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Abstract: The increasing availability of longitudinal data (repeated numerical observations of the
same units at different times) requires the development of flexible techniques to automatically detect
errors in such data. Besides standard types of errors, which can be treated with generic error correction
techniques, large longitudinal datasets may present specific problems not easily traceable by the
generic techniques. In particular, after applying those generic techniques, time series in the data may
contain trends, natural fluctuations and possible surviving errors. To study the data evolution, one
main issue is distinguishing those elusive errors from the rest, which should be kept as they are and
not flattened or altered. This work responds to this need by identifying some types of elusive errors
and by proposing a statistical-mathematical approach to capture their complexity that can be applied
after the above generic techniques. The proposed approach is based on a system of indicators and
works at the formal level by studying the differences between consecutive values of data series and
the symmetries and asymmetries of these differences. It operates regardless of the specific meaning
of the data and is thus applicable in a variety of contexts. We implement this approach in a relevant
database of European Higher Education institutions (ETER) by analyzing two key variables: “Total
academic staff” and “Total number of enrolled students”, which are two of the most important
variables, often used in empirical analysis as a proxy for size, and are considered by policymakers at
the European level. The results are very promising.

Keywords: big data; information processing; information reconstruction; data quality; longitudinal
data sequences

1. Introduction

In the context of an increasingly data-driven economy, data quality is of paramount
importance for organizations of all types and sizes and a lack of attention to it can lead to
several costs and inefficiencies. According to the quality framework of the Organisation for
Economic Cooperation and Development (OECD) [1], data quality is defined as the “fitness
for use” with respect to user needs. Data quality can be viewed as an overarching principle
that must be kept into account when designing models of metrics [2]. Every technique
developed to improve data quality should consider that the very concept of data quality
is not one-dimensional but multidimensional [3–5]. In particular, the following seven
dimensions are usually identified: accuracy, completeness, consistency, validity, timeliness,
uniqueness, and integrity.

Due to the relevance of the issue, many authors have proposed methods or guidelines
to assess problems with data quality [6–12]. However, few works focus on the problems
that specifically regard the case of numerical data describing repeated observations of
the same units over a period of time. This type of data is often called longitudinal data
or panel data. If we restrict our attention to one single unit over the whole time period,
then we obtain a single time series. If, on the contrary, we consider all the different units
but restrict our attention to one single time instant, then we obtain cross-sectional data. In
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recent years, longitudinal data have become more and more abundant, and researchers
have been exploring the vast possibilities given by their study, typically by using advanced
artificial intelligence techniques that are now able to deal with huge datasets. However,
one ubiquitous problem affecting almost all data-related applications is the presence of
errors in the data. Unfortunately, longitudinal data make no exception to this. Thus, when
data containing errors are used for some studies, the results will contain a certain degree of
unreliability. Or, in other words, when data contain errors, the problem that we solve is
actually different from the real problem that was to be solved.

The presence of errors in data may be due to several causes, and consequently, there
exist many types of data errors. Easily identifiable cases are, for example, missing values or
out-of-range values. For the rest of this work, we assume that the error location is unknown
and that the original exact value is not available, since otherwise simple replacement
operations would fix the issue. As this type of problem is very widespread, many techniques
have been developed in different fields of science to cope with these situations. There exist
several imputation techniques for the reconstruction of missing or out-of-range values; see
for example [13,14]. Some methods for estimating measurement errors in longitudinal data
are based on latent variable modeling [15,16]. Another technique, called the MultiTrait
MultiError approach, is presented in [17] to estimate multiple types of errors concurrently
using a combination of experimental design and latent variable modeling. Survey [18]
identifies three main error types in time series: single-point big errors, single-point small
errors and continuous errors. Continuous errors are the case where an error occurs at
several consecutive time points. A single-point error occurs discontinuously in a time
series and only occurs on a single data point at intervals. A big error means that the
observed value of the data point is far from the true value, as opposed to a small error.
Single-point errors may often be identified by searching for outliers. An outlier is “An
observation which deviates so much from other observations as to arouse suspicions that
it was generated by a different mechanism” [19]. Following surveys [18,20], methods to
detect anomalies/outliers in time series can be grouped as follows: density-based methods
like Local Outlier Factor [21]; threshold methods based on statistical descriptions like
standard deviations or median absolute deviation; see for example [22]; statistical test
methods like Grubbs’ test [23]; machine learning methods based on the use of a training
set of outliers, like isolation forest [24]; model-based methods like moving average (MA),
autoregression (AR) and their variations (like ARMA or ARIMA); see for example [25].
These methods are effective in cleaning a single time series but suffer from the following
limitations: they are generally quite data-demanding (so they do not scale well when the
series is not long enough) and they often require statistical assumptions on the data (e.g.,
they need a Gaussian distribution).

Finally, there exist methods based on data integration, when the data under analysis
are also contained or derivable from different sources [26,27], and methods based on
checksum to reconstruct information that was originally known but has been damaged.
However, these categories are not applicable to our case, because the original exact value is
neither known nor available from other sources.

In addition to the “usual” types of errors, large longitudinal datasets may contain
peculiar types of errors that are not easily identifiable by the techniques used for finding
and/or correcting errors in generic datasets. In the context of numerical longitudinal data
obtained from several sources and assembled to form one database, the following situations
can lead to some very typical errors:

(1) When the time series of the different units are written/stored one next to the other, one
or more values from one unit A may be erroneously inserted in the space allowed to a
contiguous unit B, and vice versa, the corresponding values from B may be inserted
in the space of A. We call this situation the inversion of values between units. This
type of error is often not detectable by general error detection techniques. Moreover,
even if the problem is detected, because for example a value vi is too high or too low
for unit A, the generalist imputation techniques will probably try to reconstruct the
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correct value based on elaborations involving unit A, ignoring that the correct values
are already stored in the database but in the space of record B. Several problems may
arise if this type of error is not fully recognized.

(2) Data contain one or more large “jumps” in the values of the time series corresponding
to one unit. For example, given a unit A, imagine that the values of one of its variables
are 100, 120, 280, 130, 120, 150. The third value is far from the others, so we may
suspect some problem. However, depending on the degree of volatility, the situation
can also be normal after all. We call this situation an anomalous jump. In this
case, we need to identify a threshold above which the values should be considered
erroneous. This is a very delicate issue, and standard error detection techniques may
be insufficient in this case.

(3) A time series is composed of values produced by a data provider (for example, an
agent or an organization) at every given interval of time (for example, every year).
In this case, it may happen that the data provider computes a value vt for a given
time t and later discovers that vt was incorrect, because some units should have been
added to vt but they were not considered, so vt should actually be increased by δt,
or because some units counted in vt actually belong to the next time interval, so vt
should be decreased by −δt. In this case, if it is too late to modify vt, the data provider
often tries to compensate for the error by modifying the next value produced, vt+1,
providing vt+1 + δt in the first case and vt+1 − δt in the second. We call this situation
recalculation operated by the data provider. Clearly, this type of problem is hardly
detectable by general error detection techniques, and again, several problems may
arise if this type of error is not fully recognized.

Another limitation of the above-described error correction techniques is that they
generally look at the single time series and do not consider the whole database structure
in the search for potential errors, so they overlook errors that may arise from its tabular
format, like the inversion and the recalculation problems. This work responds to this need
by proposing a statistical-mathematical approach based on a system of indicators that
define a rational process to assess and improve the quality of the data (as suggested by [28]).
In particular, the proposed approach is able to identify suspect erroneous data suffering
from the three described problems by working at the formal level, regardless of the specific
meaning of the data. Therefore, it is applicable even after a generic error correction step in a
variety of contexts. Note that we aim at pinpointing the described error situations without
flattening or altering the rest of the data, as some noise removal techniques unfortunately
do. Therefore, one delicate issue is distinguishing natural fluctuations from erroneous
jumps. We pursue this aim by studying the symmetries and asymmetries of the differences
(deltas) between consecutive values of the time series. Our approach incorporates also a
certain degree of flexibility, because it is based on a number of mathematical conditions that
can be slightly changed to adapt to different cases and take into account different realities.

We implement this approach in a large and relevant database of European Higher
Education institutions (ETER) by analyzing the two key variables “Total academic staff”
and “Number of enrolled students”. These are two of the most important variables, often
used in empirical analysis as a proxy for the size of the institutions, and are considered by
the policymakers at the European level.

2. Materials and Methods

As explained in Section 1, there exist several error correction techniques for large
datasets. Nonetheless, in large numerical longitudinal databases, we identify the following
three main consistency problems that are specific to the case of longitudinal data and are
hardly treatable with standard error detection and correction techniques:

1. Inversion of values between units;
2. Anomalous jump;
3. Recalculation operated by the data provider.
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The proposed methodology aims to the identification of possible errors by raising
check flags (which can later be examined by database managers) on suspect data. Our
method can also be applied after other standard error correction procedures, and it consists
of several steps for each of the above three problems, detailed in Sections 2.1–2.3. As
materials, we conducted our experiments on the ETER database, described in Section 2.4.

2.1. Inversion Problem

To identify the inversion problem between two units A and B, we evaluate two types
of conditions that we call here H1 and H2. The first type (H1) consists of assessing, for
each possible couple of units A and B, whether there are possible systematic exchanges
between the values of A and B over one or more time instants through the evaluation
of the differences (called ∆) between each pair of temporally consecutive values of the
same variable. In more detail, the generic condition H1 is evaluated by executing the
following steps.

H1.a. Denote by i the index of the generic unit (a row in the dataset), with i = 1, . . ., m = U.
The series of the values of a variable (or attribute) v over the time instants t = 1, . . ., n = S
for unit i is denoted by (vi

1, . . ., vi
n). Then, define ∆vi

(t,t+1) as the difference (delta) between
the two values assumed by unit i in two consecutive time instants t, t + 1 for variable v
as follows:

∆vi
(t,t+1) = vi

t − vi
t+1 (1)

Those deltas are computed for each period of the dataset and for each unit (and for
each variable if there is more than one variable in the dataset). Obviously, for the last
period n, ∆vi

(n,n+1) is not computable. The generic value ∆vi
(t,t+1) can take on a negative or

a positive value. We define as P the set of the indices t for which ∆vi
(t,t+1) is positive and as

N the set of the same indices for which ∆vi
(t,t+1) is negative.

H1.b. Compute, for each unit i, the value DVi defined as the modulus of the product
between the sum of the positive deltas and the sum of negative deltas as follows:

DVi = |∑t∈P ∆vi
(t,t+1) ∑ t∈N ∆vi

(t,t+1)|. (2)

This is somehow a measure of the intrinsic variability of the unit i. Indeed, in practical
cases, this measures the fact that some units will be “changing” their values more than
others. In case any of the ∑t∈P ∆vi

(t,t+1) or ∑ t∈N ∆vi
(t,t+1) is equal to zero, its value is

changed to 1 to avoid it collapsing to zero when the intrinsic variability of a unit must be
non-negative. Note that this is one of the customizable aspects, depending on the practical
case under study.

H1.c. Compute the DMi value for each unit i as the ratio between DVi and the arithmetic
mean of all DVs in the entire dataset considered as follows:

DMi =
DVi

∑i∈U DVi
m

(3)

This value represents a normalization of the above measure of intrinsic variability.
The normalization should be conducted over some homogeneous set of units to which unit
i belongs. Thus, depending on the context, such a homogeneous set must be identified.
For example, in the case presented in Section 3, there is strong heterogeneity in data from
different national contexts (i.e., different countries). For this reason, the DVi is averaged by
the mean of DVi over the country to which the unit belongs.
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H1.d. The numerical values of the above DMi may still vary greatly. To avoid numerical
instability, we compress their scale by computing the cubic root, obtaining values called
RQi representing the compressed normalized intrinsic variability of the unit.

RQi =
3
√

DMi (4)

H1.e. Compute the value GMi as the geometric mean of all the deltas in the module of unit
i. This value represents an evaluation of the size of the unit. If some of the deltas are zero,
then they can again be replaced with 1 to avoid them all collapsing to zero when this is not
acceptable.

H1.f. Now, to compute a reasonable upper limit on the delta values that unit i could attain,
we multiply the compressed normalized intrinsic variability by the measure of the size of
the unit, obtaining the following threshold Ti:

Ti = GMi RQi (5)

H1.g. Now, to finally recognize the situation of the inversion of a value between two
consecutive units A and B by computing H1, we need four conditions to be verified at the
same time: unit A has two consecutive deltas larger (in modulus) than the threshold TA
and with opposite signs (w.l.o.g, the first is positive and the second is negative), and unit B
for the same time instants has again two consecutive deltas larger (in modulus) than the
threshold TB but with signs reversed with respect to A (the first is negative and the second
is positive). In practice, condition H1 is given by the following Boolean expression:

H1(A,B)
t: {[(∆vA

(t−1,t) > 0 ∧ ∆vA
(t,t+1) < 0) ∧ (∆vB

(t,t+1) < 0 ∧ ∆vB
(t,t+1) > 0)] ∨

[(∆vA
(t−1,t) < 0 ∧ ∆vA

(t,t+1) > 0) ∧ (∆vB
(t−1,t) > 0 ∧ ∆vB

(t,t+1) < 0)]} ∧
(|∆vA

(t−1,t)| > TA ∧ |∆vA
(t,t+1)|> TA ∧ |∆vB

(t−1,t)|> TB ∧ |∆vB
(t,t+1)|> TB)

(6)

If H1(A,B)
t is true, then we also need a corresponding condition H2(A,B)

t to be true
to have a probable swap problem. The generic condition H2 is evaluated by the follow-
ing steps.

H2.a. For each unit i, we define Ii
t as the distance of the value vi

t at time t from the mean
value of v over time without the value at time t as follows:

Ii
t = vi

t − (∑k∈S\t vi
k)/n − 1 (7)

H2.b. We define Ni
t as the distance of the value vi

t at time t from the mean value of v over
time without the value at time t, but this time we take the values of the subsequent unit i+1
(the one with which the values could have been exchanged), as follows:

Ni
t = vi

t − (∑k∈S\t vi+1
k)/n − 1 (8)

H2.c. Finally, we define Fi
t as the minimum between the modulus of the two above values:

In practice, we are comparing the distance between value vi
t and all the other values of

unit i and between vi
t and all the other values of unit i + 1. If vi

t is closer to the values of
unit i + 1, then the minimum is |Ni

t| and inversion is probable.

Fi
t = min (|Ii

t|, |Ni
t|) (9)
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Hence, condition H2 for units A and B is evaluated as follows:

H2(A,B)
t: Fi

t ̸= |Ii
t| (10)

Conditions H1 and H2 are computed and checked for every couple of units A and B
and every time instant t. If H1(A,B)

t is true and H2(A,B)
t is also true, a possible swapping

error flag is raised for units A and B at time instant t; otherwise, no flag is raised. Note that
this error may even affect more than one time instant of the same two units.

Example 1. We provide an example of the check for the inversion problem for two units (called
unit 1 and unit 2) on a variable v of a longitudinal dataset with t = 5. The data of the units
are shown in Table 1. We first compute the deltas for each unit; see Table 1. For instance, unit
1 has v1

2 = 18 and v1
3 = 130, hence ∆v1

(2,3) = 18 − 130 = −112. After this, DV is equal to
|(−112 − 10)(107 + 10)| = 14,274 for unit 1 and |(−129)(120 + 5 + 5)| = 16,770 for unit 2.
Subsequently, the value of the geometric mean GM is 33.09 for unit 1 and 24.94 for unit 2; DM is
0.92 for unit 1 and 1.08 for unit 2, and RQ is 0.97 for unit 1 and 1.03 for unit 2. Consequently, the
threshold T is 32.17 for unit 1 and 25.59 for unit 2.

Table 1. Values v and ∆ of the inversion problem example.

v1 v2 v3 v4 v5 ∆(1,2) ∆(2,3) ∆(3,4) ∆(4,5)

Unit 1 125 18 130 120 130 107 −112 10 −10

Unit 2 21 150 30 25 20 −129 120 5 5

Then, we find H1(1,2)
t. Considering that for unit 1, ∆v1

(1,2) > 0 and ∆v1
(2,3) < 0 and, for unit

2, ∆v2
(1,2) < 0 and ∆v2

(2,3) > 0, the first part of the H1 condition is verified. Additionally, all those
∆v exceed the respective thresholds T. Therefore, H1(1,2)

2 is true.
To evaluate H2(1,2)

2, we compute I1
2 and N1

2 for unit 1 and time 2.
We have value I1

2 = 18 − (125 + 18 + 130 + 120 + 130−18)/4 = −108.25.
Value N1

2 = 18 − (21 + 150 + 30 + 25 + 20−150)/4 = −6.
Since −6 has the smallest modulus value, F1

2 = 6, F1
2 ̸= I1

2 and H2(1,2)
2 is true. As both

conditions are true, a probable inversion error flag is reported for the period t = 2.

2.2. Anomalous Jump Problem

To identify anomalous jumps, we now compute for each unit i a threshold with
tolerance, TTi, larger than before, obtained as follows. After the computation of the
threshold Ti described in Section 2.1, we execute the following steps.

a. Calculate the value LGMi as the natural logarithm of the GMi value presented in
Section 2.1. This logarithm of the size represents a compressed measure of the size of
the unit.

b. Compute VIi as the integer upper part of the value LGMi plus a constant c repre-
senting another element of the customization of the procedure. This value can be
determined either with a priori reasoning or even derived from the data itself, for
example, by defining a training set of anomalous/not anomalous jumps and by
choosing the value of c maximizing the detection performance.

VIi = ⌈LGMi + c⌉

c. Compute GMTi as the sum of GMi + Ti. In practice, we are summing the size and
threshold for unit i, obtaining a kind of deformation of the threshold by its size.
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d. Finally, identify the threshold with tolerance TTi as the largest value between the
two size-derived values described above. This is used as an upper bound on the
reasonable jumps observed in the values of the unit.

TTi = max(VIi, GMTi).

Now, an anomalous jump flag is raised for a unit i in a time t, t + 1 for variable v if the
module of ∆vi

(t,t+1) is greater than the threshold TTi.

Example 2. We provide an example of an anomalous jump problem. Consider a unit (called unit 3)
with variable v of a longitudinal dataset with t = 5. The data and the deltas of the unit are shown in
Table 2. We compute the threshold T = 101.66, as already seen in the previous example. Then, we
find LGM = 4.32, VI = 13 and GMT =177.15. By considering c = 8 and the mean of deltas = 10,
the resulting threshold with tolerance TT value is 177.15.

Table 2. Values and ∆ of the unit considered for the anomalous jump example.

v1 v2 v3 v4 v5 ∆ (1,2) ∆ (2,3) ∆ (3,4) ∆ (4,5)

Unit 3 200 220 400 210 230 −20 −180 190 −20

As | ∆v3
(2,3) |= 180 > 177.15 and |∆v3

(3,4)|= 190 > 177.15, we report an anomalous jump
flag for the period t = 2, 3 and the period t = 3, 4. The data manager will have to check the values of
t = 2, t = 3 and t = 4 to understand the reasons for this anomalous jump.

2.3. Recalculation Problem

To identify a recalculation operated by the data provider we use the above threshold
with tolerance TTi. We suspect a recalculation problem on unit i if two contiguous deltas of
opposite signs are both above the threshold TTi in the modulus as follows:

[(∆vi
(t−1,t) > 0 ∧ ∆vi

(t,t+1) < 0) ∨ (∆vi
(t−1,t) < 0 ∧ ∆vi

(t−1,t) > 0)] ∧ (|∆vi
(t−1,t)| > TTi ∧ |∆vi

(t,t+1)| > TTi) (11)

If this condition is true, a possible recalculation flag is raised.

Example 3. We provide an example of a recalculation problem. Consider a unit (called unit 4)
with variable v of a longitudinal dataset with t = 5. The data and the deltas of the unit are shown
in Table 3. Following the steps described above, after computing the threshold T = 39.40, we find
LGM = 3.80, VI = 12 and GMT = 84.24. The resulting TT value for the unit is 84.24. A flag
of possible recalculation error is raised for period t = 3 since ∆v4

(2,3) > 0 and ∆v4
(3,4) < 0, while

simultaneously |∆v4
(2,3)| = 87 > 84.24 and |∆v4

(3,4)| = 155 > 84.24.

Table 3. Values and ∆ of the unit considered for the recalculation example.

v1 v2 v3 v4 v5 ∆ (1,2) ∆ (2,3) ∆ (3,4) ∆ (4,5)

Unit 4 163 167 80 235 160 −4 87 −155 75

All the described operations are available in the Microsoft Excel file contained in [29].
This file can be used to operate the described checks with any data, by simply pasting
them into the sheet “Main Table”. Each row must represent a single unit of analysis.
The Excel file is also adaptable to use units with a variable number of time instants. The
minimum number of time instants must be inserted in cell MIN OSS in the sheet “Threshold
Calculation”.
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2.4. Data

The European Tertiary Education Register (ETER) [30] is a key initiative for understand-
ing the higher education landscape in Europe developed after the successful AQUAMETH
project [31]. This database provides a reference list of Higher Education Institutions (HEIs)
and institutional data on their activities and achievements, including students, graduates,
staff and finances. It thus complements national and regional education statistics provided
by EUROSTAT [32].

As of March 2024, ETER includes 41 European countries and provides data from
2011 to 2020, with a total of over 3500 HEIs. ETER collects a wide range of data on
HEIs, including institutional characteristics (type, size, specialization), student information
(enrolment, graduates, mobility), staff (lecturers, researchers, administrative staff), finances
(income, expenditure, investment) and research and development activities. ETER complies
extensively with statistical regulations and manuals, in particular the UOE Manual on
Data Collection on Formal Education and the OECD Frascati Manual on Research and
Experimental Development Statistics. This ensures the comparability of data with other
international sources. Collaboration with a network of experts and data providers in all
participating countries ensures that information is collected from reliable and consistent
sources. Established methodologies are used to define variables and indicators, enabling
the re-use of collected data for statistical purposes and comparability with other sources.
Data undergo rigorous quality control and validation to identify and correct errors or
inconsistencies, as described in [33]. However, as described in Section 3, the proposed
techniques were able to locate several cases of the specific longitudinal data problems
described above.

ETER contributes to a better understanding of the higher education landscape and
is a valuable resource for researchers, policymakers and stakeholders in European higher
education. Within ETER, we selected the case of the two variables “Total academic person-
nel” in headcount (HC) and “Total number of enrolled students” because they are widely
used in empirical analysis and by policymakers as a proxy for the size of the universities.
Therefore, they are two of the most important variables, and it is of paramount importance
to detect any possible errors in them.

Total academic personnel in HC include the following:

(i) The number of academic staff whose primary assignment is instruction, research or
public service;

(ii) Staff who hold an academic rank, like professor, assistant professor, lecturer or an
equivalent title;

(iii) Staff with other titles (like dean, head of department, etc.) if their principal activity is
instruction or research;

(iv) PhD students employed for teaching assistance or research.

Data on students are divided by the level of education of the program to which
they are enrolled, using the International Standard Classification of Education (ISCED)
in its 2011 version. This version includes the distinction between “Bologna” levels of
education (Bachelor, Master and Doctorate). The “Total number of enrolled students”
includes students from ISCED 5 (short-cycle tertiary), ISCED 6 (bachelor), ISCED 7 (Master)
and does not include ISCED 8 (Doctoral level).

We report our experiments on the largest EU countries present in the ETER, i.e.,
Germany, France, Italy, Spain, Poland and Portugal, for a total of 1587 HEIs, in the time
period from 2011 to 2020. Tables 4 and 5 report the number of HEIs having complete data,
respectively, for the variables “Total academic personnel” and “Total number of enrolled
students”. The time interval of these two variables is annual.
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Table 4. Number of HEIs with the variable total academic staff (HC) available in the ETER for each
country and year in the period 2011–2020.

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 Total

Italy 115 115 115 114 114 114 114 114 114 114 1143
Germany 365 378 383 385 385 383 400 400 396 399 3874

Spain 77 80 80 81 81 80 82 83 83 84 811
France 131 132 130 129 126 0 123 123 119 111 1124
Poland 0 0 0 0 0 0 247 243 241 237 968

Portugal 113 106 94 91 90 95 90 90 89 92 950

Table 5. Number of HEIs with the variable total number of enrolled students available in the ETER
for each country and year in the period 2011–2020.

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 Total

Italy 176 176 176 215 215 216 206 207 207 208 2002
Germany 368 380 384 388 389 391 402 401 401 399 3903

Spain 77 80 80 81 82 82 82 83 83 84 814
France 339 340 368 375 377 0 212 209 206 203 2629
Poland 286 272 280 282 281 274 248 245 243 239 2650

Portugal 113 106 94 91 90 96 90 90 89 92 951

3. Results
3.1. Experiments with the Proposed Techniques

All the computations described in Section 2 have been implemented in Microsoft Excel
and run directly from a spreadsheet. Those controls have been applied to the described
ETER database, considering the case of the variables Total academic personnel and Total
number of enrolled students. All HEIs from Germany, France, Italy, Spain, Poland and
Portugal with available values for that variable were considered, for a total of 1587 HEIs. In
the computation of DVi and GMi, if some factor was zero, it was replaced with 1 to avoid
them collapsing to zero. In the computation of VIi, the constant c was set at 8 by means of
experimental fine-tuning. Tables 6 and 7 (respectively, for the two variables Total academic
personnel and Total number of enrolled students) report, for each country, the total number
of flags raised by the described techniques. In particular, we indicate the H1 and H2 flags
separately and then, when both are true, the number of inversion flags. The values in the
brackets show the ratio between the number of flags and the sum of all universities with
available data for the considered variable in the period 2011–2020 (i.e., the column Total
in Tables 4 and 5). After that, Tables 8–10 for the variable Total academic personnel and
Tables 11–13 for the variable total number of enrolled students report the years over which
the error flags were raised.

Table 6. Total number of flags raised for variable total academic staff by countries.

# of H1 Flags # of H2 Flags # of Inversions Flags # of Jumps Flags # of Recalculation Flags

Italy 159 (0.14) 287 (0.25) 40 (0.03) 396 (0.35) 58 (0.05)
Germany 314 (0.08) 398 (0.10) 34 (0.01) 1059 (0.27) 32 (0.01)

Spain 24 (0.03) 81 (0.10) 4 (0.005) 249 (0.31) 21 (0.03)
France 18 (0.02) 20 (0.02) 1 (0.00) 160 (0.14) 5 (0.004)
Poland 79 (0.08) 71 (0.07) 12 (0.01) 9 (0.01) 18 (0.02)

Portugal 50 (0.05) 131 (0.14) 7 (0.01) 236 (0.25) 32 (0.03)
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Table 7. Total number of flags raised for variable total enrolled students by countries.

# of H1 Flags # of H2 Flags # of Inversions Flags # of Jumps Flags # of Recalculation Flags

Italy 151 (0.08) 192 (0.1) 18 (0.01) 728 (0.36) 111 (0.06)
Germany 150 (0.04) 553 (0.14) 24 (0.01) 1452 (0.37) 99 (0.03)

Spain 35 (0.04) 86 (0.11) 5 (0.01) 289 (0.36) 17 (0.02)
France 96 (0.04) 638 (0.24) 27 (0.01) 795 (0.3) 193 (0.07)
Poland 85 (0.03) 428 (0.16) 12 (0) 871 (0.33) 41 (0.02)

Portugal 23 (0.02) 166 (0.17) 5 (0.01) 256 (0.27) 13 (0.01)

Table 8. Number of inversion flags raised by country and by year (2011–2020).

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 Total

Italy 5 1 0 0 2 3 4 4 5 16 40
Germany 9 1 1 0 2 2 1 3 2 13 34

Spain 4 0 0 0 0 0 0 0 0 0 4
France 0 0 0 0 0 0 0 0 0 1 1
Poland 0 0 0 0 0 0 0 9 2 1 12

Portugal 2 0 0 0 2 0 0 2 0 1 7

Table 9. Number of anomalous jump flags raised by country and by delta.

∆2011–
2012

∆2012–
2013

∆2013–
2014

∆2014–
2015

∆2015–
2016

∆2016–
2017

∆2017–
2018

∆2018–
2019

∆2019–
2020 Total

Italy 42 52 53 42 39 40 38 42 48 396
Germany 132 144 106 111 115 110 112 101 128 1059

Spain 26 21 15 58 31 30 19 26 23 249
France 102 5 6 16 0 0 12 10 9 160
Poland 1 1 1 1 1 1 1 1 1 9

Portugal 31 28 25 30 34 17 20 32 19 236

Table 10. Number of recalculation flags raised by country and by year (2011–2020).

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 Total

Italy N.A. 5 9 13 6 5 5 9 6 N.A. 58
Germany N.A. 0 2 0 6 8 3 6 7 N.A. 32

Spain N.A. 3 0 3 4 4 2 2 3 N.A. 21
France N.A. 2 1 0 0 0 0 1 1 N.A. 5
Poland N.A. 0 0 0 0 0 0 18 0 N.A. 18

Portugal N.A. 0 2 0 6 8 3 6 7 N.A. 32

Table 11. Number of inversion flags raised by country and by year (2011–2020).

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 Total

Italy 6 1 1 0 0 0 0 0 2 8 18
Germany 16 1 0 2 0 3 1 1 0 0 24

Spain 4 0 0 0 0 0 0 0 0 1 5
France 16 2 4 0 0 0 0 0 0 5 27
Poland 6 0 0 2 1 0 0 0 0 3 12

Portugal 4 0 0 0 1 0 0 0 0 0 5
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Table 12. Number of anomalous jump flags raised by country and by delta.

∆2011–
2012

∆2012–
2013

∆2013–
2014

∆2014–
2015

∆2015–
2016

∆2016–
2017

∆2017–
2018

∆2018–
2019 Total

Italy 83 60 67 86 116 92 75 72 728
Germany 208 190 178 145 142 151 133 139 1452

Spain 32 39 49 39 40 21 18 28 289
France 94 77 75 302 0 0 118 107 795
Poland 124 139 106 83 88 158 54 50 871

Portugal 56 35 18 22 17 17 27 28 256

Table 13. Number of recalculation flags raised by country and by year (2011–2020).

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 Total

Italy N.A. 10 9 6 15 33 19 7 12 N.A. 111
Germany N.A. 13 11 12 10 17 8 13 15 N.A. 99

Spain N.A. 4 3 5 1 0 2 1 1 N.A. 17
France N.A. 19 17 49 0 0 0 103 5 N.A. 193
Poland N.A. 5 7 7 3 13 4 0 2 N.A. 41

Portugal N.A. 6 1 0 3 0 1 0 2 N.A. 13

As may be observed, the procedures were able to detect the described problems in
every country, notwithstanding the great care taken in obtaining correct data from the
different data providers. The values are often higher for Germany mainly because this
country has a much larger number of HEIs. If we consider the same values divided by the
number of HEIs in the country, we obtain a much more uniform distribution of the errors.

The results show a strong presence of recalculations in the dataset. This type of
problem is strongly conditioned by the data collection method carried out by the ETER,
which recomputes the values every year and may change from year to year in some
of its definitions. Furthermore, one piece of information that unfortunately cannot be
evaluated by only looking at the ETER concerns the various reforms of contractual forms
that have taken place over the years in the different countries and the role conventions in
the institutions (for example, in some countries like Italy, teaching assistants have been
phased out as a contractual form).

The running times required by the proposed procedures, implemented in Microsoft
Excel, are smaller than a few seconds for each whole country on a standard PC with i7 CPU
and 16Gb of RAM running Microsoft Windows 11 OS.

3.2. Comparison with Other Existing Methods

This section contains a comparison of the proposed approach and other four error
detection techniques available in the literature:

(1) Local Outlier Factor (LOF)
(2) Z-score threshold (Z-Score)
(3) Interquartile Range threshold (IQR)
(4) Hampel identifier (HI)

Since the other techniques cannot detect inversion or recalculation problems, our
comparison is necessarily limited to the anomalous jump problem and is performed on a
sample of Italian HEIs.

The above methods mainly operate by identifying outliers, and we apply them to
the deltas to detect “outlier jumps”, roughly corresponding to our concept of an anoma-
lous jump.

LOF compares the Local Readability Density (LRD) of a point to that of its neighbors.
An LOF score of approximately 1 indicates that the LRD around the point is comparable
to that of its neighbors, so the point is not an outlier. Points that have a substantially



Symmetry 2024, 16, 529 12 of 16

lower LRD than their neighbors are more “far away” from the others. They are considered
outliers if they produce a score lying outside an interval ILOF. The minimum number of
neighboring points considered was set to 3 to check each value with the two adjacent ones.
The extremes of the ILOF interval are computed as the average of the distance between
each pair of normalized deltas in a time series (simply the difference of the two normalized
values) plus or minus the standard deviation of those distances. If a time series has missing
values, this technique cannot work, and the data unit is not checked.

Z-scores quantify how far from the mean an observation is when data follow the
normal distribution. Z-scores are the number of standard deviations above and below
the mean that each value falls in. To calculate a Z-score for an observation, take the raw
measurement, subtract the mean, and divide by the standard deviation. Mathematically,
Z = (X − µ)/σ, where X is an observation, µ is the mean of the population and σ is the
standard deviation of the population. The larger the Z-score, the more the value is different
from the average, and values above a threshold are declared outliers. We use 2 as the
threshold. The main limitation of this method regards the normal distribution assumptions:
if data are not normally distributed, this approach might be not accurate.

The Interquartile Range threshold computes an interval IIQR whose width is the
difference between first and third quartiles Q1 and Q3 and whose extremes are given
by Q1 −1.5(Q3 − Q1) and Q3 + 1.5(Q3 − Q1). Deltas lying outside the interval IIQR are
considered outliers.

The Hampel Identifier [34] computes the median η of the deltas in a time series and
their Median Absolute Deviation (MAD). Then, it computes an interval IHI whose extremes
are η −3MAD and η + 3MAD. Deltas lying outside the interval IHI are considered outliers.

The following Figure 1 reports the results of the anomalous jump detection of our
method, described in Section 2.2, and of the above-described four methods for the case of the
“Total academic staff” from a sample of the first 26 Italian HEIs in the ETER dataset. The lim-
ited size of the sample is due to the fact that the real anomalous jumps, needed to evaluate
the performance of each method, were not known in advance and had to be manually iden-
tified by experts in the field for the present comparison with time-consuming inspections.

As is observable, the accuracy, defined as the percentage of correct detections over
all examined cases (sum of true positive and true negative cases), is the highest for our
method (91%), followed by LOF (81%). Similar experiments on the whole Italian situation
show that the proposed method almost always finds a larger number of cases, and in the
manual controls, performed only on a subset of the alerted cases for obvious reasons of
time, the proposed technique appears to have a very good discrimination power. There-
fore, the overall outcome indicates that the proposed approach has a detection power of
anomalous jumps that is at least comparable, when not superior, to that of each other single
technique tested.

To offer another insight, in Figure 2, we focus on a single case, which is the series
of the values for the variable total academic staff of a randomly extracted real unit (unit
IT0010). Here, the situation can be inspected and judged by a human, and it appears
that the steepest jumps are ∆2016–2017, ∆2018–2019 and ∆2019–2020, and they have been
judged anomalous by experts in the field.

The results of each method are reported in the same figure, by coloring in azure
the unalerted cases and, respectively, in yellow, red, green, purple and orange the deltas
detected as anomalous jumps. As is observable, our approach is the only one correctly
recognizing all three cases.
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4. Discussion

The issues addressed in this work arise from the analysis of large numerical longitudi-
nal databases. This type of data is becoming more and more accessible, and they are now
used for many important analyses. Unfortunately, they may contain errors, like almost
any other type of data. In addition, to the generic errors commonly found in other types
of data, longitudinal datasets often harbor subtle problems that generic techniques fail to
trace. Those elusive types of errors should be automatically identified, so that they can
be inspected and possibly removed by a human inspector. This work responds to this
need by identifying three types of those errors and by proposing a statistical-mathematical
approach to capture their complexity that can be applied after other generic techniques. In
particular, we have identified the following types of errors:

(1) The inversion problem, that is, the swapping of one or more values between two
neighboring units;

(2) The anomalous jump, that is, the presence of a jump between two consecutive values
in a time series with the size being out of the ordinary;

(3) The recalculation problem, which happens when the data provider discovers an error
(typically a timing attribution error) on an already published value and operates a
recalculation on the next value to compensate for the previous errors.

This list could even be extended in future studies. We devised techniques to identify
potential errors of the described types that can be applied after a generic error correction
step. We wanted these techniques to possess the following features: be computationally
viable even for large datasets; work at the formal level, regardless of the meaning of the
data, to be used in several contexts; be flexible to adapt to different situations. The proposed
techniques are based on a system of indicators and have been implemented in a Microsoft
Excel spreadsheet, publicly available in [29] from the Mendeley Data repository, to favor
transparency and replicability of our experiments and to provide an easily accessible tool
for anybody interested in using the proposed techniques on other datasets. We applied
these techniques to an important example of a large longitudinal database, the ETER
database, gathered from the different European countries and obtained by means of several
passages. In this case, notwithstanding the great care spent in improving the quality of the
data, several cases of the described problems were found by the proposed techniques. Thus,
thanks to the described approach, the data quality of the dataset could be further improved.

5. Conclusions

When dealing with large numerical longitudinal databases, there exist errors specific
to this type of dataset that are hardly identifiable or not identifiable at all by standard
error detection and correction techniques. This work identifies some of these problems
and proposes a statistical-mathematical approach based on a system of indicators that is
able to capture the complexity of the described problems by working at the formal level,
regardless of the specific meaning of the data. In particular, the types of errors analyzed in
this work are as follows: (i) the inversion of one or more values from one unit to another;
(ii) anomalous jumps in the series of values; (iii) errors in the temporal attribution of the
values due to a recalculation operated by the data providers to compensate previous errors.
The techniques to detect such errors were implemented in MS Excel and applied to the
important database of European Higher Education institutions (ETER) by analyzing two
key variables, namely, the total academic staff and the number of enrolled students. Note
that these variables are two of the most important and delicate ones, and special care should
be devoted to their correction. Each of them is often used in empirical analysis as a proxy
for the size of the institutions, and they are also two of the main variables considered by
policymakers at the European and national levels.

Empirical results show the effectiveness of the proposed techniques and the compu-
tational viability of the approach. Comparison with other existing techniques, which is
possible only for the anomalous jump problem, reveals a superior detection power of our
approach, whose accuracy on a sample reaches 91%. The implementation of the approach
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in Microsoft Excel makes it easy to use for researchers and functionaries working with
large longitudinal databases. Moreover, it ensures the replicability of the approach and its
applicability in other contexts.

Future work includes the identification of further cases of longitudinal data-specific
errors and the development of techniques for their localization. With regard to the ETER
dataset, we plan to extend the described techniques to other variables. This work has
considerable applications and extensions. For example, it could be suggested to the national
data collectors of ETER (typically the National Statistic offices) to use our approach to
perform checks, already at the national level, and correct the data before sending them to
ETER to maximize the accuracy of the data provided. The Excel tool provided in the work
allows an easy implementation of our method on the variables of interest before providing
the data.
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