
by 4.8%. Overall, the addition of several modules improved the detection accuracy of the 
model. 

Table 2. Ablation comparison of model performance improvement on the URPC dataset. 

Model ELAN-S MP-S RFE NWD EDH mAP@0.5 (%) mAP@0.5:0.95 (%) 
      83.2 48.6 
      83.6 49.6 
      84.5 49.3 
      85.6 49.1 

YOLOv7      84.8 52.1 
      88.6 51.8 
      87.5 50.1 
      88.3 50.5 
      89.1 53.4 

4.3.3. Comparison Experiments of the URPC Dataset 
To further demonstrate the superiority of the proposed YOLOv7-SN model, we com-

pare it with popular target detection models such as YOLOv7, YOLOv6, YOLOv5s, and 
Faster-RCNN. The URPC dataset is trained and tested, and their evaluation metrics, such 
as mean average precision (mAP), are compared. The comparison results are shown in 
Table 3. From the table, it can be seen that the YOLOv7-AC model outperforms other 
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Figure 8. The sample information for URPC2020 is (a) labels: Upper left is the distribution of cate-
gories; upper right is a visualization of all box sizes; lower left is the distribution of the position of 
box centroids; lower right is the distribution of box aspect ratios. (b) example images. 

4.3.2. Ablation Experiments of the URPC Dataset 
We tested each module in YOLOv7-SN on the URPC dataset and investigated how it 

affects the model in the ablation experiments. Table 2 displays the results of the ablation 
experiments, with “√” denoting the application of a specific improvement technique. Ac-
cording to the experimental results, the ELAN-S and MP-S modules, the RFE module, and 
the NWD, with the addition of the SE attention mechanism, improved the mAP accuracy 
of the models by 1.3%, 2.4%, and 1.6%, respectively. In addition, the mAP@0.5:0.95 values 
increased by 0.7%, 0.5%, and 3.5%, respectively. By adding the RFE module and replacing 
the loss function NWD based on ELAN-S and MP-S, the accuracy of mAP@0.5 is improved 
by 5.4% and 4.3%, respectively. mAP@0.5:0.95 rose 3.2 percent and 1.5 percent, respec-
tively. The three parts are added at the same time, based on replacing the detection head. 
The accuracy of mAP@0.5 is increased by 5.9%, and the value of mAP@0.5:0.95 is increased 
by 4.8%. Overall, the addition of several modules improved the detection accuracy of the 
model. 

Table 2. Ablation comparison of model performance improvement on the URPC dataset. 

Model ELAN-S MP-S RFE NWD EDH mAP@0.5 (%) mAP@0.5:0.95 (%) 
      83.2 48.6 
      83.6 49.6 
      84.5 49.3 
      85.6 49.1 

YOLOv7      84.8 52.1 
      88.6 51.8 
      87.5 50.1 
      88.3 50.5 
      89.1 53.4 

4.3.3. Comparison Experiments of the URPC Dataset 
To further demonstrate the superiority of the proposed YOLOv7-SN model, we com-

pare it with popular target detection models such as YOLOv7, YOLOv6, YOLOv5s, and 
Faster-RCNN. The URPC dataset is trained and tested, and their evaluation metrics, such 
as mean average precision (mAP), are compared. The comparison results are shown in 
Table 3. From the table, it can be seen that the YOLOv7-AC model outperforms other 
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Figure 8. The sample information for URPC2020 is (a) labels: Upper left is the distribution of cate-
gories; upper right is a visualization of all box sizes; lower left is the distribution of the position of 
box centroids; lower right is the distribution of box aspect ratios. (b) example images. 

4.3.2. Ablation Experiments of the URPC Dataset 
We tested each module in YOLOv7-SN on the URPC dataset and investigated how it 

affects the model in the ablation experiments. Table 2 displays the results of the ablation 
experiments, with “√” denoting the application of a specific improvement technique. Ac-
cording to the experimental results, the ELAN-S and MP-S modules, the RFE module, and 
the NWD, with the addition of the SE attention mechanism, improved the mAP accuracy 
of the models by 1.3%, 2.4%, and 1.6%, respectively. In addition, the mAP@0.5:0.95 values 
increased by 0.7%, 0.5%, and 3.5%, respectively. By adding the RFE module and replacing 
the loss function NWD based on ELAN-S and MP-S, the accuracy of mAP@0.5 is improved 
by 5.4% and 4.3%, respectively. mAP@0.5:0.95 rose 3.2 percent and 1.5 percent, respec-
tively. The three parts are added at the same time, based on replacing the detection head. 
The accuracy of mAP@0.5 is increased by 5.9%, and the value of mAP@0.5:0.95 is increased 
by 4.8%. Overall, the addition of several modules improved the detection accuracy of the 
model. 

Table 2. Ablation comparison of model performance improvement on the URPC dataset. 

Model ELAN-S MP-S RFE NWD EDH mAP@0.5 (%) mAP@0.5:0.95 (%) 
      83.2 48.6 
      83.6 49.6 
      84.5 49.3 
      85.6 49.1 

YOLOv7      84.8 52.1 
      88.6 51.8 
      87.5 50.1 
      88.3 50.5 
      89.1 53.4 

4.3.3. Comparison Experiments of the URPC Dataset 
To further demonstrate the superiority of the proposed YOLOv7-SN model, we com-

pare it with popular target detection models such as YOLOv7, YOLOv6, YOLOv5s, and 
Faster-RCNN. The URPC dataset is trained and tested, and their evaluation metrics, such 
as mean average precision (mAP), are compared. The comparison results are shown in 
Table 3. From the table, it can be seen that the YOLOv7-AC model outperforms other 
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Figure 8. The sample information for URPC2020 is (a) labels: Upper left is the distribution of cate-
gories; upper right is a visualization of all box sizes; lower left is the distribution of the position of 
box centroids; lower right is the distribution of box aspect ratios. (b) example images. 

4.3.2. Ablation Experiments of the URPC Dataset 
We tested each module in YOLOv7-SN on the URPC dataset and investigated how it 

affects the model in the ablation experiments. Table 2 displays the results of the ablation 
experiments, with “√” denoting the application of a specific improvement technique. Ac-
cording to the experimental results, the ELAN-S and MP-S modules, the RFE module, and 
the NWD, with the addition of the SE attention mechanism, improved the mAP accuracy 
of the models by 1.3%, 2.4%, and 1.6%, respectively. In addition, the mAP@0.5:0.95 values 
increased by 0.7%, 0.5%, and 3.5%, respectively. By adding the RFE module and replacing 
the loss function NWD based on ELAN-S and MP-S, the accuracy of mAP@0.5 is improved 
by 5.4% and 4.3%, respectively. mAP@0.5:0.95 rose 3.2 percent and 1.5 percent, respec-
tively. The three parts are added at the same time, based on replacing the detection head. 
The accuracy of mAP@0.5 is increased by 5.9%, and the value of mAP@0.5:0.95 is increased 
by 4.8%. Overall, the addition of several modules improved the detection accuracy of the 
model. 

Table 2. Ablation comparison of model performance improvement on the URPC dataset. 

Model ELAN-S MP-S RFE NWD EDH mAP@0.5 (%) mAP@0.5:0.95 (%) 
      83.2 48.6 
      83.6 49.6 
      84.5 49.3 
      85.6 49.1 

YOLOv7      84.8 52.1 
      88.6 51.8 
      87.5 50.1 
      88.3 50.5 
      89.1 53.4 

4.3.3. Comparison Experiments of the URPC Dataset 
To further demonstrate the superiority of the proposed YOLOv7-SN model, we com-

pare it with popular target detection models such as YOLOv7, YOLOv6, YOLOv5s, and 
Faster-RCNN. The URPC dataset is trained and tested, and their evaluation metrics, such 
as mean average precision (mAP), are compared. The comparison results are shown in 
Table 3. From the table, it can be seen that the YOLOv7-AC model outperforms other 
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Figure 8. The sample information for URPC2020 is (a) labels: Upper left is the distribution of cate-
gories; upper right is a visualization of all box sizes; lower left is the distribution of the position of 
box centroids; lower right is the distribution of box aspect ratios. (b) example images. 

4.3.2. Ablation Experiments of the URPC Dataset 
We tested each module in YOLOv7-SN on the URPC dataset and investigated how it 
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Table 5. Performance comparison of target detection model on the RUIE dataset.

Model Precision (%) Recall (%) mAP@0.5 (%) mAP@0.5:0.95 (%)

SSD 78.1 72.4 75.3 38.8
RetinaNet 76.9 63.6 76.5 40.7

Faster-RCNN 75.6 65.1 74.6 41.9
YOLOX 68.5 59.5 67.8 34.7

YOLOv5s 79.7 71.1 76.5 38.5
YOLOv6 74.2 68.7 75.4 40.8
YOLOv7 78.3 75.3 79.6 43.1

YOLOv8n 82.9 78.2 82.7 49.1
YOLOv8s 81.6 77.5 82.4 48.5

YOLOv7-SN 87.7 79.1 83.5 48.8

4.5. Comparison of the Model’s Metrics with Other Classical Models

The proposed YOLOv7-SN model’s performance in terms of computational complex-
ity and speed was evaluated by comparing it with other popular target detection models
applied to URPC and RUIE training and testing. The experimental results, presented in
Table 6, show a slight increase in the number of parameters and computational complexity
of the improved model. However, in terms of computational speed, it is only slightly
inferior to the YOLOv5 model, which is significantly faster than the other models. This
demonstrates that the model’s detection accuracy and computing speed have been im-
proved with only a 10% increase in computing cost. Furthermore, as represented by the F1
scores on both datasets, our proposed model has a clear superiority.

Table 6. Comparison of the model’s metrics in the URPC dataset and the Brackish dataset.

Model Parameters (M) GFLOPS FPS (URPC) FPS (RUIE) F1 (URPC) F1 (RUIE)

YOLOX 9.0 26.8 32 28 68.4 63.7
YOLOv5 87.3 217.4 77 58 77.1 75.2
YOLOv6 59.6 150.7 61 36 80.4 66.8
YOLOv7 37.2 104.8 72 53 80.5 76.8

YOLOv7-SN 39.1 114.2 75 56 86.5 83.2

Figure 10 depicts the detection performance of the updated model in four distinct
scenarios, showcasing its ability to provide accurate detection in challenging underwater
conditions. The enhanced YOLOv7 model successfully identifies targets across different
underwater scenarios, demonstrating its robust detection performance.
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5. Discussion

In underwater environments, target identification can be difficult due to the optical
properties of water, which cause underwater light to attenuate. This results in under-
illuminated, blurry images with low contrast. In this paper, we propose a method that
uses the SE channel attention mechanism and an inflated convolutional ensemble module
for feature extraction. This allows us to selectively emphasize informative features and
suppress redundant ones while increasing the neural network’s receptive field without
adding too much computation. We also introduce NWD, a more suitable metric for small
target detection that is insensitive to target scale. Underwater targets are typically small
and dense, and the underwater environment is complex, so a lightweight network model
is needed. Through experiments, we demonstrate that our proposed model outperforms
other models in underwater environments, achieving improved accuracy.

6. Conclusions

This work presents an updated version of the YOLOv7 model that is applicable to
underwater missions. The new model addresses the challenges of the underwater envi-
ronment and the limited ability of underwater robots to recognize specific targets. This
is achieved by changing the detecting head, using a novel metric called NWD instead of
the conventional loss function, and integrating the SE attention and RFE modules into the
YOLOv7 model. The enhanced model provides better accuracy in identifying fuzzy under-
water objects. The experimental results demonstrate that our proposed YOLOv7-SN model
performs well on both underwater datasets. The detection accuracy and computational
speed of the model are improved with a slight increase in the computational cost. The
proposed method has significant advantages for underwater target detection.

It is important to note that the lack of good-quality underwater datasets and image
availability is a significant obstacle to target detection in underwater environments. Future
research initiatives will focus on gathering sizable and varied underwater datasets and
using image-enhancing methods to improve image quality.
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Abbreviations

The following abbreviations are used in this paper:

YOLO You Only Look Once
CNN Convolutional Neural Network
SE Squeeze–Excite
SK Selective Kernel Networks
CBAM Convolutional Block Attention Module
IoU Intersection over Union
URPC Underwater Optical Target Detection Intelligent Algorithm Race
RUIE Real-World Underwater Image Enhancement
mAP Mean Average Precision
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