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Abstract: In mechanical equipment, rolling bearing components are constantly exposed to intricate
and diverse environmental conditions, rendering them vulnerable to wear, performance degradation,
and potential malfunctions. To precisely extract and discern rolling bearing vibration signals amidst
intricate noise interference, this paper introduces a fault feature extraction and diagnosis methodology
that seamlessly integrates an improved Fourier decomposition method (FDM), singular value decom-
position (SVD), and maximum second-order cyclostationary blind convolution (CYCBD). Initially,
the FDM is employed to meticulously decompose the bearing fault signals into numerous signal com-
ponents. Subsequently, a comprehensive weighted screening criterion is formulated, aiming to strike
a balance between multiple indicators, thereby enabling the selective screening and reconstruction
of pertinent signal components. Furthermore, SVD and CYCBD techniques are introduced to carry
out intricate processing and envelope demodulation analysis of the reconstructed signals. Through
rigorous simulation experiments and practical rolling bearing fault diagnosis tests, the method’s
noteworthy effectiveness in suppressing noise interference, enhancing fault feature information,
and efficiently extracting fault features is unequivocally demonstrated. Furthermore, compared
to traditional time–frequency analysis methods such as EMD, EEMD, ITD, and VMD, as well as
traditional deconvolution methods like MED, OMEDA, and MCKD, this method exhibits significant
advantages, providing an effective solution for diagnosing rolling bearing faults in environments
with strong background noise.

Keywords: rolling bearing; Fourier decomposition method (FDM); singular value decomposition
(SVD); maximum second-order cyclostationary blind convolution (CYCBD)

1. Introduction

As one of the critical moving components in mechanical equipment, rolling bearings
find widespread application within various industries involving rotating machinery. Nev-
ertheless, due to prolonged operational periods and the impact of working environments,
rolling bearings often succumb to a range of faults, such as fatigue fractures, inadequate
lubrication, and localized damage. If these faults are not promptly detected and diagnosed,
they can lead to equipment downtime, damage, or even accidents, significantly hampering
production efficiency and safety. Consequently, the investigation of rolling bearing fault
diagnosis has consistently remained an essential and burgeoning topic within the field
of mechanical engineering. The precise and rapid identification of fault features from
rolling bearings holds substantial significance for predicting equipment lifespan, devising
maintenance schedules, and enhancing equipment reliability [1,2].

In recent years, with the continuous advancement of signal processing and fault
diagnosis techniques, an increasing number of methods have been proposed for extracting
fault features from rolling bearings. Among these, time–frequency analysis methods play
a crucial role in rolling bearing fault diagnosis [3]. The development of time–frequency
analysis methods can be traced back to the 1940s [4] when Fourier analysis emerged as a
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principal tool in signal processing [5,6]. Fourier analysis involves decomposing a signal
into a series of superimposed sine and cosine functions, facilitating frequency–domain
analysis of the signal. However, traditional Fourier analysis methods have difficulties
in dealing with non-stationary and nonlinear signals effectively, whereas rolling bearing
signals typically exhibit non-stationary and nonlinear characteristics. As a result, adaptive
time–frequency analysis methods have emerged as suitable alternatives, offering more
flexibility and accuracy in handling non-stationary and nonlinear signals. In recent years,
numerous adaptive time–frequency analysis methods have been proposed and applied to
rolling bearing fault feature extraction. Among these, methods such as empirical mode
decomposition (EMD) [7], local mean decomposition (LMD) [8], and ensemble empirical
mode decomposition (EEMD) [9] have achieved significant research progress in the realm
of time–frequency analysis. Notably, EMD is a data-driven adaptive time–frequency
analysis method that decomposes a signal into a series of intrinsic mode functions (IMFs),
thereby extracting time-varying characteristics from the signal. LMD, on the other hand,
decomposes a signal into local mean components and detail components, facilitating a time–
frequency representation of the signal. EEMD, based on EMD, introduces random sampling
to reduce mode-mixing effects and improve the precision of time–frequency analysis
through multiple reconstructions. These methods have found widespread application in
rolling bearing fault feature extraction. However, these methods often encounter challenges
related to mode mixing and endpoint effects when dealing with non-stationary signals.

In recent years, the Fourier decomposition method (FDM) has emerged as a distinctive
approach to handling non-stationary signals [10]. The FDM technique employs the Fourier
transform to jointly analyze signals in both the frequency and time domains, decomposing
them into fundamental frequency components and modulation functions. This combined
analysis offers a more accurate depiction of signal time-varying characteristics, effectively
avoiding mode mixing issues. Presently, this method has found applications across various
domains. Karan Singh Parmar et al. [11] developed an automated diagnostic system for hy-
pertension detection using electrocardiogram (ECG) signals. In their work, they applied the
FDM to decompose ECG signals, followed by an assessment of signal transfer entropy and
logarithmic energy entropy features. These features were subsequently used for classifica-
tion in a classifier, yielding promising recognition outcomes. C. Dou et al. [12] substantiated
through numerical analysis that the FDM overcomes the performance limitations of EMD
in the adaptive separation of closely spaced frequency signal components. Moreover, by
comparing the proposed method with conventional time–frequency analysis techniques,
their results revealed its superior performance in characterizing vibration signals from
turbine gearbox systems. Minqiang Deng et al. [13] introduced a fault diagnosis method
for Gearboxes based on Resonance Bandwidth Fourier Decomposition (RBBFD). By com-
parison with existing techniques, they validated the superior performance of their method
in gearbox fault diagnosis. Binish Fatimah et al. [14] proposed a recognition method for
hand movements using surface electromyographic signals. Their approach involved the
use of FDM to decompose signals, followed by the calculation of entropy, kurtosis, and
norms of each signal, which were then utilized for training a classification model. Through
testing on the UCI dataset and NinaPro DB5, their proposed method exhibited promising
recognition results.

However, real-world mechanical systems often experience interference from strong
background noise, posing challenges in accurate feature extraction and analysis of bearing
faults. Traditional fault diagnosis methods perform poorly in such conditions, necessitating
the need for more precise and effective technical solutions. Singular Value Decomposi-
tion (SVD), as a matrix decomposition technique [15,16], has been extensively applied in
signal processing and data dimensionality reduction. SVD can decompose a signal into
distinct singular values and corresponding singular vectors, thereby effectively removing
noise components associated with smaller singular values and achieving signal denoising.
Presently, the SVD method has been employed to extract useful features from signals in
various domains, enhancing signal clarity and accuracy. Ren Y et al. [17] addressed the
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difficulty in feature extraction from pressure fluctuation signals in tailwater pipes under a
strong noise background by proposing a denoising method based on adaptive local iterative
filtering (ALIF) and SVD. Evaluation through simulation experiments demonstrated that
the ALIF-SVD denoising approach effectively eliminated noise while preserving useful sig-
nal information. Zhong C et al. [18] presented a rolling bearing radial basis neural network
fault diagnosis method based on improved Ensemble Empirical Mode Decomposition-SVD
(EEMD-SVD), validating its effectiveness through simulated bearing failure data. To sup-
press noise in atmospheric lidar echo signals, Cheng X et al. [19] proposed an Enhanced
EEMD-SVD-Lifting Wavelet Transform (LWT) denoising algorithm. Comparative simula-
tion experiments highlighted the superior denoising performance of the EEMD-SVD-LWT
algorithm. Additionally, the CYCBD method, introduced by BUZZONI et al. [20] in 2018,
as a second-order cyclic stationary blind deconvolution technique, has demonstrated ex-
ceptional performance in complex background noise scenarios. It has been applied to
signal filtering and envelope demodulation analysis in fault diagnosis [21,22], enhancing
the effectiveness of fault feature extraction.

Based on these considerations, this paper proposes a novel approach for fault feature
extraction by combining improved FDM-SVD and CYCBD. First, the FDM technique is
utilized to decompose bearing fault signals into a series of signal components. Subsequently,
a fusion of kurtosis, skewness, and permutation entropy-based criteria is employed to select
and reconstruct useful signal components. Next, Singular Value Decomposition (SVD) is
applied to denoise the reconstructed signals. Finally, the CYCBD method is employed to
filter the denoised signals, followed by envelope demodulation analysis. By synergistically
leveraging the strengths of these methods, our aim is to overcome the interference of strong
background noise in bearing fault signal analysis, thereby achieving more accurate and
reliable fault feature extraction.

The main contributions of this study are as follows:

(1) This paper introduces the application of FDM in decomposing the original signals.
FDM not only divides the signals into different frequency components but also effec-
tively eliminates adverse effects such as mode mixing. Through signal decomposition,
we can gain a deeper understanding of the behavioral characteristics of bearings
across various frequencies, thereby enabling a more accurate diagnosis of bearing
faults. Furthermore, this study improves the selection mechanism for sensitive sig-
nal components by establishing a comprehensive weighted screening criterion that
balances the strengths and weaknesses of multiple indicators. This criterion avoids
potential blindness in selecting and discarding signal components. By objectively
evaluating each signal component obtained through time–frequency analysis, we
select the optimal signal components, which can address potential issues of insuf-
ficient extraction of bearing fault feature information and enhance the accuracy of
fault diagnosis.

(2) In this study, the Maximum Second-Order Cyclostationary Blind Convolution (CY-
CBD) method is employed to filter the signals after noise reduction through Singular
Value Decomposition (SVD). This approach effectively highlights the periodic impact
components within the signals, enabling us to extract the characteristic frequencies of
bearing faults more clearly. This processing technique provides novel insights into the
field of signal processing and enriches the theoretical and technological framework of
the discipline.

The structure of this paper is as follows: Section 2 introduces the fundamental prin-
ciples of improved FDM, SVD, and CYCBD algorithms. Section 3 delineates the specific
implementation steps of the proposed methodology. Section 4 validates the effectiveness of
the proposed approach through simulation experiments. Section 5 verifies the effectiveness
of the proposed approach through actual bearing operation data. Section 6 presents the
discussion and conclusion.
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2. Theoretical Background
2.1. Improved Fourier Decomposition Method

The FDM algorithm comprises the LTH (Low to High) method, which involves search-
ing from low to high frequencies, and the HTL (High to Low) method, which involves
searching from high to low frequencies [23–25]. Essentially, the effectiveness of these two
methods is indistinguishable, as both perform searches across the entire sampling frequency
spectrum. The only distinction lies in the order of searching, whether it is from low to
high frequencies or vice versa. Consequently, this paper solely focuses on elaborating the
LTH algorithm. The FDM algorithm adaptively explores the Fourier Intrinsic Bandpass
Functions (AFIBFs) throughout the entire Fourier domain, yielding numerous AFIBFs and
a residual component. Among these, the AFIBFs satisfy the subsequent conditions:

(1) The FIBF has a zero mean, i.e.:
∫ b

a yi(t)dt = 0.

(2) The individual components of the FIBF are mutually orthogonal, i.e.:
∫ b

a yi(t)yj(t)dt = 0 ,
i ̸= j.

(3) The analytical form of the FIBF, yi(t)ŷj(t) = ai(t)ejφi(t), possesses non-negative in-
stantaneous amplitude and instantaneous frequency. Where ai(t) ≥ 0, φ′

i(t) ≥ 0,
∀t ∈ [a, b]. yi(t) ∈ C∞[a, b]. Therefore, the FIBF constitutes a summation of zero-mean
sinusoidal functions with continuous frequency bands.

By defining the FIBF, the primary procedure of this algorithm is as follows:

(1) Perform a fast Fourier transform on the signal x(n), X[k] = FFT{[x(n)]};
(2) Scan through the AFIBF from low to high frequencies:

AFIBF =
n

∑
k=Ni−1+1

X[k]σ
j2πkn

N = ai(n)e
jφi [n]
X (1)

The approach is devised to acquire the minimal number of AFIBF components from the
signal. For each AFIBF component, denoted as AFIBFi, the process initiates from Ni−1 + 1
and incrementally accumulates components until the maximum number is achieved, all
while satisfying the specified assumptions for the AFIBFi component of the signal. In
this framework, specific parameters are assigned: N0= 0 and NM= (N/2 − 1). These
parameters are constrained by the requirement that Ni−1+1 ≤ Ni−1 ≤ (N/2 − 1) , and
they adhere to the subsequent relationships:

ai(t) ≥ 0, ωi(t) =
φi[n + 1]− φi[n − 1]

2
≥ 0, ∀t (2)

Due to its foundation in Fourier transform-based signal processing, the FDM presents
a more comprehensive theoretical underpinning in contrast to EMD. In the pursuit of
different frequency bands, the FDM achieves a dual fulfillment of both localized behavior
and orthogonality.

The signals obtained through the FDM for adaptive decomposition effectively reduce
the issues of mode-mixing and endpoint effects. However, these components may still
include certain false components or components with low correlation to the original signals.
To tackle the issue of inadequate extraction of fault characteristic information resulting
from the blind selection or rejection of component signals, this study proposes a signal
component selection combination criterion based on kurtosis, skewness, and permutation
entropy on the basis of the original FDM algorithm. In the context of bearing fault signals,
transient impacts are often present. Kurtosis is a temporal parameter that reflects the
strength of transient impacts in a signal and is highly sensitive to such impact features. For
signals with a higher proportion of impact components, their kurtosis values tend to be
higher. Skewness, as a dimensionless parameter, quantifies the direction and degree of
asymmetry in statistical data distribution, providing a numerical measure of distribution
asymmetry. When a bearing has a fault, the periodic impulses caused by the fault lead
to changes in the vibration signal. As a result, the skewness and kurtosis values increase.
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Generally, larger skewness and kurtosis values indicate a greater presence of abnormal
signals during the operational process. The calculation formulas for kurtosis and skewness
are as follows:

Kurtosisi =
1
µ

n

∑
i=1

(
θi − x
𝓁

)
4

(3)

Skewi =
1
µ

n

∑
i=1

(
θi − x
𝓁

)
3

(4)

In Formulas (3) and (4), θi and x are the actual and average values of the original
vibration signal. 𝓁 is the standard deviation of the signal and µ is the number of samples.

Meanwhile, the permutation entropy (PE) serves as a method for assessing the random-
ness and dynamical transitions within time series data. Its notable attributes encompass
computational simplicity, rapid processing, and robust resistance to external interferences.
Thus, it is capable of accurately depicting the mutational characteristics of intricate time
series patterns. The magnitude of permutation entropy directly captures the degree of
stochasticity within bearing vibration signals. Inspired by Shannon’s entropy concept, the
permutation entropy for a collection of m distinct symbol sequences can be mathematically
formulated as follows:

PE(m) = −
m

∑
l=1

Pl ln Pl (5)

where Pl is a probability distribution, and Pl = 1/m!, PE(m) will obtain the maximum
value ln(m!).

In order to standardize the obtained numerical values, the computed skewness, kurto-
sis, and permutation entropy are subjected to a process of normalization. Normalization
involves transforming the information of each parameter into a probability distribution
within the range of 0 to 1. The dimensionless selection index for each component is deter-
mined by summing the normalized skewness, kurtosis, and permutation entropy, yielding
the following equation:

λi = Kurtosisi + Skewi + PEi (6)

where Kurtosisi, Skewi, and PEi represent the dimensionless parameters obtained from
the normalization of skewness, kurtosis, and permutation entropy for each component,
respectively. By employing the selection index, which amalgamates the multi-parameter
information related to the faulty bearings, and subsequently ranking the selection indices,
appropriate node components are chosen for reconstruction based on the superiority of
their selection indices.

2.2. Singular Value Decomposition

Suppose a set of noisy signals under measurement is denoted as x = {x1, x2, . . . , xN},
which can be represented as x = Sd + ωd d = 1, 2, · · · N. Drawing upon the principles of
phase space reconstruction, it is feasible to reconstruct the Hankel matrix as follows [26–28]:

H =


x1 x2 · · · xn
x2 x3 · · · xn+1
...

...
...

...
xm xm+1 · · · xN

 = S + W
(7)

In the above equations: the feature matrix is defined as H ∈ Rmxn, 1 < n < N, and
m = N + n − 1.

Performing singular value decomposition on yields

H = UΣVT (8)
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In the given equations, both matrices U ∈ Rm×m and V ∈ Rn×n are orthogonal
matrices, while matrix ∑ is a non-negative diagonal matrix with its main diagonal elements
denoted by λi (i = 1, 2, . . .k). The parameter k represents the rank of matrix H, with the
condition that λ1 ≥ λ2 ≥ . . . ≥ λk ≥ 0, and λi signifies the singular values of H.

The higher the number of nonzero values in matrix λi, the more complex the com-
ponents of the signal and the larger the proportion of noise. Therefore, to enhance the
signal-to-noise ratio, it is advisable to subject the signal to Singular Value Decomposition,
setting the smaller λi values that characterize the noise to zero, followed by the inverse
transformation to obtain a denoised one-dimensional signal. For precise denoising, the
choice of an appropriate denoising order is crucial. Consequently, the concept of the singu-
lar value energy differential spectrum is introduced to depict abrupt changes in singular
values. Its formulation is as follows:

bi = σi
2 − σi+1

2, i = 1, 2, · · · , q − 1 (9)

The sequence bi, composed of elements in set B = [b1, b2, · · · , bq−1], is referred to as the
difference spectrum. The above formula illustrates the variation in singular value energy.
When the difference between adjacent singular values is significant, the difference spectrum
exhibits peaks. This phenomenon arises because the singular values of the vibration signal
are predominantly represented by σi (i = 1, 2, · · · , s), whereas noise has a minor impact on
the singular values. Consequently, peaks emerge at the boundary between the signal and
noise. The energy difference spectrum between neighboring orders demonstrates relatively
stable fluctuations, leading to smaller spectral peaks. Hence, the peak point can be selected
as the threshold point denoted as ‘r’. The singular values corresponding to the vibration
signal are positioned prior to point ‘r’, while those corresponding to noise are positioned
after point ‘r’.

2.3. CYCBD Method

The CYCBD method aims to extract fault characteristic signals from complex obser-
vational data. In other words, it aims to recover the input source signal s from the raw
measured signal. The deconvolution process it employs can be represented as follows:

s = x ⊗ h = (s0 ⊗ g)⊗ h ≈ s0 (10)

In the given equation, s represents the estimated source signal, x denotes the measured
signal, ⊗ stands for the convolution operator, h corresponds to the inverse filter, s0 repre-
sents the input source signal, and g is the impulse response function. The aforementioned
equations can be expressed in the following matrix form:

s = Xh (11)

Further decompose it to the following form: s[N − 1]
...

s[L − 1]

 =

 x[N − 1] · · · x[0]
...

...
...

x[L − 1] · · · x[L − N − 2]

 ·

 h[0]
...

h[N − 1]

 (12)

where s represents a discrete signal; L is the length of signal s; h denotes the inverse filter;
and N represents the length of filter h. Therefore, the new second-order cyclostationarity
index ICS2 can be expressed in the form of generalized Rayleigh entropy:

ICs2 =
hHXHWXh
hHXHXh

=
hH RXWXh
hH RXXh

(13)
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where hH is the conjugate transpose operation on h; RXX represents the correlation matrix;
RXWX represents the weighted correlation matrix; and the weighted matrix W can be
represented as follows.

W = diag(
p[|s|2]

sHs
)(L − N + 1) (14)

p[|s|2] = EEH |s|2

L − N + 1
(15)

|s|2= [s|N − 1|2, . . . , s|L − 1|2
]T

(16)

E =


e−j2π 1

T (N−1) · · · e−j2π K
T (N−1)

...
...

...

e−j2π 1
T (L−1) · · · e−j2π K

T (L−1)

 (17)

where N is the length of the source signal; L is the filtering length; K is the number of
samples; and T is the failure cycle.

The concept of cyclic frequency is proposed in the CYCBD algorithm [29–32], which
refers to the frequency related to an unknown energy fluctuation of the signal under
cyclostationary conditions and is closely related to physical phenomena such as gear and
bearing failures.

α = k/T (18)

From the properties of Rayleigh entropy, it can be inferred that the ICS2 maximization
problem is equivalent to the eigenvalue maximization µ of Rayleigh entropy as follows:

RXWXh = RXXhµ (19)

3. The Process of Fault Feature Extraction

Based on the specific steps of the fault feature extraction method, utilizing Improved
FDM-SVD and CYCBD is as follows. The procedure for fault feature extraction is illustrated
in Figure 1.

Step 1: Input the mechanical vibration signal and set the initialization parame-
ters for the FDM algorithm. Subsequently, decompose the signal using the FDM to ob-
tain several Frequency Interval Band Function (FIBF) components ordered from high to
low frequencies.

Step 2: Compute the kurtosis, skewness, and permutation entropy of each signal com-
ponent. Based on these statistics, determine the selection index for each of the components.

Step 3: Conduct a comparative analysis of the selection indices from all signal com-
ponents. Choose the signal components with significantly larger selection indices for
signal reconstruction.

Step 4: Apply singular value decomposition (SVD) denoising to the reconstructed signals.
Step 5: Perform CYCBD filtering on the denoised signals, followed by Hilbert envelope

spectrum analysis, to extract fault features.



Symmetry 2024, 16, 552 8 of 31

Symmetry 2024, 16, x FOR PEER REVIEW 8 of 32 
 

 

Step 2: Compute the kurtosis, skewness, and permutation entropy of each signal 
component. Based on these statistics, determine the selection index for each of the com-
ponents. 

Step 3: Conduct a comparative analysis of the selection indices from all signal com-
ponents. Choose the signal components with significantly larger selection indices for sig-
nal reconstruction. 

Step 4: Apply singular value decomposition (SVD) denoising to the reconstructed 
signals. 

Step 5: Perform CYCBD filtering on the denoised signals, followed by Hilbert enve-
lope spectrum analysis, to extract fault features. 

Start

FMD decomposition

Calculate the kurtosis, skewness, 
and arrangement entropy of each 

signal component

Establish an indicator screening 
system and select eligible signal 

components

Signal reconstruction and SVD 
decomposition

Performing CYCBD filtering on 
signals

Hilbert envelope demodulation

Extract the fault frequency

Determine the reconstruction order 
and obtain the denoised signal

Set the collection of cycle 
frequencies and filter length

Signal acquisition 

Determine the type of fault

End

 
Figure 1. Flow chart of the proposed method. 

4. Simulation Verification 
In order to verify the rationality of the method proposed in this study, simulation 

signals simulating the vibration of rolling bearings were introduced for experiments. The 
expression of this signal is as follows: 

2 2
0( ) sin(2 1 )nf t

ns t y e f tπ ξ π ξ−= −  (20)

Figure 1. Flow chart of the proposed method.

4. Simulation Verification

In order to verify the rationality of the method proposed in this study, simulation
signals simulating the vibration of rolling bearings were introduced for experiments. The
expression of this signal is as follows:

s(t) = y0e−2π fnξt sin(2π fn

√
1 − ξ2t) (20)

where the displacement constant y0 = 5; the carrier frequency fn = 3000 Hz; the damping
ratio ξ = 0.1; fs = 20 kHz; t represents the sampling time, with a period T = 0.01 s; the
number of sampling points is N = 4096; and the fault frequency f 0 = 100 Hz.

To simulate a bearing fault in accordance with real-world scenarios, noise exhibiting a
signal-to-noise ratio of −10 dB was introduced into the aforementioned simulated signal.
The simulation and analysis were conducted using MATLAB software (R2009a). The
temporal domain representation of the generated simulation signal is depicted in Figure 2a.
When the signal-to-noise ratio (SNR) is −10 dB, as shown in Figure 2b, it can be observed
that due to the influence of strong background noise, the periodic characteristics of the
temporal signal waveform have been masked. Consequently, valuable fault information



Symmetry 2024, 16, 552 9 of 31

cannot be identified from the temporal domain representation. Thus, further signal analysis
is imperative.
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Figure 2. (a) Simulated signal; (b) simulated signal with noise.

The subsequent step involves the FDM analysis of the simulated signals after the
introduction of noise. Following signal decomposition, a total of 35 signal components and
the ultimate residual component are obtained. The decomposition results of the FDM are
illustrated in Figure 3. Due to constraints on the article’s length, only the decomposition
outcomes of the first 20 signal components are presented. From the illustration, it is evi-
dent that this method effectively suppresses modal aliasing phenomena and substantially
mitigates endpoint effects. To underscore the superiority of the fault diagnosis approach
proposed in this paper, a comparative analysis is conducted against traditional methods.
Specifically, the simulated noisy signals are subjected to EMD, EEMD, ITD, and VMD
decompositions. The decomposition results of EMD, EEMD, ITD, and VMD are shown in
Figure 4a–d, respectively. The analysis of the decomposition results of EMD and EEMD
reveals that after EMD decomposition, 12 intrinsic mode functions (IMFs) and 1 residual
component were obtained. Through EEMD decomposition, 11 IMFs and 1 residual com-
ponent were derived. Notably, both methods exhibited instances of mode mixing in their
decomposition results. Additionally, the decomposition using the ITD method yielded five
PRC components and one residual component, while the VMD method produced six IMF
components. After obtaining the signal components through the time–frequency analysis
method, further calculations were performed to determine the kurtosis, skewness, and
permutation entropy of each signal component. Subsequently, the filtering indices for these
signal components were derived.

Tables 1–5 present the calculated comprehensive screening indices for all signal com-
ponents obtained using FDM, EMD, EEMD, ITD, and VMD methods, respectively. A
comparative analysis of the indices for the 35 signal components obtained through FDM
in Table 1 reveals that the indices for the 20th, 21st, and 23rd signal components are sig-
nificantly higher than those of the other components, making them suitable for signal
reconstruction. Similarly, a comparison of the indices for the 12 signal components derived
from EMD decomposition in Table 2 demonstrates that the index value for the second
signal component is notably higher than the rest, thus selecting it for signal reconstruction.
Furthermore, an examination of the indices for the 11 signal components obtained through
EEMD decomposition in Table 3 indicates that the index value for the second signal compo-
nent exceeds those of the other components, leading to its selection for signal reconstruction.
Table 4 showcases the various PRC components derived from ITD decomposition, with the
second signal component exhibiting the most significant index value among them, justi-
fying its selection for signal reconstruction. Lastly, Table 5 presents the IMF components
obtained through VMD decomposition. Among these, the fourth signal component stands
out with the most prominent index value, thus chosen for signal reconstruction.
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Figure 3. FDM decomposition result.
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Figure 4. Cont.
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Table 1. Indicator result value (FDM).

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

0.888 1.593 1.453 1.859 1.591 1.846 2.015 1.985 2.065 1.987

y11 y12 y13 y14 y15 y16 y17 y18 y19 y20

2.171 2.115 2.259 2.354 2.593 2.494 2.430 2.395 2.475 2.653

y21 y22 y23 y24 y25 y26 y27 y28 y29 y30

2.639 2.332 2.630 2.273 2.160 2.130 2.073 2.091 1.848 1.837

y31 y32 y33 y34 y35

1.816 1.520 1.468 1.169 0.000

Table 2. Indicator result value (EMD).

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9

1.426 1.891 1.557 1.389 1.026 0.782 0.891 0.881 1.356

IMF10 IMF11 IMF12

1.124 0.679 1.200

Table 3. Indicator result value (EEMD).

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9

2.146 2.835 2.346 2.312 1.728 1.390 1.352 1.467 1.644

IMF10 IMF11

1.339 0.979

Table 4. Indicator result value (ITD).

PRC1 PRC2 PRC3 PRC4 PRC5

1.518 2.129 1.517 1.621 1.614
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Table 5. Indicator result value (VMD).

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6

0.553 1.133 0.531 1.867 0.574 1.329

Subsequently, the component signals obtained through signal decomposition based on
the FDM algorithm and constructed screening rules were reconstructed. Subsequently, the
Hankel matrix was further constructed and subjected to SVD decomposition. The resulting
singular value spectrum and singular value energy differential spectrum are presented in
Figures 5 and 6, respectively. Figure 5a–e depicts the singular value distribution curves
obtained through the FDM, EMD, EEMD, ITD, and VMD methods, respectively. It can be
observed from the figures that, within the range of 1 to 100, the singular values continuously
decrease and tend to stabilize as the sequence number increases.

Figure 6a–e present the singular value energy differential spectrum obtained using
the FDM, EMD, EEMD, ITD, and VMD methods, respectively. As evident from Figure 6a,
the energy of the 16th peak in the signal is relatively high, while subsequent peaks exhibit
lower energy levels. Consequently, the reconstruction order corresponding to this peak
is selected. Similarly, Figure 6b reveals that the energy of the 28th peak is significantly
higher than the following peaks, prompting the selection of the reconstruction order
associated with this peak. Likewise, Figure 6c indicates that the energy of the 22nd peak
in the signal is relatively larger compared to subsequent peaks, leading to the selection
of the corresponding reconstruction order. Figure 6d demonstrates that the energy of
the 28th peak is relatively greater than subsequent peaks, justifying the choice of the
corresponding reconstruction order. Finally, Figure 6e shows that the energy of the 18th
peak stands out among subsequent peaks, thus justifying the selection of the reconstruction
order corresponding to this peak.

Figures 7–11 present the time-domain waveforms of signals denoised using five
different methods: FDM, EMD, EEMD, ITD, and VMD. From these figures, we can clearly
observe that each method effectively reduced varying degrees of noise interference after
applying the SVD denoising technique. To accurately evaluate and compare the denoising
effects of the above methods, this study employed quantitative analysis using assessment
metrics such as the signal-to-noise ratio (SNR), cross-correlation coefficient, kurtosis, and
Root Mean Square Error (RMSE). The relevant calculation results have been compiled in
Table 6.

Table 6. Analysis of evaluation indicators.

Evaluating
Indicator SNR Correlation

Coefficient Kurtosis RMSE

FDM 2.241 0.664 4.869 0.179
EEMD 1.856 0.560 4.518 0.187
EMD 1.772 0.599 4.511 0.189
ITD 0.248 0.269 2.846 0.226

VMD 1.623 0.574 4.005 0.193
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Figure 6. Singular value energy difference spectrum of FDM (a), EMD (b), EEMD (c), ITD (d), and
VMD (e).
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Figure 7. Signal after SVD denoising (FDM).
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From Table 6, we can observe that after denoising the signal using the FDM-SVD
method, the resulting signal-to-noise ratio (SNR) is 2.241, the cross-correlation coefficient
is 0.664, the kurtosis value is 4.869, and the RMSE is 0.179. In contrast, for the EMD-SVD
method, the corresponding values are 1.772, 0.599, 4.511, and 0.189, respectively. The EEMD-
SVD method yields an SNR of 1.856, a cross-correlation coefficient of 0.560, a kurtosis value
of 4.518, and a RMSE of 0.187. The corresponding values for the ITD-SVD method are 0.248,
0.269, 2.846, and 0.226. Lastly, the VMD-SVD method exhibits metric values of 1.623, 0.574,
4.005, and 0.193. Overall, the results obtained using the FDM-SVD method are relatively
superior. To conduct a more comprehensive comparative analysis, this study proceeds
to perform envelope spectrum analysis on the denoised signals obtained through these
methods. The results are presented in Figures 12–16.
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Figure 13. Envelope spectrum based on EMD-SVD.
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Figure 16. Envelope spectrum based on VMD-SVD.

The envelope spectrum obtained using five methods, namely FDM-SVD, EMD-SVD,
EEMD-SVD, ITD-SVD, and VMD-SVD, are presented in Figures 12–16, respectively. A
detailed analysis of these figures reveals that, after the process of signal time–frequency
decomposition and noise reduction, all these methods can extract fault characteristic
frequencies to varying degrees, albeit with the presence of irrelevant frequency interference.
Additionally, the amplitudes of the extracted fault frequency peaks by other methods are
relatively low. However, compared to the other methods, the FDM-SVD method exhibits
superior performance in extracting fault characteristic frequencies and their multiples, with
relatively higher peak values and reduced irrelevant interference near the fault frequencies.

To enhance the periodic impulse features in the signal, the noise-reduced signals
obtained through FDM-SVD, EMD-SVD, EEMD-SVD, ITD-SVD, and VMD-SVD methods
will be filtered using the CYCBD method. Subsequently, the Hilbert envelope spectra are
generated. Figures 17–21 depict the envelope spectra obtained using the FDM-SVD-CYCBD,
EMD-SVD-CYCBD, EEMD-SVD-CYCBD ITD-SVD-CYCBD, and VMD-SVD-CYCBD meth-
ods, respectively. Analysis of these five methods reveals that after CYCBD filtering, all five
methods can accurately extract the fault characteristic frequency and its multiples, ranging
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from double to septuple frequencies. Notably, the amplitude of the fault characteristic
frequency and its multiples extracted by the FDM-SVD-CYCBD method is the highest. Fur-
thermore, the FDM-SVD-CYCBD method significantly reduces the influence of irrelevant
frequency interference in the signal.
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Figure 19. Envelope spectrum of CYCBD filter signal based on EEMD-SVD.

The vibration signal of a bearing can essentially be regarded as the convolution result
of the source signal and channel characteristics. In signal processing, deconvolution, as
a method to solve the inverse convolution filter, aims to restore the original source signal
and remove the influence of the channel on the signal. Therefore, methods based on blind
deconvolution theory have inherent advantages in noise reduction processing for bearing
vibration signals. Other common methods include Minimum Entropy Deconvolution
(MED), Maximum Correlation Kurtosis Deconvolution (MCKD), and Optimal Minimum
Entropy Deconvolution Adjusted (OMEDA) [33–35]. To comprehensively and deeply
compare the effectiveness of different deconvolution methods in signal filtering, this study
combined FDM-SVD for signal preprocessing. Based on this, we applied MED, OMEDA,
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and MCKD for filtering. Subsequently, Hilbert envelope spectra were generated and
presented in Figures 22–24.
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Observing these three figures, it can be seen that although the envelope spectra
obtained after filtering with the aforementioned deconvolution methods can extract fault
characteristic frequencies, these frequencies often have low amplitudes and are susceptible
to interference from other unrelated frequency components. This interference not only blurs
the fault characteristics but also significantly hinders accurate fault diagnosis. To more
objectively assess the performance of various methods, we listed the envelope spectrum
sparsity values of the signals filtered using the above deconvolution techniques in Table 7.
In the case of mechanical faults in bearings, discrete peaks in the vibration signal become
particularly prominent, thereby significantly enhancing sparsity. The appearance of discrete
peaks at specific frequencies in the envelope spectrum further increases sparsity, explicitly
indicating the presence of different fault pulses in the signal.



Symmetry 2024, 16, 552 20 of 31

Symmetry 2024, 16, x FOR PEER REVIEW 20 of 32 
 

 

The vibration signal of a bearing can essentially be regarded as the convolution result 
of the source signal and channel characteristics. In signal processing, deconvolution, as a 
method to solve the inverse convolution filter, aims to restore the original source signal 
and remove the influence of the channel on the signal. Therefore, methods based on blind 
deconvolution theory have inherent advantages in noise reduction processing for bearing 
vibration signals. Other common methods include Minimum Entropy Deconvolution 
(MED), Maximum Correlation Kurtosis Deconvolution (MCKD), and Optimal Minimum 
Entropy Deconvolution Adjusted (OMEDA) [33–35]. To comprehensively and deeply 
compare the effectiveness of different deconvolution methods in signal filtering, this 
study combined FDM-SVD for signal preprocessing. Based on this, we applied MED, 
OMEDA, and MCKD for filtering. Subsequently, Hilbert envelope spectra were generated 
and presented in Figures 22–24. 

 
Figure 22. Envelope spectrum of signals filtered via MED. 

 
Figure 23. Envelope spectrum of signals filtered via OMEDA. 

 
Figure 24. Envelope spectrum of signals filtered via MCKD. 

Figure 23. Envelope spectrum of signals filtered via OMEDA.

Symmetry 2024, 16, x FOR PEER REVIEW 20 of 32 
 

 

The vibration signal of a bearing can essentially be regarded as the convolution result 
of the source signal and channel characteristics. In signal processing, deconvolution, as a 
method to solve the inverse convolution filter, aims to restore the original source signal 
and remove the influence of the channel on the signal. Therefore, methods based on blind 
deconvolution theory have inherent advantages in noise reduction processing for bearing 
vibration signals. Other common methods include Minimum Entropy Deconvolution 
(MED), Maximum Correlation Kurtosis Deconvolution (MCKD), and Optimal Minimum 
Entropy Deconvolution Adjusted (OMEDA) [33–35]. To comprehensively and deeply 
compare the effectiveness of different deconvolution methods in signal filtering, this 
study combined FDM-SVD for signal preprocessing. Based on this, we applied MED, 
OMEDA, and MCKD for filtering. Subsequently, Hilbert envelope spectra were generated 
and presented in Figures 22–24. 

 
Figure 22. Envelope spectrum of signals filtered via MED. 

 
Figure 23. Envelope spectrum of signals filtered via OMEDA. 

 
Figure 24. Envelope spectrum of signals filtered via MCKD. Figure 24. Envelope spectrum of signals filtered via MCKD.

Table 7. Spectrum sparsity of simulated signals by various methods.

CYCBD MCKD OMEDA MED

0.0288 0.0252 0.0226 0.0227

Through comparative analysis of these results, it is evident that the envelope spectrum
sparsity values after filtering with the CYCBD method are significantly higher than those of
other methods, fully demonstrating the superior performance of CYCBD in signal filtering.
It not only effectively extracts fault features but also significantly reduces interference
from unrelated frequency components, providing more accurate and reliable data support
for subsequent fault diagnosis. It is worth mentioning that the CYCBD algorithm, as
a novel blind deconvolution method based on maximum second-order cyclic indices,
exhibits unique advantages in the field of signal processing. As a robust and sensitive
indicator, the cyclic stationarity index plays a crucial role in early fault detection and
identification. Compared to traditional methods such as MED, MCKD, and OMEDA,
CYCBD demonstrates stronger capability in fault feature extraction. Especially in scenarios
with significant pulse noise, the deconvolution effect of CYCBD is more outstanding,
effectively filtering out noise and highlighting fault features.

5. Experimental Verification

To validate the feasibility of the proposed method, we conducted an empirical analysis.
The data used in this study were sourced from the publicly available dataset of the Case
Western Reserve University (CWRU) laboratory [36]. The experimental setup is illustrated
in Figure 25 [37]. The experiment involved driving a motor, which was equipped with a
torque sensor and an encoder on the motor drive shaft. Torque was applied to the shaft
through a dynamometer and electronic control system. SKF deep groove ball bearings were
installed at both the drive end and the fan end. Various faults were artificially induced



Symmetry 2024, 16, 552 21 of 31

at different locations of the bearings using electrical discharge machining to simulate
different operating conditions of the rolling bearings. Throughout the experiment, the
motor operated at a speed of 1797 rpm, with a sampling frequency of 12 kHz. The collected
data consisted of vibration signals from the inner and outer races with a failure diameter of
0.007 inches.
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Figure 25. Fault acquisition equipment.

5.1. Inner Ring Signal Analysis

After processing the collected fault data, we obtained the time-domain waveform of
the inner race fault signal of the rolling bearing, as shown in Figure 26. Upon observation
of the waveform, it is evident that the noise interference in the signal is not prominent. To
validate the effectiveness of the proposed method, we introduced Gaussian white noise
with a signal-to-noise ratio of −5 dB into the inner race fault signal, generating a composite
signal. The time-domain waveforms of these composite signals are displayed in Figure 27.
In Figure 27, it is noticeable that the addition of noise to the inner race fault signal results in
a blurring of the impulsive features within the signal.
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Figure 26. Time domain waveform of the inner ring fault signal.

Next, we conducted FDM analysis on the inner race fault composite signal with
added noise. Through signal decomposition, we obtained 24 signal components and a
final residual component. Due to space limitations, only the decomposition results of
the first 20 signal components are shown in Figure 28. By examining the waveforms
of these component signals, it can be observed that this method effectively suppresses
modal aliasing, thereby avoiding interference between different frequency components.
Additionally, endpoint effects have been largely eliminated, indicating that the signal
maintains good stability and accuracy during the decomposition process.
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Figure 27. Time domain waveform of the mixed signal.
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Figure 28. FDM decomposition result.

We proceeded with a detailed statistical feature analysis of each signal component,
including computations of their kurtosis, skewness, and permutation entropy. Based on
this analysis, we further derived a selection index for each signal component to assess
their significance within the overall signal. Table 8 provides a comprehensive listing of
the computed selection indices for all signal components. Upon careful comparison of
the selection index values for the 24 components in the table, it becomes evident that
Components 10, 11, and 13 exhibit markedly higher selection indices compared to the other
components. This suggests that these three components hold a more prominent position
within the overall signal, potentially encapsulating more significant fault information.
Consequently, we chose to reconstruct the signal using these three selected components.
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Table 8. Indicator result value (FDM).

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

λ 0.272 0.929 1.541 1.505 1.422 1.696 1.660 1.760 1.685 2.074

y11 y12 y13 y14 y15 y16 y17 y18 y19 y20

λ 2.097 1.857 2.034 1.981 1.970 1.697 1.854 1.858 1.684 1.188

y21 y22 y23 y24

λ 1.092 1.430 1.026 1.000

Subsequently, we proceeded with the reconstruction of the component signals obtained
through the signal decomposition based on the FDM algorithm and the applied selection
criteria. Furthermore, we advanced to construct a Hankel matrix, followed by performing
Singular Value Decomposition (SVD). The resulting singular value spectrum and the
energy difference spectrum are depicted in Figures 29 and 30, respectively. Figure 30’s
energy difference spectrum of singular values illustrates the disparities in energy between
them. Upon observation of this graph, it becomes evident that the 38th peak of the signal
exhibits relatively higher energy compared to all subsequent peaks. Hence, we selected the
reconstruction order corresponding to this peak.
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Figure 29. Signal singular value distribution curve.
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Figure 31 displays the time-domain waveform of the signal after denoising using the
Singular Value Decomposition (SVD) method. Upon close examination of this figure, it is
evident that the noise interference originally present in the signal has been substantially
reduced through SVD denoising. This denoising process has enabled the emergence of
impact components in the inner race fault signal, providing a more reliable foundation for
subsequent fault analysis. Figure 32, on the other hand, illustrates the envelope spectrum
obtained through Hilbert transformation. From this figure, we can extract the fundamental
frequency and its second harmonic components of the inner race fault in the bearing. The
presence of these components serves as crucial evidence for detecting inner race faults.
However, the peak frequencies associated with the faults are relatively low, and there are
numerous other irrelevant interferences in the envelope spectrum. These interferences
might pose a certain level of difficulty in identifying fault harmonics.
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Figure 31. Signal after SVD denoising.
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Figure 32. Envelope spectrum based on FDM-SVD.

To highlight the periodic impact characteristics within the signal, the denoised sig-
nal obtained through the FDM-SVD method was fed into the CYCBD filter for further
extraction of fault features. Finally, an envelope spectrum was generated through Hilbert
transformation, as shown in Figure 33. Upon analysis of this figure, it is evident that
after CYCBD filtering, the resulting envelope spectrum distinctly reveals multiple compo-
nents corresponding to fault feature frequencies, including their second to sixth harmonics.
These components are clearly manifested in the form of prominent peaks, facilitating ob-
servation and identification. Simultaneously, surrounding interference components are
effectively suppressed during the CYCBD filtering process, thereby minimally affecting the
identification of harmonics.
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Figure 33. Envelope spectrum of CYCBD filter signal based on FDM-SVD.

5.2. Outer Ring Signal Analysis

By processing the collected fault data, we obtained the time-domain waveform of the
outer race bearing fault signal, as shown in Figure 34. Upon waveform observation, it was
also noted that the presence of noise interference in the signal was not significant. Therefore,
in this experiment, Gaussian white noise with a signal-to-noise ratio of −5 dB was added to
the outer race fault signal, generating mixed signals. The time-domain waveforms of these
mixed signals are shown in Figure 35. In Figure 35, it can be observed that the addition of
noise to the outer race fault signal resulted in a blurring of the impulsive characteristics in
the signal.
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Figure 34. Time domain waveform of the outer ring fault signal.

Symmetry 2024, 16, x FOR PEER REVIEW 26 of 32 
 

 

 
Figure 33. Envelope spectrum of CYCBD filter signal based on FDM-SVD. 

5.2. Outer Ring Signal Analysis 
By processing the collected fault data, we obtained the time-domain waveform of the 

outer race bearing fault signal, as shown in Figure 34. Upon waveform observation, it was 
also noted that the presence of noise interference in the signal was not significant. There-
fore, in this experiment, Gaussian white noise with a signal-to-noise ratio of −5 dB was 
added to the outer race fault signal, generating mixed signals. The time-domain wave-
forms of these mixed signals are shown in Figure 35. In Figure 35, it can be observed that 
the addition of noise to the outer race fault signal resulted in a blurring of the impulsive 
characteristics in the signal. 

 
Figure 34. Time domain waveform of the outer ring fault signal. 

 
Figure 35. Time domain waveform of the mixed signal. 

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Frequency[Hz]

A
m

pl
itu

de
[m

/S
2 ]

f0
2f0 3f0 4f0 5f0 6f0

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
-4

-2

0

2

4

Time[s]

A
m

pl
itu

de
[m

/s
2 ]

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
-4

-2

0

2

4

Time[s]

A
m

pl
itu

de
[m

/s
2 ]

Figure 35. Time domain waveform of the mixed signal.

Next, Fourier decomposition method (FDM) analysis was conducted on the mixed
signals containing noise due to inner race faults. Through signal decomposition, we
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obtained 24 signal components and the final residual component. Due to space limitations,
only the decomposition results of the first 20 signal components are presented in Figure 36.
Upon observing the waveforms of these component signals, it is evident that this method
effectively suppresses modal aliasing, thereby avoiding interference between different
frequency components. Furthermore, endpoint effects were essentially eliminated.
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Figure 36. FDM decomposition result.

Following this, an in-depth statistical analysis was conducted on each signal com-
ponent, which involved computing their kurtosis, skewness, and permutation entropy.
Through these computations, we further derived filtering indices for each signal com-
ponent. The detailed results of filtering index calculations for all signal components are
provided in Table 9. Upon careful comparison of the filtering index values for these 24
signal components, it becomes evident that the 8th and 9th signal components exhibit
significantly higher filtering index values compared to the other components. This suggests
that these two signal components hold a more prominent position within the entire signal,
potentially containing more significant fault information. Therefore, we selected these two
signal components for signal reconstruction.

Table 9. Indicator result value (FDM).

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

λ 0.728 1.481 1.673 1.832 1.891 2.266 2.225 2.503 2.598 2.144

y11 y12 y13 y14 y15 y16 y17 y18 y19 y20

λ 2.241 2.187 2.141 2.056 2.017 1.886 1.772 1.679 1.593 1.953

y21 y22 y23 y24

λ 1.597 1.076 0.000 1.597

Subsequently, through signal reconstruction based on the FDM algorithm and the
constructed filtering rules, we further developed a Hankel matrix and subjected it to SVD
decomposition. This process yielded the singular value spectrum and the singular value
energy difference spectrum, as shown in Figures 37 and 38, respectively. The singular value
energy difference spectrum in Figure 38 reveals disparities in energy between singular
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values. Upon careful examination of this graph, it was observed that the energy at the
36th peak of the signal was relatively prominent, while all subsequent peaks exhibited
comparatively lower energy. Based on this observation, we selected the reconstruction
order corresponding to the 36th peak.
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Figure 38. Singular value energy difference spectrum.

Figure 39 displays the time-domain waveform of the signal after denoising using the
SVD method. It is evident from the figure that the originally embedded noise interference
in the signal has been suppressed, highlighting the impulsive components in the outer
race bearing fault signal. Figure 40, obtained through the Hilbert transform, represents the
envelope spectrum. From this, the fundamental frequency, second harmonic, and third
harmonic components of the outer race bearing fault can be clearly observed, allowing
for the identification of the fault. However, it is worth noting that the peak frequencies of
the fault are relatively low, and there are also many other irrelevant interferences present
in the envelope spectrum, which may pose a certain level of difficulty in identifying the
fault harmonics.
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Figure 40. Envelope spectrum based on FDM-SVD.

To highlight the periodic impulsive features in the signal, the denoised signal (pro-
cessed via the FDM-SVD method) was input into the CYCBD filter for precise fault feature
extraction. Subsequently, an envelope spectrum was generated through the Hilbert trans-
form, as shown in Figure 41. Upon careful examination of this figure, it is evident that
after CYCBD filtering, the resulting envelope spectrum distinctly extracts multiple com-
ponents, including the fault characteristic frequency and its second to sixth harmonics.
These components are presented in the form of prominent peaks in the graph, facilitating
observation and identification. Simultaneously, the CYCBD filtering process effectively
suppresses surrounding interference components, thereby minimizing the impact on the
recognition of harmonics.
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Deconvolution techniques exhibit significant application value in the field of rotating
machinery fault detection, particularly in extracting fault features from bearing vibration
signals. This technology effectively extracts fault impact information from complex vibra-
tion signals of damaged mechanical components, thereby enhancing the amplitude of fault
impacts and providing a robust basis for fault diagnosis. Among various deconvolution
algorithms, MED, OMEDA, and MCKD each possess unique characteristics [22,38,39].
However, these algorithms have limitations to varying degrees in their applications. For
instance, MED aims to maximize the kurtosis of the filtered signal, but it is susceptible
to singular strong random pulses, potentially leading to deviations in diagnostic results.
Similarly, OMEDA targets the maximization of the D-norm of the filtered signal and also
faces interference from strong random pulses. Although the MCKD algorithm, which aims
to maximize the correlated kurtosis of the filtered signal, improves diagnostic accuracy
to a certain extent, it struggles to obtain a global optimal solution and can only extract
a limited number of local pulses, thereby limiting its application scope. In contrast, the
CYCBD algorithm aims to maximize the second-order cyclostationarity of the filtered signal,
enabling it to better reflect the actual operating condition of the machinery. Compared to
other deconvolution algorithms, the CYCBD algorithm typically results in larger amplitude
values in the time–frequency domain after processing bearing vibration signals, facilitating
more accurate identification of bearing fault characteristics. In the experiments conducted
in this section, the CYCBD algorithm demonstrated superior performance in extracting
the fault characteristic frequencies and their harmonics of the inner and outer rings of
rolling bearings.

6. Conclusions

This paper investigates a combined approach for analyzing the feature extraction
and fault diagnosis of noise-induced interference in rolling bearing signals. The research
findings are summarized as follows:

(1) By adopting the FDM to deeply process the original signal, we have successfully
overcome the two major challenges of mode-mixing and endpoint effects commonly
encountered in traditional methods. Compared to traditional techniques, the FDM’s
decomposed signal components more accurately reveal the hidden useful informa-
tion in the original signal, providing more reliable data support for subsequent
fault diagnosis.

(2) By integrating multi-dimensional information, including kurtosis, skewness, and
permutation entropy of signal components, we have constructed an efficient selection
criterion to accurately identify the optimal signal component. Additionally, leveraging
the excellent noise reduction capabilities of the SVD method, we have effectively
mitigated the interference of background noise and improved signal quality. In
comparison to experiments with methods such as EMD-SVD, EEMD-SVD, ITD-SVD,
and VMD-SVD, the method proposed in this paper has demonstrated significant
advantages in noise reduction evaluation metrics.

(3) After successfully denoising the signal using SVD, we employed the CYCBD filtering
method for fault feature separation, significantly enhancing the recognition capabil-
ity for cyclic impulse components. Through simulation experiments and practical
applications on rolling bearings, the fault feature extraction method introduced in
this paper not only accurately captured the envelope spectra of fault frequencies and
their harmonics but also exhibited clear advantages compared to traditional time–
frequency analysis methods like EMD, EEMD, ITD, and VMD, as well as conventional
deconvolution techniques such as MED, OMEDA, and MCKD. This comprehensively
demonstrates the superiority and practicality of our proposed approach.
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