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1. Introduction

The collection of all functions f can be denoted as A and can be represented in the
form of a series.

f (ξ) = ξ+
∞

∑
ι=2

aιξι = ξ+ a2ξ
2 + a3ξ

3 + . . . + aιξι + . . . , (1)

which are analytic in the open unit disk U, where U = {ξ ∈ C : |ξ| < 1}.
A function is considered univalent in U if it never produces the same value twice.

Mathematically, ξ1 ̸= ξ2 for all points ξ1 and ξ2 in U implies f (ξ1) ̸= f (ξ2)).
Consider the class S, which includes all univalent functions in A, together with the

families of starlike and convex functions of order φ. The sets S∗(φ) and C(φ) are notable
and extensively studied subclasses of S. Consequently, they have been included in this
context, as referenced in [1–3].

S∗(φ) =

{
f ∈ S : Re

(
z f ′(ξ)

f (ξ)

)
> φ, ξ ∈ U

}
, φ ∈ [0, 1 )

C(φ) =

{
f ∈ S : Re

(
1 +

z f ′′ (ξ)
f ′(ξ)

)
> φ, ξ ∈ U

}
, φ ∈ [0, 1 )

and
It is readily apparent that

S∗(0) = S∗ and C(0) = C,

The function classes S∗ and C represent the well-established categories of starlike and
convex functions, respectively.
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If both g and f are analytic functions in U, then f is considered subordinate to g in
U and represented as f ≺ g, if there exists a Schwarz analytic function, w, in U, with
w(0) = 0, |w(ξ)| < 1(ξ ∈ U), such that f (ξ) = g(w(ξ)), (ξ ∈ U). Moreover, the existence
of the equivalence link is contingent upon the function g being univalent in U. The given
expression for ([4,5]) is as follows:

f (ξ) ≺ g(ξ) ↔ g(0) = f (0) and f (U) ⊂ g(U), ξ ∈ U.

For further information, please refer to reference [1]. The definition of the inverse
function for each f ∈ S is as follows:

f−1( f (ξ)) = ξ,

f
(

f−1(ω)
)
= ω, ω ∈ Dr0 = {ω ∈ C, : |ω| < r0( f )}, r0( f ) ≥ 1

4
,

where

f−1(ω) = ω − a2ω2 +
(

2a2
2 − a3

)
ω3 −

(
5a2

3 − 5a2a3 + a4

)
ω4 + . . . , ω ∈ Dr0 . (2)

An analytic function f is considered bi-univalent in the set U if both f and f−1 are
univalent in U. The classification of all such functions is represented by the symbol Σ.
The pioneering research conducted by Srivastava et al. [6] has significantly rejuvenated
the investigation of bi-univalent functions in recent decades. Following the study of
Srivastava et al. [6], several authors have given and extensively investigated various
distinct subclasses of class Σ. The authors Srivastava et al. [7] introduced the function
classes HΣ(γ, ε,µ, ς;α) and HΣ(γ, ε,µ, ς;β), and subsequently presented estimates for the
Taylor–Maclaurin coefficients |a2| and |a3|. Srivastava’s work has served as a source
of inspiration for numerous authors, who have since developed various subclasses of
analytic and bi-univalent functions. Several authors have obtained different types of
findings for their defined function classes. This paper, inspired by Srivastava’s research,
introduces novel categories of bi-univalent functions and achieves notable outcomes for
these categories. The aforementioned results encompass various aspects, such as the initial
coefficient bonds, the Fekete–Szegö problem, and the second Hankel determinant. The
study of special functions, which has its roots in their wide range of applications, is a
longstanding field of analysis. The enduring fascination with these entities has experienced
a recent surge in popularity owing to their novel applications and expanded scope. This
theory is currently undergoing extensive development in different unanticipated areas of
application. It relies on numerical analysis and computer algebra systems to analyze and
display special functions graphically. Moreover, activation functions have a significant
role in the domain of computer science, serving as specialized functions. The category
of statistical functions known as orthogonal polynomials holds great significance and
engagement. A multitude of domains within the domain of natural sciences cover a
diverse range of notions, including but not limited to discrete mathematics, theta functions,
continuous fractions, Eulerian series, and elliptic functions (see references [2,8–11]).

Moreover, within the realm of pure mathematics, the aforementioned functions possess
a multitude of applications. Numerous researchers have commenced their investigations
across diverse domains due to the extensive utilization of these functionalities. Contempo-
rary research in geometric function theory places emphasis on the geometric characteristics
of specific functions, such as hypergeometric functions, Bessel functions, and other asso-
ciated functions. In relation to certain geometric properties of these functions, we make
reference to [12–18] and any other pertinent sources. This paper introduces a novel category
of bi-univalent functions and employs a specific function known as the Euler polynomial.
Frequently, the Eulers polynomials Em are defined using the generating function.

l(v, t) =
2etv

et + 1
=

∞

∑
m=0

Em(v)
tm

m!
, |t| < π. (3)
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A precise equation for En(v) is provided by

En(v) =
n

∑
m=0

1
2m

m

∑
k=0

(−1)k
(

m
k

)
(v + k)n.

Now, En(v) in terms of Ek can be obtained from the equation above as

En(v) =
n

∑
m=0

1
2m

m

∑
k=0

(
m
k

)
Ek

2k

(
v − 1

2

)m−k
. (4)

The Euler polynomials in the beginning are:

E0(v) = 1,
E1(v) = 2v−1

2 ,
E2(v) = v2 − v,
E3(v) = 4v3−2v2+1

4 ,
E4(v) = v4 − 2v3 + v.

(5)

The problem of identifying estimating values of the absolute values of the coefficients
remains a persistent challenge in geometric function theory. Their coefficients’ magnitude
can influence several features of analytic functions, such as univalency, growth rate, and
distortion. Efficient issues such as the Fekete–Szegö problem and Hankel determinants
involve estimating generic or (lth) coefficient bounds. The aforementioned difficulties
regarding coefficients were effectively resolved by multiple scholars employing diverse
methodologies. The Fekete–Szegö functional for a function f (ξ) ∈ S is of considerable
importance and is represented by the symbol lβ f =

∣∣a3 − a2
2

∣∣. The assumption made by
Littlewood and Parley regarding the modulus of coefficients of odd functions f ∈ S being
less than or equal to one was challenged by Fekete and Szegö [19] through the provision of
a different functional. Much attention has been paid to the functional, especially in several
subfamilies of univalent functions (see [20]).

The ath Hankel determinant of f for n ≥ 1 and a ≥ 1, written as Ha(n) (a, n ∈ N =
{1, 2, 3, . . .} ), was defined by Pommerenke [21] and Noonan and Thomas [22] for any
function f ∈ S in geometric function theory:

Ha(n) =

∣∣∣∣∣∣∣∣∣
tn tn+1 . . . tn+a−1

tn+1 tn+2 . . . tn+a
...

...
...

tn+a−1 tn+a . . . tn+2a−2

∣∣∣∣∣∣∣∣∣, (t1 = 1).

For a = 2 and n = 1, we know that the function H2(1) =
∣∣∣∣t1 t2
t2 t3

∣∣∣∣=∣∣∣∣t3 − t2
2

∣∣∣∣ and the

second Hankel determinant H2(2) is defined as

H2(2) =
∣∣∣∣t2 t3
t3 t4

∣∣∣∣ = ∣∣∣t2t4 − t2
3

∣∣∣, (6)

The bi-starlike and bi-convex classes are referenced in [20,21,23,24]. The second
Hankel determinant for specified subsets of bi-univalent functions was investigated by
Al-Ameedee et al. [25]. The Hankel determinant of m-fold symmetric bi-univalent functions
was examined by Atshan et al. [26] and other researchers [27–30] by the utilization of a novel
operator. The Hankel determinant of f was investigated by Fekete and Szegö [19] as H2(1).
An earlier investigation was conducted to estimate the value of

∣∣t3 − µt2
2

∣∣, where t1 = 1 and
µ ∈ R. Moreover, for instance, in the case of |t3 − µt2

2|, refer to references [19,31]. Hankel
determinants have many applications, such as in random matrix theory and orthogonal
polynomials, see, e.g., the recent work of Min and Chen [32].

The paper conducted in this field encompasses the works referenced in [23,24]. The
present work introduces and examines a novel subclass, referred to as RΣ(v, δ), the set of
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functions consists of bi-univalent functions that adhere to a specific subordination involving
Euler polynomials. The —Fekete-Szegö problem is specifically applied to functions in the
class RΣ(v, δ) and provides bound estimates for the coefficients.

Definition 1. Assume that the subordination of f ∈ RΣ(v, δ)is true:[
δ

(
ξ f ′(ξ)

)′
f ′(ξ)

+ (1 − δ)
f (ξ)

ξ

]
≺ l(v, ξ) =

∞

∑
m=0

Em(v)
ξm

m!
(7)

and [
δ
(wF ′(w))′

F ′(w)
+ (1 − δ)

F (w)

w

]
≺ l(v, w) =

∞

∑
m=0

Em(v)
wm

m!
, (8)

where δ ≥ 0, v ∈
(

1
2 , 1

]
, ξ, w ∈ U, l(v, w) is given by (3), and F = f−1is given by (2).

The univalent of both the functions f and its inverse in the set U leads us to infer that
the function f is bi-univalent and belongs to the function class RΣ(v, δ).

Remark 1. By assigning a value of 1 to in Definition 1, we obtain a bi-starlike function
class f ∈ S∗(α) that satisfies the following conditions:(

ξ f ′(ξ)
)′

f ′(ξ)
≺ l(v, ξ) =

∞

∑
m=0

Em(v)
ξm

m!
(9)

and
(wF ′(w))′

F ′(w)
≺ l(v, w) =

∞

∑
m=0

Em(v)
wm

m!
, (10)

where ξ, w ∈ U, l(v, w) be defined by Equation (3), and F = f−1 be defined by Equation (2).
Now, let P represent the class that includes the analytic functions in U and has the series form

as shown below:

p(ξ) = 1 + p1ξ + p2ξ2 + p2ξ2 + . . . = 1 + ∑∞
l=1 plξ

l , α1 > 0, (11)

with R{p(ξ)} > 0 (∀ξ ∈ U).

Lemma 1 ([33]). If α ∈ P , for each l ∈ {1, 2, 3, . . .}, where P is the family of all Re(p(ξ)) >
0, (z ∈ U), where

p(ξ) = 1 + c1ξ + c2ξ2 + . . . , (ξ ∈ U), (12)

then
|pl | ≤ 2. (13)

Lemma 2 ([34]). Letting the function p ∈ P be denoted by Equation (12). Then

2p2 = p2
1 + χ

(
4 − p2

1

)
(14)

and
4p3 = p3

1 + 2p1χ
(

4 − p2
1

)
− p1χ2

(
4 − p2

1

)
+ 2ξ

(
4 − p2

1

)(
1 − |χ|2

)
. (15)
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2. Coefficient Bounds for the Function Class RRRΣΣΣ(v,δδδ)

Theorem 1. Consider the function f ∈ RΣ(v, δ), then

|a2| ≤
√
M1(t, v) ,

|a3| ≤
(2v − 1)2

4(1 + δ)2 p2
1 +

2v − 1
2(1 + 5δ)

and

|a4| ≤
(10 + 10δ)(2v − 1)3

2(1 + 11δ)(1 + δ)3 p3
1 +

(37 + 23δ)(3v − 1)2

4(1 + 5δ)(1 + δ)
+

4v3 − 6v2 + 1
24(1 + 11δ)

,

where

M1(t, v) =
(2v − 1)3

2(1 + δ)(2δ + 2(δ − 1)v2 − 2(3δ + 1)v + 1)
. (16)

Proof. The function f ∈ Σ as defined by Equation (1) be in the class RΣ(v, δ). Then[
δ

(
ξf′(ξ)

)′
f′(ξ)

+ (1 − δ)
f(ξ)
ξ

]
= l(v, e(ξ)) (17)

and [
δ
(wF ′(w))′

F ′(w)
+ (1 − δ)

F (w)

w

]
= l(v, h(w)). (18)

Also let the function p, q ∈ P be defined as follows:

p(ξ) =
1 + e(ξ)
1 − e(ξ)

= 1 + p1ξ+ p2ξ
2 + p3ξ

3 + . . . = 1 +
∞

∑
l=1

plξ
l.

Then

p(ξ) =
1 + e(ξ)
1 − e(ξ)

, (ξ ∈ U) (19)

and

q(ω) = 1 + q1ω + q2ω2 + q3ω3 + . . . = 1 +
∞

∑
l=1

qlω
l .

Then

q(ω) =
1 + h(ω)

1 − h(ω)
(ω ∈ U). (20)

It follows that

e(ξ) =
p(z)− 1
p(z) + 1

=
p1ξ

2
+

(
p2

2
− p1

2

4

)
ξ2 +

(
p3

2
− p1 p2

2
+

p3
1

8

)
ξ3 + . . . , (21)

and

h(ω) =
q(ω)− 1
q(ω) + 1

=
q1

2
ω +

(
q2

2
− q1

2

4

)
ω2 +

(
q3

2
− q1q2

2
+

q3
1

8

)
ω3 + . . . . (22)

From (21) and (22), we can easily show that

l(v, e(ξ)) = E0(v) +
E1(v)

2
p1ξ+

[
E1(v)

2

(
p2 −

p1
2

2

)
+

E2(v)
8

p1
2
]
ξ2 +

[
E1(v)

2

(
p3 − p1p2 +

p3
1

4

)
+

E2(v)
4

p1

(
p2 −

p1
2

2

)
+

E3(v)
48

p1
3
]
ξ3 + . . . (23)
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and

l(v, e(ω)) = E0(v) +
E1(v)

2 q1ω +
[
E1(v)

2

(
q2 − q1

2

2

)
+ E2(v)

8 q1
2
]
ω2

+

[
E1(v)

2

(
q3 − q1q2 +

q3
1

4

)
+ E2(v)

2 q1

(
q2 − q1

2

2

)
+ E3(v)

48 q1
3
]

ω3 + . . . .
(24)

From (17), (18) and (23), (24), we can easily obtain that

(1 + δ)a2 =
E1(v)

2
p1 , (25)

(1 + 5δ)a3 − 4a2
2 =

E1(v)
2

(
p2 −

p1
2

2

)
+

E2(v)
8

p1
2, (26)

(−18δa2a3) + (1 + 11δ)a4 + 8δa3
2 =

E1(v)
2

(
p3 − p1 p2 +

p3
1

4

)
+

E2(v)
4

p1

(
p2 −

p1
2

2

)
+

E3(v)
48

p1
3, (27)

and

−(1 + δ)a2 =
E1(v)

2
q1 , (28)

(
2(3δ + 1)a2

2−(1 + 5δ)a3

)
=

E1(v)
2

(
q2 −

q1
2

2

)
+

E2(v)
8

q1
2, (29)

(37 + 5δ)a2a3 − (1 + 11δ)a4 + 8δa3
2 =

E1(v)
2

(
q3 − q1q2 +

q3
1

4

)
+

E2(v)
4

q1

(
q2 −

q1
2

2

)
+

E3(v)
48

q1
3. (30)

Adding (25) and (28) and further simplification, we have

p1 = −q1, p2
1 = q2

1, q3
1 = −q3

1. (31)

Upon squaring and adding Equations (25) and (28), the resulting value is as follows:

2(1 + δ)2a2
2 =

E2
1(v)

(
p2

1 + q2
1
)

4
(32)

→ a 2
2 =

E2
1(v)

(
p2

1 + q2
1
)

8(1 + δ)2 . (33)

Additionally, adding (26) and (29) gives

2(1 + δ)2a2
2 =

2E1(v)(p2+q2)+p2
1(E2(v)−2E1(v))

4 ,
8(1 + δ)2a2

2 = 2E1(v)(p2 + q2) + p2
1(E2(v)− 2E1(v)).

(34)

Applying (31) in (32)

p2
1 =

4(1 + δ)2

E2
1(v)

a2
2. (35)

In (34), replacing p2
1 with the following results:

|a2|2 ≤
2E3

1(v)(|p2|+ |q2|)
4
∣∣∣2(1 + δ)E2

1(v)− (1 + δ)2[E2(v)− 2E1(v)]
∣∣∣ . (36)
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Applying Lemma 1 and 2, we obtain |a2| ≤
√
M1(v, δ), where M1(v, δ) is given by

(16). Subtracting (29) and (26) and with some computation, we can easily obtain that

a3 = a2
2 +

E1(v)
4(1 + 5δ)

(p2 − q2), (37)

a3 =
E2

1(v)

4(1 + δ)2 +
E1(v)

4(1 + 5δ)
(p2 − q2). (38)

By utilizing Lemma 1 and 3, we derive:

|a3| ≤
(2v − 1)2

4(1 + δ)2 +
2v − 1

2(1 + 5δ)
. (39)

By removing (30) from (27), we arrive at:

a4 =
(10+10δ)E3

1(v)
2(1+11δ)(1+δ)3 p3

1 +
(37+23δ)E2

1(v)
8(1+5δ)(1+δ)

p1(p2 − q2) +
E1(v)(p3−q3)

4(1+11δ)

+E2(v)−2E1(v)(p2+q2)
8(1+11δ)

p1 +
6E1(v)−6E2(v)+E3(v)

48(1+11δ)
p3

1 + . . . .
(40)

By utilizing Lemma 1 and 2, we derive:

|a4| ≤
(10 + 10δ)(2v − 1)3

2(1 + 11δ)(1 + δ)3 +
(37 + 23δ)(3v − 1)2

4(1 + 5δ)(1 + δ)
+

4v3 − 6v2 + 1
24(1 + 11δ)

+ . . . . □

By substituting δ = 0 into Theorem 1, we obtain the subsequent corollary:

Corollary 1. Let f ∈ RΣ(v, δ). Then,

|a2| ≤

√
(2v − 1)3

2(−2v2 − 2v + 1)
,

|a3| ≤
(2v − 1)2

4
+

2v − 1
2

and

|a4| ≤
(10)(2v − 1)3

2
+

(37)(3v − 1)2

4
+

4v3 − 6v2 + 1
24

. □

For δ = 1, The subsequent corollary of Theorem 1 is obtained.

Corollary 2. Consider the function f ∈ RΣ(v, δ). Then,

|a2| ≤

√
(2v − 1)3

4(2 − 8v + 1)
,

|a3| ≤
(2v − 1)2

4(1 + δ)2 +
2v − 1

2(1 + 5δ)

and

|a4| ≤
20(2v − 1)3

192
p3

1 +
(37 + 23)(3v − 1)2

48
+

4v3 − 6v2 + 1
288

. □
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3. Fekete–Szegö Inequalities for the Functions of Class RRRΣΣΣ(v,δδδ)

Theorem 2. If f ∈ RΣ(v, δ), then, for some T ∈ R

∣∣∣a3 − Ta2
2

∣∣∣ ≤
 2|1 − T|M1(t, v)

[
|1 − T|M1(t, v) ≥ 2v−1

2(1+5δ)

]
2v−1
(1+5δ)

[
|1 − T|M1(t, v) < 2v−1

2(1+5δ)

] ,

where M1(t, v) is given by (16).

Proof. From (37), we obtain

a3 − Ta2
2 = a2

2 +
E1(v)

4(1 + 5δ)
(p2 − q2)− Ta2

2.

By utilizing the well-used triangular inequality, we find:∣∣∣a3 − Ta2
2

∣∣∣ ≤ 2v − 1
2(1 + 5δ)

+ |1 − T|M1(t, v),

if
|1 − T|M1(t, v) ≥ 2v − 1

2(1 + 5δ)
.

Furthermore, we obtain ∣∣∣a3 − Ta2
2

∣∣∣ ≤ 2|1 − T|M1(t, v),

where
|1 − T| ≥ 2v − 1

2(1 + 5δ)M1(t, v)
,

and if
|1 − T|M1(t, v) ≤ 2v − 1

2(1 + 5δ)
,

then, we obtain ∣∣∣a3 − Ta2
2

∣∣∣ ≤ 2v − 1
(1 + 5δ)

,

where
|1 − T| ≤ 2v − 1

2(1 + 5δ)M1(t, v)

and M1(v, δ) is given by (16). □

Assuming that δ = 0 in the aforementioned Theorem 2, we derive the subsequent
outcome.

Corollary 3. If f ∈ RΣ(v, δ), then, for some T ∈ R,

∣∣∣a3 − Ta2
2

∣∣∣ ≤
 2|1 − T|M1(t, v)

[
|1 − T|M1(t, v) ≥ 2v−1

2

]
2v − 1

[
|1 − T|M1(t, v) < 2v−1

2

] ,

where M1(t, v) is given by (16). □
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Corollary 4. If f ∈ RΣ(t, v), then, for some T ∈ R,

∣∣∣a3 − Ta2
2

∣∣∣ ≤
 2|1 − T|M1(t, v)

[
|1 − T|M1(t, v) ≥ 2v−1

12

]
2v−1

6

[
|1 − T|M1(t, v) < 2v−1

12

] ,

where M1(v, δ) is given by (16). □

4. Second Hankel Determinant for the Class RRRΣΣΣ(v,δδδ)

Theorem 3. Consider a function f that belongs to the class RΣ(v, δ). Subsequently

H2(2) =
∣∣∣a2a4 − a2

3

∣∣∣ ≤


T(v, 2) (H1 ≥ 0 and H2 ≥ 0)

max
{(

2v−1
2(1+5δ)

)2
,T(v, 2)

}
(H1 > 0 and H2 > 0)(

2v−1
2(1+5δ)

)2
(H1 ≤ 0 and H2 ≤ 0)

max{T(Y◦ , t),T(v, 2)} (H1 < 0 and H2 < 0)

,

where

T(v, 2) : =
4(10 + 10δ)E4

1(v)

(1 + 11δ)(1 + δ)4Y
4 +

E1(v)[E3(v)]
6(1 + 11δ)(1 + δ)

Y4 +
E4

1(v)

(1 + δ)4 ,

T(Y◦ , t) =
E2

1(v)

(1 + 5δ)2 +
H4

2(1 + δ)4

(1 + 5δ)2(1 + 11δ)H3
1

+
H3

2(1 + δ)2

(1 + 5δ)2(1 + 11δ)H2
1

,

H1 = E1(v)
[
48(10 + 10δ)(1 + 5δ)2E3

1(v) + 2[6E1(v)− 6E2(v) + E3(v)](1 + 5δ)2(1 + δ)3

+12E3
1(v)(1 + 11δ)(1 + 5δ)2 − 24E1(v)(1 + 5δ)2(1 + δ)3

+12E1(v)(1 + 11δ)(1 + δ)4
]
Y4,

H2 = E1(v)
[
3(1 + 11δ)(1 + 5δ)E2

1(v) + 6E1(v)(1 + 5δ)2(1 + δ) + 3[E1(v)− 2E2(v)](1 + 5δ)2(1 + δ)

+6E1(v)(1 + 11δ)(1 + 5δ)− E1(v)(1 + 11δ)(1 + 5δ)]Y2.

Proof. From (25) and (40), we obtain

a2a4 =
(10+10δ)E4

1(v)
4(1+11δ)(1+δ)4 p4

1 +
(37+23δ)E3

1(v)
16(1+5δ)(1+δ)2 p2

1(p2 − q2) +
E2

1(v)(p3−q3)
8(1+11δ)(1+δ)

p1

+E1(v)[E2(v)−2E1(v)](p2+q2)
16(1+11δ)(1+δ)

p2
1 +

E1(v)[6E1(v)−6E2(v)+E3(v)]
96(1+11δ)(1+δ)

p4
1 + . . . ,

with some calculations, we have

a2a4 − a2
3 =

(10+10δ)E4
1(v)

4(1+11δ)(1+δ)4 p4
1 +

(37+23δ)E3
1(v)

16(1+5δ)(1+δ)2 p2
1(p2 − q2)

+
E2

1(v)(p3−q3)
8(1+11δ)(1+δ)

p1 +
E1(v)[E2(v)−2E1(v)](p2+q2)

16(1+11δ)(1+δ)
p2

1

+E1(v)[6E1(v)−6E2(v)+E3(v)]
96(1+11δ)(1+δ)

p4
1 −

E4
1(v)

16(1+δ)2 p4
1

− E2
1(v)

16(1+5δ) (p2 − q2)
2.

Appling Lemma 2, we obtain

p2 − q2 =
1
2

[(
4 − p2

1

)
(χ − u)

]
, (41)
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p2 + q2 = p2
1 +

1
2

[(
4 − p2

1

)
(χ + u)

]
, (42)

and

p3 − q3 =
1
2

[
p3

1 + p1

(
4 − p2

1

)
(χ + u)−

4 − p2
1

2
p1

(
χ2 + u2

)
+
(

4 − p2
1

)⌈(
1 − |χ|2

)
ξ −

(
1 − |u|2

)
⊒
⌉]

, (43)

for some χ, u, ξ,⊒ with |χ| ≤ 1, |u| ≤ 1, |p1| ∈ [0, 2] and substituting (p2 + q2), (p1 + q1)
and (p3 − q3), then after some straightforward calculations

a2a4 − a2
3 =

(10+10δ)E4
1(v)

4(1+11δ)(1+δ)4 p4
1 +

(37+23δ)E3
1(v)(4−p2

1)(χ−u)

32(1+5δ)(1+δ)2 p2
1 +

E2
1(v)

16(1+11δ)(1+δ)
p4

1

+
E2

1(v)(4−p2
1)(χ+u)

16(1+11δ)(1+δ)
p2

1 −
E2

1(v)(4−p2
1)(χ2+u2)

32(1+11δ)(1+δ)
p2

1

+
E2

1(v)(1−|χ|2)ξ−( 1−|u|2)⊒)
16(1+11δ)(1+δ)

p1 +
E1(v)[E2(v)−2E1(v)]

16(1+11δ)(1+δ)
p4

1

+
E1(v)[E2(v)−2E1(v)](4−p2

1)(χ+u)

32(1+11δ)(1+δ)
p2

1 +
E1(v)[6E1(v)−6E2(v)+E3(v)]

96(1+11δ)(1+δ)
p4

1

− E4
1(v)

16(1+δ)2 p4
1 −

E2
1(v)(4−p2

1)
2
(χ−u)2

64(1+5δ)2 (p2 − q2)
2.

Let Y = p1, assuming that without any restriction Y ∈ [0, 2], T1 = |χ| ≤ 1, T2 = |u| ≤
1, and applying triangular inequality, we obtain

∣∣a2a4 − a2
3

∣∣ ≤ {
(10+10δ)E4

1(v)
4(1+11δ)(1+δ)4 Y

4 +
E2

1(v)
16(1+11δ)(1+δ)

Y1 +
E2

1(v)(4−Y2)
8(1+11δ)(1+δ)

Y4

+E1(v)[E2(v)−2E1(v)]
16(1+11δ)(1+δ)

Y4 + E1(v)[6E1(v)−6E2(v)+E3(v)]
96(1+11δ)(1+δ)

Y4 +
E4

1(v)
16(1+δ)2 Y

4
}

+

{
(37+23δ)E3

1(v)(4−p2
1)

32(1+5δ)(1+δ)2 Y2 +
E2

1(v)(4−Y2)
16(1+11δ)(1+δ)

Y2

+
E1(v)[E2(v)−2E1(v)](4−Y2)

32(1+11δ)(1+δ)
Y2
}
(T1 + T2)

+

{
E2

1(v)(4−Y2)
32(1+11δ)(1+δ)

Y2 − E2
1(v)

16(1+11δ)(1+δ)
Y

}(
T2

1 + T2
2
)

+
E2

1(v)(4−Y2)
2

64(1+5δ)2 (T1 + T2)
2,

and equivalently, we obtain∣∣∣a2a4 − a2
3

∣∣∣ ≤ {Z1(v,Y) ,Z2(v,Y)(T1 + T2),Z3(v,Y)
(

T2
1 + T2

2

)
,Z4(v,Y)(T1 + T2)

2
}
= J (T1, T2) , (44)

where

Z1(v,Y) =

{
(10+10δ)E4

1(v)
4(1+11δ)(1+δ)4 Y

4 +
E2

1(v)
16(1+11δ)(1+δ)

Y4 +
E2

1(v)(4−Y2)
8(1+11δ)(1+δ)

Y1 + E1(v)[E2(v)−2E1(v)]
16(1+11δ)(1+δ)

Y4

+E1(v)[6E1(v)−6E2(v)+E3(v)]
96(1+11δ)(1+δ)

Y4 +
E4

1(v)
16(1+δ)4 Y

4
}

≥ 0

Z2(v,Y) =

{
E3

1(v)
(
4 −Y2)

32(1 + 5δ)(1 + δ)2Y
2 +

E2
1(v)

(
4 −Y2)

16(1 + 11δ)(1 + δ)
Y2 +

E1(v)[E2(v)− 2E1(v)]
(
4 −Y2)

16(1 + 11δ)(1 + δ)
Y2

}
≥ 0

Z3(v,Y) =

{
E2

1(v)
(
4 −Y2)

32(1 + 11δ)(1 + δ)
Y2 −

E2
1(v)

(
4 −Y2)

16(1 + 11δ)(1 + δ)
Y

}
≤ 0

Z4(v,Y) =
E2

1(v)
(
4 −Y2)2

64(1 + 5δ)2 ≥ 0, 0 ≤ Y ≤ 2.
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We now maximize the function J (T1, T2) in the closed square

∅ = {(T1, T2) : T1, T2 ∈ [0, 1]} f or Y ∈ [0, 2].

It is necessary to investigate the maximum value of J (T1, T2) with respect to Y, while
considering the scenarios where Y = 0, Y = 2, and Y ∈ (0, 2). The coefficients of the
function J (T1, T2) in Equation (42) are dependent on m, given a constant value of Y.

The 1st case
where Y = 0,

J (T1, T2) = Z4(v, 0) =
E2

1(v)

4(1 + 5δ)2 (T1 + T2)
2.

Clearly the function J (T1, T2) attains its maximum at (T1, T2) and

max{J (T1, T2) : T1, T2 ∈ [0, 1]} = J (1, 1) =
E2

1(v)

(1 + 5δ)2 . (45)

The 2nd case

When E = 2, the function J (T1, T2) is expressed as a constant function with respect to
m, resulting in

J (T1, T2) = Z1(v, 2) =

{
4(10 + 10δ)E4

1(v)

(1 + 11δ)(1 + δ)4Y
4 +

E1(v)[E3(v)]
6(1 + 11δ)(1 + δ)

Y4 +
E4

1(v)

(1 + δ)4

}
.

The 3rd case

When Y ∈ (0, 2), let T1 + T2 = ∥ and T1·T2 = q in this case, and then (48) can be of
the form:

J (T1, T2) = Z1(v,Y) + Z2(v,Y)+ (Z3(v,Y) + Z4(v,Y)− 2Z3(v,Y)) = Q(∥, q), (46)

where ∥ ∈ [0, 2] and q ∈ [0, 1]. Now, we must examine the upper limit of

Q(∥, q) ∈ θ {(∥, q ):∥ ∈ [0, 2], q ∈ [0, 1]}. (47)

By differentiating Z(∥, q) partially, we have

dQ
dc

= Z2(v,Y)+ (Z3(v,Y) + Z4(v,Y))d = 0,

dQ
dc

= −2Z3(v,Y) = 0.

The results indicate that Q(∥, q) does not have a critical point within the square Ψ.
As a result, J (T1, T2) also does not have a critical point within the same region. As a
consequence, the function J (T1, T2) is incapable of attaining its maximum value inside the
interval Ψ. The examination will focus on the greatest value of J (T1, T2) on the edge of the
square. For T1 = 0, T2 ∈ [0, 1] (also, for T2 = 0, T1 ∈ [0, 1]) and

J (0, T2) = Z1(v,Y) + Z2(v,Y)+ (Z3(v,Y) + Z4(v,Y))T2
2 = D(T2). (48)

Now, since (Z3(v,Y) + Z4(v,Y))T2
2 ≥ 0, then we have D′(T2) = Z2(v,Y)+ 2(Z3(u,Y)

+Z4(u,Y))T2 > 0, which implies that D(T2) is an increasing function. Therefore, for a
fixed Y ∈ [0, 2) and u ∈ (1/2, 1], the maximum occurs at T2 = 1. Thus, from (48),

max{J (T1, T2) : T1, T2 ∈ [0, 1]} = J (0, 1)= Z1(v,Y) + Z2(v,Y) + Z3(v,Y) + Z4(v,Y). (49)
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For [T1 = 1, T2 ∈ [0, 1]) also T2 = 1, T1 ∈ [0, 1])],

J (1, T2) = Z1(v,Y) + Z2(v,Y)+Z3(v,Y) + Z4(v,Y) + (Z2(v,Y) + 2Z4(v,Y))T2,

(Z3(v,Y) + Z4(v,Y))T2
2 = N (T2), (50)

N ′(T2) = Z2(v,Y) + 2Z4(v,Y) + 2(Z2(v,Y) + Z4(v,Y))T2. (51)

We know that Z3(v,Y) + Z4(v,Y) ≥ 0, then

N ′(T2) = (Z2(u,Y) + 2Z4(u,Y)) + 2(Z2(u,Y) + Z4(u,Y))T2 > 0.

Hence, the function N (T2) is shown to be an increasing function, with the maximum
value observed at T2 = 1. From (50) we have

max{J (1, T2) : T2 ∈ [0, 1]}

= Z1(v,Y) + 2(Z2(v,Y) + Z3(v,Y)) + 4Z4(v,Y) = J (1, 1) .
(52)

Therefore, for each Y ∈ (0, 2), derived from Equations (52) and (49), we obtain

Z1(v,Y)+ 2(Z2(v,Y) + Z3(v,Y))+ 4Z4(v,Y) > Z1(v,Y)+Z2(v,Y)+Z3(v,Y)+Z4(v,Y).

Therefore

max{J (T1, T2) : T1, T2 ∈ [0, 1]} = Z1(v,Y) + 2(Z2(v,Y) + Z3(v,Y)) + 4Z4(v,Y).

Since
D(1) ≤ N (1) f or Y ∈ [0, 2], v ∈ [1, 1],

then
max{J (T1, T2)} = J [1, 1] ,

and the event takes place in the periphery of square Ψ.
Let T : (0, 2) → R defined by

T(v,Y) = max{J (T1, T2)} = Z1(v,Y) + 2Z2(v,Y) + 2Z3(v,Y) + 4Z4(v,Y) = J (1, 1). (53)

Now, insert the values of Z1(v,Y),Z2(v,Y),Z3(v,Y) and Z4(v,Y) into (53) and with
some calculations, we obtain

T(v,Y) =
E2

1(v)

(1 + 5δ)2 +
H1

192(1 + 11δ)(1 + δ)4(1 + 5δ)2Y
4 +

H2

12(1 + 5δ)2(1 + δ)2(1 + 11δ)
Y2

H1 = E1(v)
[
48(10 + 10δ)(1 + 5δ)2E3

1(v) + 2[6E1(v)− 6E2(v) + E3(v)](1 + 5δ)2(1 + δ)3

+12E3
1(v)(1 + 11δ)(1 + 5δ)2 − 24E1(v)(1 + 5δ)2(1 + δ)3

+12E1(v)(1 + 11δ)(1 + δ)4
]
Y4,

H2 = E1(v)
[
3(1 + 11δ)(1 + 5δ)E2

1(v) + 6E1(v)(1 + 5δ)2(1 + δ) + 3[E1(v)− 2E2(v)](1 + 5δ)2(1 + δ)

+6E1(v)(1 + 11δ)(1 + 5δ)− E1(v)(1 + 11δ)(1 + 5δ)]Y2.

If T(v,Y) attains a maximum value inside the interval Y ∈ [0, 2] and by employing
fundamental mathematical principles, we can deduce

T′(v,Y) =
H1

48(1 + 11δ)(1 + δ)4(1 + 5δ)2Y
3 +

H2

6(1 + 5δ)2(1 + δ)2(1 + 11δ)
Y.

By virtue of the signs of H1 and H2, we need to examine the sign of the function
T′(v,Y).
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First result:

Assuming that H1 ≥ 0 and H2 ≥ 0, then T′(v,Y)≥ 0. This demonstrates that T(v,Y)
is a continuous function on the interval of Y ∈ [0, 2]; that is, Y = 2. Consequently,

max{T(v,Y) :Y ∈ [0, 2]} =

{
4(10 + 10δ)E4

1(v)

(1 + 11δ)(1 + δ)4 +
E1(v)[E3(v)]

6(1 + 11δ)(1 + δ)
+

E4
1(v)

(1 + δ)4

}
.

Second result:

If H1 > 0 and H2 < 0, then,

T′(v,Y) =
H1Y

3 + 8H2Y(1 + δ)2

48(1 + 11δ)(1 + δ)4(1 + 5δ)2 = 0. (54)

At the critical point,

Y◦ =

√
−8H2(1 + δ)2

H1
(55)

is a critical point of the function. Now,

T′′ (Y◦) = − H2

2(1 + 11δ)(1 + δ)2(1 + 5δ)2Y
3 +

H2

6(1 + 5δ)2(1 + δ)2(1 + 11δ)
Y > 0.

Therefore, Y◦ is the minimum point of the function T(v,Y). Hence, T(v,Y), cannot
have a maximum.

Third result:

If H1 ≤ 0 and H2 ≤ 0, then T(v,Y) ≤ 0. Therefore,T(v,Y) is a decreasing function
on the interval (0, 2). Consequently,

max{T(v◦ ,Y) : Y ∈ (0, 2)} = T(0) =
E2

1(v)

(1 + 5δ)2 . (56)

Fourth result:

If H1 < 0 and H2 > 0, then

T′′ (Y◦) =
−H2

3(1 + 11δ)(1 + δ)2(1 + 5δ)2 < 0.

Therefore, T′′ (Y◦) < 0. Hence, Y◦ is the maximum point of the function T(v,Y) and
Y = }0 is the maximum value. Likewise

max{T(v,Y) : Y ∈ (0, 2)} = T(Y◦ , s),

T(}0 , t) =
E2

1(v)

(1 + 5δ)2 +
H4

2(1 + δ)4

(1 + 5δ)2(1 + 11δ)H3
1

+
H3

2(1 + δ)2

(1 + 5δ)2(1 + 11δ)H2
1

. □

Given that δ = 0 in Theorem 3, the subsequent corollary can be derived.
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Corollary 5. Consider a function f to be in the class RΣ(v, δ). Subsequently:

H2(2) =
∣∣∣a2a4 − a2

3

∣∣∣ ≤


T(v, 2) (H1 ≥ 0 and H2 ≥ 0)

max
{(

2v−1
2

)2
,T(v, 2)

}
(H1 > 0 and H2 > 0)(

2v−1
2

)2
(H1 ≤ 0 and H2 ≤ 0)

max{T(Y◦ , t),T(v, 2)} (H1 < 0 and H2 < 0)

,

T(v, 2) : = 40E4
1(v) +

E1(v)[E3(v)]
6

,

T(Y◦ , t) = E2
1(v) +

H4
2

H3
1
+

H3
2

H2
1

,

H1 = E1(v)
[
492 E3

1(v) + 2[−6E2(v) + E3(v)]− 24E1(v) + 24E1(v)
]
Y4,

H2 = E1(v)
[
3E2

1(v) + 14E1(v) + 3[−2E2(v)]
]
Y2. □

Given that δ = 1 in Theorem 3, we have the next corollary.

Corollary 6. Consider a function f to be in the class RΣ(v, δ). Subsequently:

H2(2) =
∣∣∣a2a4 − a2

3

∣∣∣ ≤


T(v, 2) (H1 ≥ 0 and H2 ≥ 0)

max
{(

2v−1
12

)2
,T(v, 2)

}
(H1 > 0 and H2 > 0)(

2v−1
12

)2
(H1 ≤ 0 and H2 ≤ 0)

max{T(Y◦ , t),T(v, 2)} (H1 < 0 and H2 < 0)

,

T(v, 2) : =
80E4

1(v)
192

Y4 +
E1(v)[E3(v)]

144
Y4 +

E4
1(v)
16

,

T(Y◦ , t) =
E2

1(v)
36

+
16H4

2
432H3

1
+

4H3
2

432H2
1

,

H1 = E1(v)
[
39744E3

1(v) + 576[−6E2(v) + E3(v)]− 1152E1(v)
]
Y4,

H2 = E1(v)
[
216(v)E2

1(v) + 10008E1(v)− 216[2E2(v)]
]
Y2. □

5. Discussion

We introduce a new subclass RΣ(v, δ) of bi-univalent functions in the open unit disk
U by using subordination conditions and determine estimates of the coefficients |a2| and
|a3| for functions of this subclass. We obtained some new theorems with new special
cases for our new subclass, and these results are different from the previous results for the
other authors. Additionally, the present work introduces and examines a novel subclass,
referred to as RΣ(v, δ), the set of functions consisting of bi-univalent functions that adhere
to a specific subordination involving Euler polynomials. The Fekete–Szegö problem is
specifically applied to functions in the class RΣ(v, δ) and provides bound estimates for the
coefficients. We provide bound estimates for the coefficients and an upper bound estimate
for the second Hankel determinant for functions belonging to the category of analytical and
bi-univalent functions. This investigation incorporates the utilization of Euler polynomials.
The results contained in the paper could inspire ideas for continuing the study, and we
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opened some windows for authors to generalize our new subclasses to obtain some new
results in bi-univalent function theory.
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