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Abstract: This paper uses the attached flow method for solving nonlinear second-order differential
equations of the reaction–diffusion type. The key steps of the method consist of the following:
(i) reducing the differentiability order by defining the first derivative of the variable as a new variable
called the flow and (ii) a forced decomposition of the derivative-free term so that the flow appears
explicitly in it. The resulting reduced equation is solved using specific balancing rules. Only step
(i) would lead to an Abel-type equation with complicated integral solutions. Completed with (ii) and
with the graduation procedure, the attached flow method used in the paper, without requiring such a
great effort, allows for the obtaining of accurate analytical solutions. The method is applied here to a
subclass of reaction–diffusion equations, the generalized Dodd–Bulough–Mikhailov equation, which
includes a translation of the variable and nonlinearities up to order five. The equation is solved for
each order of nonlinearity, and the solutions are discussed following the values of the parameters
involved in the equation.

Keywords: attached flow method; reaction–diffusion equations; generalized Dodd–Bulough–Mikhailov
equation

1. Introduction

In a previous paper [1], we introduced an improved approach to the rather classical
method for solving nonlinear second-order differential equations, based on the use of
the first derivative as a new variable and on the investigation of the resulting first-order
equation in this new variable [2]. Despite the apparent simplification generated via the
reduction of the differentiability order, the method is not easy to apply, as it leads to an
Abel-type equation [3]. Precisely to overcome this situation, the approach we proposed,
named the attached flow method, contains an additional step: a forced decomposition of
the term in the equation that does not contain derivatives. To be very specific, we consider
a rather wide class of second-order equations, the reaction–diffusion equation:

A(u) u′′ + B(u) u′2 + C(u) u′ + E(u) = 0. (1)

Equation (1) is the explicit form of the ordinary differential equation generated after
applying the wave transformation ξ = x−Vt to the general nonlinear diffusion–convection–
reaction equation with functional coefficients. In the 2D space defined by the coordinates
{x, t}, such an equation can be written as follows:

ut = (A(u)ux)x + [C(u)− V]ux + E(u). (2)

It is a general equation describing nonlinear phenomena from various fields, such as
nonlinear optics [4], plasma physics [5,6], or heat and fluids diffusion [7]. From mathe-
matical point of view, there are many interesting approaches related to the stability and
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convergence analysis of this 2D equation, to its variational structure, or to a positivity-
preserving and energy-stable operator splitting scheme [8,9].

As we are now interested in the traveling waves solutions, we will consider here
exclusively the 1D Equation (1).

In [1], we imposed A(u), B(u), and C(u) to be monomials, with A(u) ̸= 0, while E(u)
had the freedom to be a polynomial with minimum and maximum degrees in u denoted as
n(E), respectively N(E). How the method works was illustrated for the following cases:
(i) A(u) ̸= 0, B(u) = C(u) = 0, E(u) ̸= 0; (ii) A(u) ̸= 0, B(u) = 0, C(u) ̸= 0, and E(u) ̸= 0;
(iii) none of the coefficients are vanishing, but E(u) becomes a monomial. The case when
C(u) is the only vanishing coefficient was only announced as requiring special precautions,
with the mention that it would be addressed later. The approach of this case represents the
main objective of the current paper.

The paper is structured as follows: after these introductory notes, the attached
flow method is revised in the second section. The third section is devoted to the pre-
sentation of a specific case of (1) with C(u) = 0, a new version of the generalized
Dodd–Bulough–Mikhailov (gDBM) equation that, to avoid the solving difficulties, includes
a simple translation of the variable. How the attached flow method has to be applied to
this model will be investigated in the fourth section of the paper, while the last section
will present a synthesis of the reported results with some supplementary comments on the
method. We do not claim to report new DBM solutions here; the real objective of the work
is to see, using this new gDBM as a toy model, how the general algorithm of the attached
flow method should be applied to equations in this class.

2. Basic Facts on the Attached Flow Method

Let us now summarize the key aspects presented in [1] for the attached flow method.
Starting from a general nonlinear second-order differential equation of reaction–diffusion
type [10], the method supposes two reductions: (i) the reduction in the differentiability
order by defining the first derivative of the variable [11,12] as a new variable called the
flow, and (ii) the reduction in the nonlinearity degree by decomposing the derivative-free
term so that the flow appears explicitly in it [1]. The reduction in the nonlinearity avoids
reaching an Abel-type equation, which is difficult to solve analytically [11]. The previous
two reductions lead to a simpler equation that, in our approach, is easily solved using
specific balancing rules. This supplementary balancing makes the attached flow method
very effective in looking for analytic solutions that, in other previous approaches, appear in
complicated integral forms and need full effort to be obtained.

Explicitly, the method is based on three main requirements:

- The variable u(ξ) must supplementarily satisfy a flow equation of the following form:

u′(ξ) = f (u). (3)

Relation (3) represents the classic requirement for reducing the differentiability order
recommended in textbooks. It transforms (1) in a particular case of the second kind of Abel
equation in the variable f (u):

A(u) f (u)
d f
du

+ B(u) f (u)2 + C(u) f (u) + E(u) = 0, (4)

- The flow f (u) must be connected with E(u) via a forced decomposition of the follow-
ing form:

E(u) = f (u) · h(u). (5)

This is the novelty proposed by us, and it aims to avoid the direct solving of Equation (4)
that usually only has implicit solutions. The relation (5) transforms (1) into the following
first-order differential equation:
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A(u)
d f
du

+ B(u) f (u) + C(u) + h(u) = 0, (6)

- The two functions from (5), f (u) and h(u), are considered polynomials of the following
form:

f (u) =
N( f )

∑
i=n( f )

αiui; h(u) =
N(h)

∑
j=n(h)

β juj. (7)

The summation limits in (7) are established through a balancing procedure, imposing
the requirement to compensate the different powers of u in relations (5) and (6).

The steps in solving (1) now become the following: (i) to determine the flow f (u) and
(ii) to find the solution u(ξ) by integrating (3). The first step is supposed to consider (7) in
Equations (5) and (6) and to determine the possible form of f (u) via an adequate balanc-
ing procedure.

Two important clarifications need to be made at this point:

- It is clear that the decomposition (5) is not unique. Various solutions can be generated,
supposing f (u) and h(u) as polynomials with degrees running from unit to unit,
between {n( f ) and N( f )}, respectively {n(h) and N(h)}. However, a single decompo-
sition proves to be compatible with solving a certain nonlinear model. It is established
in the attached flow approach through a specific balancing process, another element
of originality of the method.

- In general {αi, β j} are constant coefficients. In specific cases that will be mentioned
below, we will be obliged to consider them as functions of the independent variable:

αi = αi(ξ); β j = β j(ξ).

In these cases, the flow Equation (3) will become the following:

u′(ξ) = f (ξ, u(ξ)) =
N( f )

∑
i=n( f )

αi(ξ)ui(ξ). (8)

With (8), the reduced Equation (6) becomes the following:

A(u)
[

∂ f
∂ξ

+
d f
du

f
]
+ B(u) f (u) + C(u) + h(u) = 0. (9)

With these remarks in mind, let us now return to the problem of determining the
flow, f (u). This is now equivalent to determining the coefficients αi, and N( f ), n( f ), the
maximum, and, respectively, the minimum degrees in u from (7) or (8). The relation (5)
imposes, as necessary but not sufficient conditions, the following requirements:

N( f ) + N(h) = N(E); n( f ) + n(h) = n(E). (10)

The requirement for mutual compensation of the terms with different powers in u that
appear in (6) leads to an additional set of algebraic relations that, in principle, suggests the
admissible forms of the flow f (u) or more precisely leads to the following conclusions on
the maximal degrees in u of the flow f (u) [1]:

N( f ) = N(C)− N(A) + 1 if N(B) ≤ N(A)− 1 ≤ 2N(C)− N(E);

N( f ) =
N(E)− N(A) + 1

2
if
{

N(B) ≤ N(A)− 1
2N(C)− N(E) ≤ N(A)− 1

;

N( f ) = N(C)− N(B) if N(A)− 1 ≤ N(B) ≤ 2N(C)− N(E); (11)

N( f ) =
N(E)− N(B)

2
if
{

N(A)− 1 ≤ N(B)
2N(C)− N(E) ≤ N(B)

;
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N( f ) = N(E)− N(C) if
{

N(A)− 1 ≤ 2N(C)− N(E)
N(B) ≥ N(E)− 2N(C)

.

These degrees are not compulsory integers. How exactly the mechanism is functioning
will be illustrated in the fourth section of the paper with a specific sub-equation of (1) with
C(u) = 0, namely the gDBM equation.

3. The DBM Model as a Reaction–Diffusion Equation

As announced, the aim of this article is to show how the attached flow as a solving
method can be applied on reaction–diffusion equations of the form (1) with C(u) = 0. To be
very specific, we will illustrate this using the DBM model, important in many problems from
nonlinear optics, hydrodynamics, or quantum field theory. Despite numerous studies on
the DBM equation and the various techniques used for solving it, the model is surprisingly
rich, and depending on the number of parameters each approach introduces in the study,
new classes of solutions can be generated. An important note has to be made here: there
are maybe dozens of recent papers claiming that new DBM solutions have been obtained,
but in many cases, these apparently “new” solutions are nothing more than solutions
expressed as slightly different mathematical expressions belonging to already known
classes of solutions. This is one of the current errors pointed out in [13], and this is why, to
avoid misunderstandings, we have already stated that we will not introduce new solutions
in this paper, but will only illustrate how the attached flow method can be used in the case
of the DBM equation. A possible classification of the DBM solutions is suggested in [14].

In the 2D space of the coordinates {x, t}, the DBM model is described by a function,
v(x, t), which satisfies the following equation:

wxt + ew + e−2w = 0. (12)

At the classical level, (12) is known as a nonlinear integrable model describing both
classical and quantum propagation phenomena. In the quantum context, the equation
appears as the Bullough–Dodd model for scalar fields [15], and it is equivalent to an affine
Toda field with zero curvature representation in twisted affine Kac–Moody algebras [16].
This feature assures the existence of soliton-like solutions.

Equation (12) can be included, in turn, in a more general equation, the generalized
Tzitzeica–Dodd–Bullough–Mikhailov (gTDBM) equation [17]:

wxt + peσw + qeρw = 0. (13)

From this form, we can recover not only the simple DBM Equation (12) but also other
interesting models, such as, for example, the sinh- or cosh–Gordon equations [18] and the
Liouville equation, corresponding to q = 0.

Due to the non-polynomial form of (13), special techniques have to be applied in order
to determine its solutions. The classical approach consists of using the transformation
w(x, t) = ln ϕ(x, t) with the master Equation (12) taking the following form:

ϕxtϕ − ϕxϕt + pϕσ+2 + qϕρ+2 = 0. (14)

Equation (14) contains four parameters: the real parameters p, q, respectively, the
integers σ, ρ. This number can be reduced using suitable choices. We will discuss here
various reduced equations with fewer parameters. The starting point will be a slightly
different form of the previous equation, usually called the generalized DBM equation [14]. It
corresponds to the following choices: σ + 2 = m, ρ = −2, choices that lead to the following:

ϕxtϕ − ϕxϕt + pϕm + q = 0. (15)

This will be the main equation considered in this paper, to which we will apply the
attached flow. The method allows the traveling wave solutions to be found, and it supposes,
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as a first step to transform (15) into a nonlinear ordinary differential equation (NODE)
by taking into consideration the wave transformation, ξ = x − Vt. With it and using
the notations ϕ(x, t) → u(ξ), u′ = du/dξ, u” = d2u/dξ2, Equation (15) can be written
as follows:

−Vuu′′ + Vu′2 + pum + q = 0. (16)

A first remark is that the DBM model (12) corresponds to (16) with p = 1, q = 1,
and m = 3:

−Vuu′′ + Vu′2 + u3 + 1 = 0. (17)

A second remark is that (16) can be generalized by including a translation of the
dependent variable:

u → v ≡ u + k, k = const. (18)

The main equation to be studied becomes the following:

−V(u + k)u′′ + Vu′2 + p(u + k)m + q = 0, (19)

where m is the nonlinearity order, p and q are the constant coefficients of the free derivative
term, V is the wave velocity, and k is the translation constant.

Equation (19) is what we will understand here by the generalized Dodd–Bullough–
Mikhailov equation. In its version with k = 0 , it was intensively studied before; see, for
example, [17]. This version includes what is called the DBM equation as the particular case,
m = 3. The translation with k ̸= 0 is what our paper proposes as a novelty, and as we will
see, it is essential to finding the minimal degree n(f) for the flow (7).

By translating the variable, the supplementary term −Vku” breaks the initial symmetry
between the minimal degrees of f (u) and h(u), making possible n( f ) ̸= n(h), a key fact
in solving the problem with our method. The derivative-free term generated in the same
process now contains a full spectrum of powers in u and those terms, together with
derivative ones, allow the solving of the reduced equation: compatible expressions for the
two functions may be generated now, when the specific balancing of the attached flow
approach is applied. We will discuss in the next section how this can be done and what the
results are when nonlinearities given via m = {1, 2, 3, 4, 5} are considered.

Let us mention that the DBM equation has been solved so far with various other meth-
ods. The simplest approaches tend to use a predefined form of solutions, as in [19] or [20],
where the tanh method is applied. More generally, traveling wave solutions for DBM
have been generated via different methods belonging to the auxiliary equation technique:
the

(
G′
G

)
-expansion [21], the functional expansion [22], or the sub-equation technique,

considering the elliptic Jacobi as an auxiliary equation [15]. Soliton and compacton-like
solutions were generated in [23] with the exponential function method, or in [24]with the
generalized Kudryashov method and an improved F-expansion method. Other investiga-
tions were based on the truncated Painlevé expansion [25], Darboux transformation [26],
or integral bifurcation [17]. Analytic solutions for DBM were reported in [27] using Lax
operators, an approach that, together with Hirota’s method, provides important tools for
investigating the complete integrability of nonlinear models [28,29]. An invariant group of
solutions could also be obtained using the symmetry reduction method [30]. In [31] the
DBM equation was approached based on the first integral method, the closest approach to
the attached flow that we will use here.

4. Solving DBM with Attached Flows

Let us consider now how the gDBM Equation (19) could be solved directly using the
attached flow method. As it has the form of the generalized reaction–diffusion Equation (1),
we can transfer the results mentioned for this last equation in Section 2 from above. It is
simple to see that the following applies:

A(u) = −V(u + k); B(u) = V; C(u) = 0; E(u) = p(u + k)m + q. (20)
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So, A(u) is a polynomial with N(A) = 1, n(A) = 0, and B(u) is a monomial with
N(B) ≡ n(B) = 0, while E(u) is a polynomial with N(E) = m and n(E) = 0. We have a
case where N(A)− 1 ≤ N(B) and 2N(C)− N(E) ≤ N(B) from (11), so the general theory
gives the following:

N( f ) = N(h) =
N(E)

2
=

m
2

. (21)

The reduced Equation (6) becomes the following:

−V(u + k)
d f
du

+ V f (u) + h(u) = 0. (22)

An important remark is that N( f ) and N(h) are multiples of 1/2, integers only when
m is even. The minimal degrees also satisfy the constraint (10) with n(E) = 0, so the
following applies:

n(h) = −n( f ). (23)

As we consider n( f ) ≥ 0, we conclude that n(h) ≤ 0. More precisely, n(h) = 0 if and
only if n( f ) = 0. The flow f (u) to be attached to (19) will be given by (7), but its expan-
sion essentially depends on the considered value of m. For convenience, we will choose
the following notations:

f (u) = α m
2

u
m
2 + α m−2

2
u

m−2
2 + ... + α0; for m = even, (24)

f (u) = α m
2

u
m
2 + α m−2

2
u

m−2
2 + ... + α1u

1
2 ; for m = odd. (25)

Similarly, we will consider h(u), given through the following:

h(u) = β m
2

u
m
2 + β m−2

2
u

m−2
2 + ... + β0; for m = even, (26)

h(u) = β m
2

u
m
2 + β m−2

2
u

m−2
2 + ... + β−1u− 1

2 ; for m = odd. (27)

The previous relations have to make compatible Equations (5) and (6), equations that,
for gDBM, have the following specific form:

p(u + k)m + q = f (u) h(u), (28)

−V(u + k)
d f
du

+ V f (u) = h(u). (29)

Using the suitable expressions of f (u) and h(u) from above in these last two equations
and asking for the canceling of the coefficients of various powers of u, we get an algebraic
system that allows us to determine the coefficients αi and β j. We will see that very important
are the last coefficients, {α0, β0} for m = even and, respectively, {α1, β−1} for m = odd, and
the last equations lead to the following relations among them:

β0 = −Vα0; β−1 = Vk
α1

2
. (30)

Conclusion: To make the large number of mathematical derivations clearer, we can
synthesize the flowchart that is used in the attached flow method to solve the gDBM equation:

• We start from the gTDBM Equation (13) and transform it into (15) via an adequate
change in the variable and choice of parameters.

• The PDE (15) is reduced to the ODE (16) using the wave variable.
• The translation (18) leads to Equation (19), which will be studied for various val-

ues of m.
• We apply the first specific ingredient of the attached flow approach: the decomposition

of E(u), as in (5). The gDBM Equation (19) takes the reduced form (22).
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• We apply the second ingredient of the attached flow: a balancing procedure that leads
to explicit forms of f (u) and h(u), which depend on m: (i) if m is even, with (24)
and (26); (ii) if m is odd, with (25) and (27).

• We use these expressions to find the solutions of (19) for m = 1, . . . , 5.

4.1. Solutions for m = 1

Let us consider first that m = 1, so the equation to be solved is as follows:

−V(u + k)u′′ + Vu′2 + pu + (pk + q) = 0. (31)

In this case, using (25) and (27) in (28), respectively (29), will yield the following:

f (u) = α1u
1
2 , h(u) = −Vα1

2

(
u

1
2 − ku− 1

2

)
, (32)

with the following compatibility condition:

k = − q
2p

, p ̸= 0. (33)

In conclusion, the gDBM equation can be solved for m = 1 using the attached flow
method. A translation with k, given by (33), is required. The equation accepts, in this case,
a solution of the following form:

u(ξ) = − p
4V

ξ2 − q
2p

. (34)

We can see from (33) that k = 0 when q = 0. No translation is needed in this case.
Otherwise, the values of k are influenced by the values of q and p. As p ̸= 0 the specific
form of the final parabolic solution (34) depends on the parametric errors induced via q
and V.

4.2. Solutions for m = 2

When we consider m = 2 in (19), the equation we have to solve will be as follows:

−V(u + k) u′′ + Vu′2 + p(u + k)2 + q = 0. (35)

As N(E) = 2 = even, n(E) = 0, we have the following: N( f ) = N(h) = 1, n( f ) =
n(h) = 0. A direct check shows that trying to apply the aforementioned solving procedure
considering αi as constants leads us to incompatibilities. It is not possible in this case to
determine f (u) and h(u) in the form (7) with αi and β j as simple constants due to the fact

that the first two terms, −Vu d f
du and V f , from the reduced Equation (22) cancel each other

and lead to h = 0, incompatible with the decomposition f h = E ̸= 0. For the procedure
to work, we must now consider a flow with an explicit dependence on the independent
variable, f = f (ξ, u(ξ)), as in (8). We have to apply the method of the attached flow with
variable coefficients for f and h. We will consider the following:

f = α1(ξ)u(ξ) + α0(ξ), h = β1(ξ)u(ξ) + β0(ξ). (36)

Using these expressions in the decomposition E = f h and in the reduced Equation (22),
we generate a system of equations that allows, in principle, for finding the functions
{αi(ξ), βi(ξ), i = 0, 1} and the compatible values of the parameters k, V, p, q. From the
decomposition E = f h, we get relations allowing to express β0, β1 in terms of α0, α1:

f h = α1β1u2 + (α1β0 + α0β1)u + α0β0,

f h = E = p(u + k)2 + q = pu2 + 2pku + pk2 + q.
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α1β1 = p, α1β0 + α0β1 = 2pk, α0β0 = pk2 + q,

α1β1 = p → β1 =
p

α1
; α0β0 = pk2 + q → β0 =

pk2 + q
α0

, (37)

α1β0 + α0β1 = 2pk → α1

α0
(pk2 + q) +

α0

α1
p = 2pk.

Introducing these expressions in (35) and canceling the coefficients of various powers
of u, we get the following compatibility conditions:

α1 =
p
V

ξ + C,

α0 =
kp
V

ξ + 2kC = kα1,

q = 0.

Conclusion: In the case of m = 2, the generalized DBM equation takes the form (35). It
has a nontrivial solution for q = 0 and k = 0, with the corresponding attached flow that
solves the equation being as follows:

f (ξ, u) =
p
V

ξu(ξ) +
kp
V

ξ =
p
V

ξu.

By integrating the flow equation, we get the following solution for the gDBM equation:

u(ξ) = Ce
pξ2
2V , C = const.

Remark: Numerical computations show that nontrivial solutions could be also ob-
tained for q ̸= 0, but around ξ = 0 only. Equation (35) could also admit a nontrivial solution
for q ̸= 0 if p and q also become functions of the independent variable ξ. In this case, the
problem of the parametric errors becomes important and has to be properly considered.

4.3. Solutions for m = 3

In the case of m = N(E) = 3 = odd, using (10) and (11), we conclude that N( f ) = 3/2
and N(h) = 3/2. For the minimal degrees, as n(E) = 0, we get n( f ) = 1/2 and n(h) = −1/2.
We are in a situation where the degrees of f (u) and h(u) are no longer integers. We will
consider the following:

f (u) = α3u
3
2 + α1u

1
2 , h(u) = β3u

3
2 + β1u

1
2 + β−1u− 1

2 .

We impose the compatibility conditions (28) and (29), and we get the following
algebraic system:

α3β3 = p, α3β−1 + α1β1 = 3pk2,

α3β1 + α1β3 = 3pk, α1β−1 = pk3 + q

with the coefficients β given via the following:

β3 =
Vα3

2
; β1 =

3Vk
2

α3 − Vα1

2
; β−1 =

Vkα1

2
.

These relations are compatible with the following:

k =
1
2

(
q
p

) 1
3
. (38)

We conclude that applying the attached flow method to the generalized DBM Equation (19)
in the case of m = 3 asks for a translation, u → u + k, with k ̸= 0. Depending on the values
of the other parameters, the following solutions can be generated:

(i) For V > 0 and q ̸= 0, we get periodic solutions:



Symmetry 2024, 16, 531 9 of 13

u1(x, t) =
1
2

(
q
p

) 1
3
+

3
2

(
q
p

) 1
3
tg2

(√
3

4V
p

1
3 q

1
6 (x − Vt)

)
,

u2(x, t) =
(

q
p

) 1
3
[

1
2
+

3
2

cot2

(
−
√

3
4V

p
1
3 q

1
6 (x − Vt)

)]
;

(ii) For V < 0 and q ̸= 0, the solutions are hyperbolic:

u3(x, t) =
(

q
p

) 1
3
[

1
2
− 3

2
th2

(√
3

4V
p

1
3 q

1
6 (x − Vt)

)]
,

u4(x, t) =
(

q
p

) 1
3
[

1
2
+

3
2

cth2

(
−
√

3
4V

p
1
3 q

1
6 (x − Vt)

)]
;

(iii) For q = 0, we get a rational solution:

u5(x, t) =
2V

(x − Vt)2

Let us mention that all of these solutions were obtained and reported in [14] but using
other numerical methods, not directly as here. The solutions are influenced by different
choices of q and p. Other interesting numerical experiments on the DBM equation and
the influence of the parameters on the solutions are included in [32,33]. As a numerical
example, if p < 0 and q = 1, the hyperbolic solution could become a harmonic one, and
vice versa. So, the parameter values can strongly affect the types of solutions.

4.4. Solutions for m = 4

Let now us consider Equation (19) with m = 4. The general relation (24) leads us to
the idea that the flow should have the following form:

f (u) = α2u2 + α1u + α0. (39)

The compatibility of (28) and (29) can be obtained if and only if k = 0. The coeffi-
cients αi from (39) satisfy, in this case, the following constraints:

Vα2
2 = p, α1 = 0, Vα2

0 = q.

As an explicit expression of the flow, we can use the following:

f (u) = ±
√

p
V

u2 ±
√
− q

V
. (40)

We can generate various numerical experiments using the previous expression to
integrate the flow Equation (40):

- For q ̸= 0 and − pq
V2 > 0, the solutions are periodic:

u1(ξ) =

(
− q

p

) 1
4
+

(
− q

p

) 1
4
tg
(
− pq

V2

) 1
4
ξ,

u2(ξ) =

(
− q

p

) 1
4
+

(
− q

p

) 1
4

cot

[
−
(
− pq

V2

) 1
4
ξ

]
; (41)

- For q ̸= 0 and − pq
V2 < 0, the solutions are hyperbolic:

u3(ξ) =

(
− q

p

) 1
4
+

(
− q

p

) 1
4
th
(
− pq

V2

) 1
4
ξ,

u4(ξ) =

(
− q

p

) 1
4
+

(
− q

p

) 1
4
cth

[
−
(
− pq

V2

) 1
4
ξ

]
; (42)
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- For q = 0, the solution is rational:

u5 = −
(

V
p

) 1
2 1

ξ
(43)

4.5. Solution for m = 5

Let us now consider that m = 5 in (19). We have, in the case of (25), the flow given by
the following:

f (u) = α5u
5
2 + α3u

3
2 + α1u

1
2 .

The complementary function h(u) will be as follows:

h(u) = β5u
5
2 + β3u

3
2 + β1u

1
2 + β−1u− 1

2 .

The compatibility of the previous expressions with (28) leads to the following
algebraic system:

α5β5 = p,

α5β3 + α3β5 = 5pk,

α5β1 + α3β3 + α1β5 = 10pk2, (44)

α5β−1 + α3β1 + α1β3 = 10pk3,

α3β−1 + α1β1 + α2β0 = 5pk4,

α1β−1 = pk5 + q.

The compatibility with (29) provides other supplementary requirements:

β5 =
3Vα5

2
,

β3 =
5α5Vk

2
+

Vα3

2
, (45)

β1 =
3α3Vk

2
− Vγα1

2
,

β−1 =
α1

2
Vk.

Direct computations show that the only case of the compatibility of (44) and (45) is for
q = 0. In this case, k = 0, and the solution has the following form:

u(ξ) =
(

3p
2V

)1/3
ξ2/3.

Remark: Let us note that, as in the case of m = 5, for any m > 5 the gDBM equation
may admit analytic solutions for q = 0 only. This is somehow related to the fact that
the compatibility conditions that must be imposed lead to algebraic equations of orders
higher than 5 and there are no general numerical formulas that provide analytic solutions
expressed in radicals. In fact, as Abel and Ruffini established long ago [34,35], such formulas
exist up to m = 4, not for quintic equations. These last equations could have solutions in
terms of elliptic functions [36] or as very complicated expressions of no practical interest.

5. Comments on the Method and Results

This paper has dealt with applying the method of the attached flow proposed in [1]
to a particular case of the reaction–diffusion Equation (1), namely the case of C(u) = 0. The
key aspects of the attached flow method applied to a general equation of the form (1) is the
decomposition E(u) = f (u)h(u), where f (u) represents the flow satisfying the equation
u′ = f (u). The advantage of this decomposition is that it is always feasible, it brings the
equation to the reduced form (6), and it allows the flow to be determined as polynomials
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of the form (7). The extreme values of the degrees, n( f ) and N( f ), are obtained via other
important aspects of the method: the introduction of gradation rules and the requirement
that terms of the same power in u compensate each other. The graduation rules seem to
introduce restrictions, being applicable only to equations with polynomial coefficients, but
most models of physical interest, defined in various space–time dimensions [37], belong to
this category. More sophisticated graduations appear when multidifferential complexes are
considered [38,39].

In the case of gDBM Equation (16), the balancing requirement leads to a system of
algebraic equations that must be solved. The graduation rules show us that, for some values
of m, compatibility problems could appear in n( f ), and as a novelty brought about via the
paper, a translation, u → u + k, was taken into account so that we studied Equation (19):

−V(u + k)u′′ + Vu′2 + p(u + k)m + q = 0.

Moreover, only for m = 2, that is, the differentiability order of gDMB, the compatibility
in the highest degree, N( f ), asks for a dependency of ξ in the flow equation, which could
be written in the general form as follows:

u′(ξ) = f (ξδm2, u(ξ)),

where δ represents the Kronecker symbol.
The gDBM Equation (19) was written with five parameters: two real parameters, p

and q, the wave velocity, V and two others of special interest in our study: m—the degree
of nonlinearity of the free term, and the translation parameter k. Let us summarize the main
solvable cases and the parametric error influence we have reported here, based on various
numerical experiments. If we consider q = 0, the equation can be solved directly for any
value of m, and its general solution does not depend on k. For V ̸= 0, p ̸= 0, the solution
behaves as follows:

u(ξ) ∼
{

ξ−
2

m−2 , m ̸= 2
e

p
2V ξ2

, m = 2
.

As we can see, a special situation appears for m = 2, and it is due to the fact that
gDBM is a second-order differential equation. Trying to apply the attached flow in this
case, we needed to consider flows of the form (8), depending explicitly on the independent
variable, ξ.

For q ̸= 0, depending on m, we obtained solutions with or without translations.
Practically, no translation is necessary for m = 2, 4, and a translation, k ̸= 0, is required
for m = 1, 3. For m = 5, our method allowed us to find solutions in the case of q = 0
only. For q ̸= 0, the system of algebraic equations to be solved contains an equation of the
degree of 5, whose roots cannot be expressed with radicals. It cannot be compatibilized
with the other equations of the system. This impossibility of compatibilization is valid for
any m > 6, so all these equations cannot be analytically solved, not because of the attached
flow method but, rather, due to the Abel–Ruffini theorem.
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