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Abstract: Performance adaptation is an effective way to improve the accuracy of gas turbine per-
formance models. Although current performance adaptation methods, such as those using genetic
algorithms or evolutionary computation to modify component characteristic maps, are useful for
finding good solutions, they are essentially searching methods and suffer from long computation
time. This paper presents a novel approach that can achieve good performance adaptation with
low time complexity and without using any searching method. In this method, the actual compo-
nent performance parameters are first estimated using engine measurements at different operating
conditions. For each operating condition, some scaling factors are introduced and calculated to
indicate the difference between the actual and predicted component performance parameters. Af-
terward, an interpolating algorithm is adopted to synthesize the scaling factors for modifying all
major component maps. The adapted component maps are then able to make the engine model
match all the gas path measurements and achieve the required accuracy of the engine performance
model. The proposed approach has been tested with a model high-bypass turbofan engine using
simulated data. The results show that the proposed performance adaptation approach can effectively
improve the model’s accuracy. Specifically, the prediction errors can be reduced from about 9% to
about 0.6%. In addition, this approach has much less computational complexity compared to other
optimization-based counterparts.

Keywords: performance adaptation; model calibration; characteristic shift; scaling factor; gas turbine

1. Introduction

The gas turbine engine, a sophisticated piece of thermal equipment with symmetrical
geometry, plays an important role in the aerospace industry [1]. To promote the rapid devel-
opment of the gas turbine, researchers urgently need a good performance model to replace
many real engine tests with numerical simulations, which could make the development
process more efficient and economical [2]. Additionally, an accurate performance model is
crucial for good gas engine controls, diagnostics, and prognostics [3,4].

Generally, the accuracy of a performance model mainly depends on accurate compo-
nent characteristic maps. However, it is sometimes difficult to obtain the real component
maps of an engine due to many different reasons, such as lacking bench testing, per-
formance degradation, and engine-to-engine variations [5–7]. Against this limitation,
multiple-point performance adaptation methods have drawn more and more attention in
recent years [8]. These methods suggest a tuning of generic component maps to make an
engine performance model match all measured performances. Typical published work is
briefed as follows.

In the early 1990s, Stamatis et al. introduced an adaptation method that was able
to calibrate existing component maps by optimizing scaling factors [9,10]. In 2009, Li
et al. used a genetic algorithm method to search for an optimal set of scaling factors [11].
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In the following years, such a method was further developed by applying variable scaling
factors to achieve a nonlinear multiple-point adaptation [12,13]. In 2014, Alberto and Benini
performed map modifications in the neighborhoods of the multiple experimental points [14].
An optimization algorithm was applied to seek optimal sets of perturbations on the map
in order to minimize the deviation between experimental and predicted performance.
Tsoutsanis et al. introduced a novel map representation and an optimization algorithm for
the adaptation [15,16]. By employing elliptic curves to generate compressor maps, they
refined gas turbine models with improved accuracy. Recently, Pang et al. proposed a joint
adaptation method that added a transient performance adaptation procedure following the
steady-state counterpart [17]. After a two-step optimization process, engine models can be
calibrated to have more accurate transient performance predictions.

The published work for multiple-point performance adaptations involves complex
numerical searching and optimizations. Facing such problems, most researchers prefer to
employ metaheuristics, such as genetic algorithms [11–13,15,16] and evolutionary compu-
tation [17]. The metaheuristics can often find good solutions over a huge set of feasible
solutions with less computational effort than other optimization methods and proved to
be useful approaches for optimization problems [18,19]. However, some drawbacks exist,
such as long computing time when the number of points included in the adaptation is
large. In addition, metaheuristics do not guarantee that a globally optimal solution can
be found [20]. Many heuristic methods contain stochastic procedures so that the solution
found is dependent on the set of random variables generated [21]. Furthermore, it is very
tricky to specify the appropriate search domain for the adaptation calculations in practice.
Therefore, Li et al. explored a non-heuristic method for performance adaptation prob-
lems [22]. The method was applied to an industrial gas turbine engine and demonstrated
by the comparison results. However, this approach is only suitable to the design point.

This paper proposes a deterministic approach to deal with the multiple-point perfor-
mance adaptation of gas turbine engines. At first, engine measurements are employed as
input information to estimate actual engine performance by a numerical iterative solution
process. Next, we compare that performance with the predicted one (using the model with
initial component maps) and summarize the comparison using scaling factors. Finally, an
interpolation-based algorithm is developed to determine the overall modification of all
major component maps. The proposed approach is applied to a model turbofan engine
similar to the General Electric CF6 series. Simulation is carried out to demonstrate the
capability of the proposed performance adaptation method. The results, discussions, and
conclusions are made accordingly.

Compared to the heuristic methods, the novelty of this approach is that a deterministic
calibration procedure replaces the searching algorithms to obtain some scaling factors and
thus achieves performance adaptation with high accuracy, low computational complexity,
and deterministic results.

The remainder of this paper is organized as follows: Section 2 describes the method-
ology of the proposed deterministic calibration method. Section 3 details the simulation
results to demonstrate the effectiveness of the method. Section 4 discusses the method’s
advantages in three aspects. The final section provides a summary of this paper.

2. Methodology
2.1. Representation of Map Shift

A characteristic map is a chart for describing the performance behavior of an engine
component, such as a compressor or a turbine at different operating conditions.

For two major categories of engine components, compressor type, and turbine type,
there can be four characteristic parameters to describe the component map: the corrected
relative rotational speed n, the flow capacity W, the pressure ratio π, and the isentropic
efficiency η. Specifically, a map can be denoted by a group of contour lines (also called the
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speed lines). Each speed line may be represented by a series of points that have the same
speed, n. A map with m (m > 1) speed lines can be defined as

γi : [0, 1] → (W, π, η) ∈ R3, i = 1, 2, . . . , m (1)

where each γi is a continuous function from the closed real interval [0,1] into a real co-
ordinate space of 3 dimensions. The speed value of γi is written as ni. For a typical
high-pressure compressor, for instance, its characteristic map may be illustrated as the solid
lines ranging from γ1 to γm in Figure 1.
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While the dashed lines in Figure 1 represent a shift of the initial map. For each speed
line in the map, an operation ‘◦’ is defined as Equation (2) to denote its shift.

γ ◦

ζW
ζπ

ζη

 =
{(

WζW , πζπ − ζπ + 1, ηζη

)
|∀(W, π, η) ∈ γ

}
(2)

where γ ◦
[
ζW ζπ ζη

]T means that a speed line γ is shifted by the vector of scaling

factors
[
ζW ζπ ζη

]T , where the factors are three real numbers and can be written as a
vector ζ for convenience. Then, scaling factor (SF) sets {ζ1, ζ2, . . . , ζm} for all speed lines
can derive the map shift.

During performance adaptation, the position of the design point (DP) on each compo-
nent map is assumed to be unchanged. For instance, the DP is located on the mth speed
line in Figure 1 and remains unchanged by setting ζm = [1, 1, 1]T during the entire process
of characteristic map shift.

2.2. Scaling Factor Determination

Characteristic maps for compressors and turbines are considered to be adapted in this
study. Assume that a map has m speed lines and their speed values are {n1, n2, . . . , nm}.
The objective is to determine their corresponding SF sets {ζ1, ζ2, . . . , ζm}.

Assume that measurement data contain M (M ≥ 1) different engine conditions.
For each condition, the four characteristic parameters (n, W, π, η) of each concerned com-
ponent can be estimated by the method described in Section 2.2.1. Afterward, in terms
of every single compressor or turbine, SF sets

{
ζ ′1, ζ ′2, . . . , ζ ′m

}
of the M conditions can be

determined according to Section 2.2.2. In Section 2.2.3, SF sets {ζ1, ζ2, . . . , ζm} are finally
obtained by using an interpolation-based algorithm. The above determination process is
described in Figure 2.
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2.2.1. Actual Performance Estimation

Based on a single-point adaptation method, the performance parameters of all com-
ponents can be calculated using the given engine measurement data. The single-point
adaptation method used in this subsection is developed from existing approaches [22,23]
and described as follows.

Owing to the intricate thermodynamic function within the engine system, it is difficult
to calculate some performance parameters through measurements directly. However,
if guesses of the unknown parameters are introduced, errors can be generated to imply
whether the guesses are appropriate by employing the thermodynamic function. Among
the errors, the guesses, and the measurements, there exists a relationship that can be
represented by Equation (3).

e = h(x, z) (3)

where x is the guess vector of performance parameters, z is the vector of measurement
parameters, e is the error vector representing system mismatch between measurement and
calculation, and h(·) is a differentiable nonlinear function denoting engine thermodynamic
function which can generate e from x and z.

Equation (3) is essential for estimating the performance parameters, and it can be
obtained by reconstructing the thermodynamic function inside the engine. It contains all
the nonlinearities of the complex system.

Remark 1. e and x should have the same number of elements to avoid Equation (3) underdetermined
or overdetermined. By omitting either some less reliable measurements in z or some less important
performance parameters in x, the requirement is not difficult to meet.

With given engine measurements z, Equation (3) can be solved by the Newton-Raphson
method, which locally linearizes a nonlinear equation at the current estimated value
and then uses the linearized equation to update the estimated value to the solution [24].
Iteratively, the error vector e is driven toward zero. And once a converged solution x is
obtained, all the other performance parameters, including characteristic parameters of all
components, can be predicted.

Remark 2. The convergence criterion is ∥e∥∞ < σ, where σ is a set threshold.

2.2.2. Scaling Factors at Measured Conditions

Regarding the M measured conditions, this section presents how to determine the SF
sets

{
ζ ′1, ζ ′2, . . . , ζ ′m

}
for each component.

At each measured condition, the four characteristic parameters of compressors have
been obtained from Section 2.2.1. Figure 3 locates the estimated parameters using a hollow
point A(nA, WA, πA, ηA).
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Normally, point A is not on the corresponding speed line of the existing compressor
map. To find the matching point of the current map and the scaling factor between these
two points, it is reasonable to assume that the speed line of nA is shifted along a scaling
line where the auxiliary map coordinate β is constant [25] to pass through point A. This
assumption can locate a solid point B at the intersection of the speed line and the scaling
line, as shown in Figure 3. By comparing points A and B, scaling factors can be calculated
using Equation (4).

ζ =

ζW
ζπ

ζη

 =

 WA/WB
(πA − 1)/(πB − 1)

ηA/ηB

 (4)

Remark 3. Although there are three factors in ζ, only two of them are independent because there
is a correlation between the scaling factors of corrected flow and that of pressure ratio (under the
assumption β = constant).

Remark 4. Note that such a single vector ζ can only reflect the shift at its corresponding speed
value nA. For all M measured conditions whose speed values are

{
n′

1, n′
2, . . . , n′

M
}

, we have to use
Equation (4) for M times to obtain the SF sets

{
ζ ′1, ζ ′2, . . . , ζ ′M

}
.

Equation (4) can also be used to determine the scaling factors of turbines. It should be
mentioned that the scaling lines with a constant β are exactly the same lines with a constant
pressure ratio for turbines, as shown in Figure 4. As a result, πA = πB always holds, i.e.,
ζπ = 1 in the turbine case.
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2.2.3. Scaling Factors for Map Shifting

For every compressor or turbine, SF sets
{

ζ ′1, ζ ′2, . . . , ζ ′M
}

and their corresponding
speed values

{
n′

1, n′
2, . . . , n′

M
}

can be obtained from Section 2.2.2. Meanwhile, speed values
of all m initial speed lines are known as {n1, n2, . . . , nm}. Assume that speed values are
written in incremental order, i.e., n′

1 < n′
2 < · · · < n′

M and n1 < n2 < · · · < nm.
The following part shows the procedure of how to calculate SFs {ζ1, ζ2, . . . , ζm} for

each initial map.

• Case 1. M = 1

In the case where there is only one available measured condition, the only scaling
vector ζ ′1 should be applied to all the speed lines, i.e.,

ζi = ζ ′1, ∀i ∈ {1, 2, . . . , m} (5)

• Case 2. M > 1

For the case M > 1, if a speed value ni is located within the interval
[
n′

1, n′
M
]

or next to
an endpoint of the interval, it is reasonable to calculate the corresponding scaling vector
ζi by using a linear interpolation. In order to represent the range where interpolation can
be used, a closed interval, written as “Interval A” in Figure 5, is then defined as [nL, nR]
where the subscripts “L” and “R” are determined by

L =

{
1 , n1 ≥ n′

1

max
{

i ∈ {1, 2, . . . , m}
∣∣ni < n′

1
}

, n1 < n′
1

(6)

and

R =

{
m , nm ≤ n′

M

min
{

i ∈ {1, 2, . . . , m}
∣∣ni > n′

M
}

, nm > n′
M

(7)

For each ni ∈ [nL, nR], the corresponding scaling vector ζi can be calculated by
Equation (8).

ζi = ζ ′p(i) +
ni − n′

p(i)

n′
p(i)+1 − n′

p(i)
(ζ ′p(i)+1 − ζ ′p(i)) (8)

where i ∈ {L, L + 1, . . . , R} and

p(i) =

{
1 , ni ≤ n′

1

max
{

k ∈ {1, 2, . . . , M − 1}
∣∣n′

k < ni
}

, ni > n′
1

(9)

Beyond the range of Interval A, Interval B is further defined (if it exists) where the
speed value n is smaller than nL as shown in Figure 5. Since the interval covers no
information on the measured conditions ζL, the nearest scaling vector from Interval A
should be applied to all the speed lines in Interval B, i.e.,

ζi = ζL, ∀i ∈ {1, 2, . . . , L − 1} (10)

Likewise, Interval C is defined (if it exists) and ζR is applied to all the speed lines in it.

ζi = ζR, ∀i ∈ {R + 1, R + 2, . . . , m} (11)

So far, all the SFs {ζ1, ζ2, . . . , ζm} have been calculated and can be applied to shift the
initial characteristic map.



Symmetry 2024, 16, 522 7 of 16

Symmetry 2024, 16, x FOR PEER REVIEW 7 of 17 
 

 

'
( )' ' '

( ) ( ) 1 ( )' '
( ) 1 ( )

( )i p i
i p i p i p i

p i p i

n n
n n

ζ ζ ζ ζ+
+

−
= + −

−
 (8)

where { }, 1, ,i L L R∈ +   and 

{ }{ }
'
1

' '
1

1                                                  ,
( )

max 1, 2, , 1 ,
i

k i i

n n
p i

k M n n n n

 ≤=  ∈ − < > 
 (9)

 
Figure 5. Interval A: the range where interpolation can be used. 

Beyond the range of Interval A, Interval B is further defined (if it exists) where the 
speed value n is smaller than Ln  as shown in Figure 5. Since the interval covers no infor-
mation on the measured conditions Lζ , the nearest scaling vector from Interval A should 
be applied to all the speed lines in Interval B, i.e., 

{ }, 1,2, , 1i L i Lζ ζ= ∀ ∈ −  (10)

Likewise, Interval C is defined (if it exists) and Rζ  is applied to all the speed lines in 
it. 

{ }, 1, 2, ,i R i R R mζ ζ= ∀ ∈ + +   (11)

So far, all the SFs { }1 2, , , mζ ζ ζ  have been calculated and can be applied to shift the 
initial characteristic map. 

3. Application and Results 
3.1. Basic Information of the Model Engine 

The proposed multi-point adaptation approach has been applied to a model high-
bypass-ratio separate exhaust turbofan engine, commonly used in large passenger and 
transport aircraft. Among various types of engines, the turbofan engine is the most repre-
sentative. The configuration of the model (similar to the General Electric CF6 series) is 
illustrated in Figure 6, with components of intake, fan, booster, high-pressure compressor 
(HPC), combustor, high-pressure turbine (HPT), low-pressure turbine (LPT), duct and 
nozzle of bypass, and core. The roles of each component can be referred to [25]. And the 
number in Figure 6 represents the station of the engine. For example, ‘13′ denotes the out-
let of the fan. 

Figure 5. Interval A: the range where interpolation can be used.

3. Application and Results
3.1. Basic Information of the Model Engine

The proposed multi-point adaptation approach has been applied to a model high-
bypass-ratio separate exhaust turbofan engine, commonly used in large passenger and
transport aircraft. Among various types of engines, the turbofan engine is the most
representative. The configuration of the model (similar to the General Electric CF6 series) is
illustrated in Figure 6, with components of intake, fan, booster, high-pressure compressor
(HPC), combustor, high-pressure turbine (HPT), low-pressure turbine (LPT), duct and
nozzle of bypass, and core. The roles of each component can be referred to [25]. And the
number in Figure 6 represents the station of the engine. For example, ‘13′ denotes the outlet
of the fan.
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Figure 6. Model turbofan engine configuration.

The model was created using the Gas Turbine Modeling Library for Education (GTML-
E), which was developed on behalf of Beihang University, and an open-source MAT-
LAB/Simulink library for gas turbine performance modeling [26]. The Iterative Newton-
Raphson Solver block used in GTML-E is based on the T-MATS package [27].

In this application, five major components are considered to be adapted: the fan,
booster, high-pressure compressor, high-pressure turbine, and low-pressure turbine.

For these components, two sets of characteristic maps are prepared separately. The
maps in the first set are generic component maps [28] and are regarded as the initial maps.
The second set is a transformed version of the first set, where the maps were treated as
“real” maps. Note that the “real” maps were only used for generating “test data”.
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3.2. “Test Data” Generation

The measurable parameters used in this study are summarized in Table 1, similar to
those of CF6 [29]. Some of these parameters are adopted as the model input, while others
are regarded as the targeted performance to judge whether the calculated performance
is accurate. In the case of validation, except for ambient parameters (PH , T2, P2), only
the handle parameter NL is regarded as the model input. As for the estimation of actual
performance, however, more measurable parameters are assumed to be known and used
as model inputs.

Table 1. CF6-80 measurable parameters.

Measurements Symbol For Estimation For Validation

Ambient Pressure PH Input Input
Fan Inlet Temperature T2 Input Input

Fan Inlet Pressure P2 Input Input
Fuel Flow W f Input Target
Fan Speed NL Input Input
Core Speed NH Input Target

HPC Inlet Temperature T26 Target Target
HPC Inlet Pressure P26 Target Target

HPC Outlet Temperature T3 Target Target
HPC Outlet Pressure P3 Target Target

LPT Inlet Temperature T45 Target Target
LPT Inlet Pressure P45 Target Target

LPT Outlet Temperature T5 Target Target
Fan Outlet Pressure P13 Target Target

Net Thrust FN Input Target

With the “real” maps applied, “test data” were generated by the model at 10 steady-
state operating points under ISA sea-level conditions. These operating conditions of the
engine, represented by the handle parameter (normalized fan speed), are listed in Table 2.
It can be noticed that 6 of them are employed to carry out the performance adaptation, and
all of them are used to demonstrate the effectiveness of this method.

Table 2. Chosen conditions for generating “test data” conditions with asterisks are used for adaptation.

No. Normalized NL No. Normalized NL

1 * 0.5 6 0.75
2 0.55 7 * 0.8

3 * 0.6 8 0.85
4 0.65 9 * 0.9

5 * 0.7 10 * 1

Among the six asterisked conditions, the one with NL = 1 is assumed to be the design
point (DP) of the engine. To keep the DP unchanged, this condition has to be chosen as the
sticking point for performance adaptation.

3.3. Actual Performance Estimation

For each measured condition, all performance parameters can be estimated by solving
Equation (3), where e should converge to zero. At the beginning, all parameters in Equation
(3) should be specified. In this case, the parameters in vector z are listed in Table 1.
Accordingly, the parameters in x and e are listed in Tables 3 and 4, respectively.
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Table 3. Selected guess parameters.

No. Guess Symbol

1 Fan pressure ratio π f an
2 Fan isentropic efficiency η f an
3 Booster pressure ratio πbst
4 Booster isentropic efficiency ηbst
5 HPC pressure ratio πhpc
6 HPC isentropic efficiency ηhpc
7 HPT pressure ratio πhpt
8 HPT efficiency ηhpt
9 LPT pressure ratio πlpt
10 LPT efficiency ηlpt
11 Total air flow Wtot
12 Bypass ratio BPR

Table 4. Selected error parameters.

No. Error Symbol

1 Prediction error of P13 eP13

2 Flow imbalance in duct nozzle eWduct

3 Prediction error of P26 eP26

4 Prediction error of T26 eT26

5 Prediction error of P3 eP3

6 Prediction error of T3 eT3

7 Prediction error of P45 eP45

8 Prediction error of T45 eT45

9 Flow imbalance in core nozzle eWcore

10 Prediction error of T5 eT5

11 Torque imbalance of HP spool eTorqH
12 Torque imbalance of LP spool eTorqL

With all the parameters in Equation (3) specified, the Newton-Raphson method was
applied to calculate the true value of the guess parameters. To check whether the final
solutions are converged, the infinity norm of every e, as defined in Remark 2, is listed in
Table 5. It can be seen that the convergence criterion is satisfied at all six conditions when
σ = 1 × 10−6.

Table 5. Convergence check.

i ∥ei∥∞ i ∥ei∥∞

1 5.914 × 10−7 4 9.976 × 10−7

2 8.952 × 10−7 5 8.2 × 10−7

3 8.242 × 10−7 6 5.68 × 10−7

As mentioned in Section 2.2.1, once a converged solution is obtained, the four charac-
teristic parameters for all the concerned components can be calculated.

3.4. Determination of Scaling Factors

For each to-be-adapted component, scaling factor sets
{

ζ ′1, ζ ′2, . . . , ζ ′6
}

at the six mea-
sured conditions can be calculated according to Section 2.2.2. Subsequently, SF sets
{ζ1, ζ2, . . . , ζm} of all the initial speed lines can be determined according to the proce-
dure described in Section 2.2.3 (m represents how many speed lines the initial characteristic
map has). Figure 7 plots all the scaling factors of each component, where hollow points
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denote the result of the six measured conditions, while asterisks represent the result of the
initial speed lines whose speed values are {n1, n2, . . . , nm}. It can be seen that the number
of speed lines m varies for different components. For example, m = 12 for the high-pressure
compressor while m = 10 for the fan. Additionally, ζ ′6 = [1, 1, 1]T holds for all components
referring to the DP points of the components.
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3.5. Adaptation Results

With all the above scaling factors applied to the initial maps, the shifts of the maps are
displayed in Figure 8. The solid and dashed curves correspond to the maps before and after
the adaptation, respectively. The hollow pentagrams shown in Figure 8 mark the design
points whose positions are unchanged during the adaptation.

In order to display the effectiveness of the proposed approach, the initial and the
adapted characteristic maps are employed to predict the engine performance separately.
The prediction errors of the model engine using the initial set of maps covering all 10 con-
ditions are plotted in Figure 9, while the prediction errors of the model engine using the
adapted maps are shown in Figure 10. Among all 11 measurable parameters for valida-
tion, Figure 9 shows that W f has a maximum prediction error of about 9% and FN has a
prediction error of about 4%, which greatly affects the accuracy and reliability of the model.
While Figure 10 shows the maximum error of about 0.6%, and the prediction error of FN is
significantly reduced to about 0.5%, which indicates good adaptation results. The meaning
of these measurable parameters can be acquired in Table 1.
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For further validation, five important performance parameters, i.e., bypass ratio BPR,
fan pressure ratio π f an, booster pressure ratio πbst, HPC pressure ratio πhpc, and turbine
temperature ratio T5/T4, are selected to show the adaption results. The prediction errors
before and after the adaptation are plotted in Figures 11 and 12, respectively. It can be seen
that these parameters, after adaptation, reach a relatively high level of accuracy, which can
support accurate prediction of engine performance.
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4. Discussions
4.1. Low Time Complexity

The heuristic approaches for performance adaptation often consume plenty of time.
Essentially, heuristic approaches are searching methods that need to try different solutions
iteratively until a satisfactory one is found. The time complexity of the approaches mainly
depends on how many attempts it takes. Unfortunately, the number of attempts is uncertain
because these approaches contain stochastic processes. In practice, both the initial error and
the search range may influence the number of attempts. As for the Genetic Algorithm-based
adaptation addressed in [6], for example, a four-point adaptation case (20 generations with
a population size of 50) took about 50 attempts, i.e., at least 50,000 runs of the model engine.
Even though the method was improved by specifying the search range, the number of
attempts was still more than 20 (at least 20,000 runs).

Compared to the heuristic approaches, the proposed deterministic approach has quite
a lower time complexity. Apart from the actual performance estimation (at most 20 runs
for each condition), even there is no need to run the model engine. The computation time
of the interpolation algorithm is linearly proportional to the number of speed lines, which
is very short and can be ignored in the adaptation process. For a four-point adaptation, the
proposed approach needs, at most, 80 runs of the model engine.

4.2. Guaranteed Accuracy

According to Sections 2.2.1 and 2.2.2, the SF sets at each measured condition can
precisely reflect the corresponding measured performance. That is, the accuracy of the
model at a particular measured point only depends on measurement accuracy. There
is no newly introduced error until the stage to determine SF sets for all the speed lines.
At this stage, prediction error will be introduced more or less due to the interpolation
algorithm. Fortunately, under the assumption that the component maps and their shifts are
smooth enough, the prediction error will be maintained at a relatively low level. In extreme
circumstances, we can also add extra speed lines into characteristic maps to improve
prediction accuracy. As for the turbofan application, satisfactory accuracy was achieved
(max error < 1%) without inserting any extra speed line. Anyway, more accuracy is
meaningless for this case because 1% can be covered by measurement uncertainty.
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4.3. Sure Solution

Unlike heuristic approaches that have uncertain results, the deterministic approach
always has a sure result. As mentioned before, all published approaches for the multi-point
adaptation are based on the heuristic algorithm. Using such an algorithm that contains
a stochastic process may yield an uncertain solution. As a result, plenty of attempts are
required to obtain an acceptable solution, which indeed consumes a great deal of time.
Moreover, there is no guarantee that an acceptable solution will be found. In terms of
the proposed approach, however, all procedures throughout this paper are deterministic.
Consequently, this approach always has a sure solution.

5. Conclusions

This paper presents a deterministic approach for multiple-point performance adapta-
tion, specifically designed to calibrate the off-design performance of gas turbine models.
In contrast to the well-developed optimization-based methods, this approach advocates for
determining the shift of the initial characteristic maps in a straightforward manner. This
concept is realized by calculating each Scaling Factor (SF) set at its corresponding measured
condition and subsequently employing an interpolation-based algorithm to ascertain the
precise shift of each map.

As discussed in Section 4, this approach offers three primary advantages:

(1) The time complexity of this approach is notably low.
(2) The prediction error of the adapted model can be guaranteed at a relatively low level.
(3) In contrast to optimization-based approaches that entail stochastic procedures, the

deterministic approach eliminates the need for a searching procedure and consistently
delivers a reliable outcome.

The effectiveness of the proposed approach is demonstrated through its application
to a model high-bypass turbofan engine. Following the adaptation process, a significant
enhancement in the prediction accuracy of the model is observed, with the prediction
error index decreasing from approximately 9% to about 0.6%. Owing to the modification
of component maps, the method can be easily transplanted to other engine types and
configurations. And with its assured results and minimal computational burden, this
approach holds promise as a valuable tool for the calibration of gas turbine models.

The limitation of the proposed deterministic approach is that it is currently suitable
for steady-state performance adaptation. The related dynamic performance adaptation and
transient analysis need further research. Additionally, only simulated data are used in this
paper to illustrate the effectiveness of the method. Applying real engine measurements for
verification will be considered in future research. What is more, the impact of measurement
uncertainties on model predictions is a direction worth exploring. Uncertainty analy-
sis techniques such as Monto Carlo simulations are an optional solution for conducting
future research.
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Nomenclature

DP design point
GTML-E Gas Turbine Modeling Library for Education
HPC high-pressure compressor
HPT high-pressure turbine
LPT low-pressure turbine
SF scaling factor
n corrected relative rotational speed
W flow capacity
π pressure ratio
η isentropic efficiency
γ contour line of the rotational speed
ζW scaling factor of flow capacity
ζπ scaling factor of pressure ratio
ζη scaling factor of isentropic efficiency
ζ vector of the above three scaling factors
n′ speed value at measured conditions
ζ ′ scaling vector at measured conditions
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