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Abstract: A simple method for organically modifying a natural acid clay (Japanese acid clay) rapidly
with alkylamine has been developed. Japanese acid clay mainly consists of acidic montmorillonite
and was successfully modified with decylamine in water at room temperature for a short time
period (10 min) using an ultrasonic bath without any pretreatments. The structure of the modified
clay changed from exterior surface modification to intercalation with an increase in the decylamine
content. The equilibrium adsorption capacity for the anionic dye methyl orange (MO) increased
with increasing decylamine content. The adsorption kinetics and isotherm were well described by
the pseudo-second-order and Langmuir models, respectively. Better MO adsorption was obtained
under the conditions of high dosage, low pH value, and low temperature. The adsorbent was also
found to have good adsorption for not only MO but also other anionic dyes (Congo red and eosin Y)
and cationic dyes (methylene blue, crystal violet, and rhodamine B). In particular, the decylamine-
intercalated clay adsorbent exhibited a high level of adsorption capacity for Congo red and crystal
violet. The results demonstrate that the synthesis process can provide a simple and cost-effective
organoclay as an adsorbent with high performance for the removal of anionic and cationic dyes.

Keywords: Japanese acid clay; decylamine; organoclay; surface modification; intercalation; dye
adsorption removal

1. Introduction

Removal of toxic organic pollutants from wastewater is critical to achieving the United
Nations Sustainable Development Goals (UN SDGs) aimed at the realization of a sustain-
able society [1–3]. Among treatments of industrially discharged organic pollutants, the
purification of wastewater containing synthetic dyes from dye production and dyeing
processes is still a challenging issue [4]. To remove dyes efficiently from aqueous solutions,
adsorption is widely and frequently employed due to easy operation and low energy
consumption [5,6], and various adsorbents, such as activated carbon, zeolite, and metal-
organic frameworks (MOFs), have been developed [7–12]. However, to enhance adsorption
performance through pore development and surface activation, energy consumption and
process costs can often increase [13]. Therefore, the development of a synthesis process for
obtaining cost-effective adsorbents with high adsorption performance at low environmental
impacts in production is needed.

Recently, organoclays, in which clays or layered (alumino-) silicates are modified
with organic compounds, have attracted much attention for use as adsorbents for dye
removal [14–25] because they can be relatively easily prepared under environmentally
friendly conditions. In this study, an organoclay adsorbent using an inexpensive natural
acid clay, Japanese acid clay [26–28] (which is a name for fuller’s earth yielded in Japan), has
been newly developed. This acidic clay mainly consists of calcium-type montmorillonite
and the montmorillonite layers have protons instead of sodium ions; namely, this clay
is similar to acidic bentonite clay in which sodium ions are ion-exchanged with protons.
The acidic clay is non-swelling in water, unlike normal bentonite clay. Decylamine was

Minerals 2023, 13, 41. https://doi.org/10.3390/min13010041 https://www.mdpi.com/journal/minerals

https://doi.org/10.3390/min13010041
https://doi.org/10.3390/min13010041
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/minerals
https://www.mdpi.com
https://orcid.org/0000-0002-4249-6150
https://doi.org/10.3390/min13010041
https://www.mdpi.com/journal/minerals
https://www.mdpi.com/article/10.3390/min13010041?type=check_update&version=2


Minerals 2023, 13, 41 2 of 17

employed as the organic modifier of the acid clay [29], and the cost-effective organoclay
adsorbent can be quite easily synthesized without heating (i.e., at room temperature) for a
short time period. This results in the exterior surface modification and intercalation of the
acid clay with decylamine [29]. The structural change of organoclay with this modification
was investigated, and the dye adsorption properties were studied.

2. Materials and Methods
2.1. Synthesis and Characterization of Organoclays

Japanese acid clay and decylamine (DA) were purchased from Kishida Chemical
(Sanda, Japan) and FUJIFILM Wako Pure Chemical (Osaka, Japan), respectively, and
used without further purification. The cation exchange capacity (CEC) is approximately
10 cmol/kg. The chemical composition determined by energy dispersive X-ray spectroscopy
(EDX; Epsilon 1, Malvern Panalytical, Malvern, UK) is as follows: 55.5 wt% SiO2, 11.2 wt%
Al2O3, 2.7 wt% Fe2O3, and 0.9 wt% CaO, which is similar to normal bentonite.

Briefly, 0.1 g of Japanese acid clay powder was added to 20 g of deionized water
in a glass tube with a screw cap. The aggregates of clay particles were disintegrated in
an ultrasonic bath (40 kHz, 200 W) for 10 min. A predetermined amount of DA was
added to the suspension and the DA-containing suspension was vigorously shaken at room
temperature in the ultrasonic bath for 10 min. The clay particles modified with DA were
filtered and dried at room temperature overnight. The organoclay samples were used for
further characterization and dye adsorption study. In this work, five organoclay samples
with different DA contents (4.5, 9.3, 16.2, 20.0, and 25.6 mass%, denoted as DA1, DA2,
DA3, DA4, and DA5, respectively) were prepared. The DA contents were determined by
thermogravimetry/differential thermogravimetric analysis (TG/DTA; DTG-60, Shimadzu,
Kyoto, Japan) at a heating rate of 10 K/min under airflow (100 mL/min), assuming that
the adsorbed water was eliminated below 120 ◦C based on the TG data of the original clay.
The pristine (unmodified) clay was represented as DA0.

The structures of the samples were confirmed by a powder X-ray diffractometer (XRD-
6100, Shimadzu, Kyoto, Japan; CuKα, wavelength = 0.154 nm, 30 mA, 30 kV, 1◦/min). The
morphologies of representative samples were observed with a field-emission scanning
electron microscope (FE-SEM; JSM-6700F, JEOL, Tokyo, Japan) at 15 kV. The nitrogen
adsorption–desorption isotherms were also measured at 77 K using nitrogen adsorption
analysis (BELSORP MAX G, MicrotracBEL, Osaka, Japan) to determine the specific surface
area and pore size distribution calculated using the Brunauer–Emmett–Teller (BET) and
Barrett–Joyner–Halenda (BJH) methods, respectively.

2.2. Dye Adsorption Study

The anionic and cationic dyes used in this work are listed in Table 1. To study the
effects of the organoclay structure on the dye adsorption properties, anionic methyl orange
(MO) dye, which is widely used as a model adsorbate to evaluate the adsorption properties
of various adsorbents, was selected. The adsorption experiments were performed in batch
mode. Typically, 10 mg of an organoclay sample as the adsorbent was added to 20 mL of the
MO solution with a concentration of 20 mg/L. The adsorbents were used without selecting
a specified grain fraction of the sample powders. The suspension was vigorously stirred at
room temperature for a proper amount of time. After that, the adsorbent was centrifuged
and the supernatant was collected to measure the concentration. The absorbance was
measured with a spectrophotometer (U-2900, Hitachi High-Technologies, Tokyo, Japan)
at the wavelength shown in Table 1. The MO concentration was determined using a
calibration curve prepared in advance. The adsorbed amount of MO at a specified time
was calculated by Equation (1).

qt =
(C0 − Ct)V

m
(1)

where qt (mg/g) is the adsorbed MO amount at a contact time t (h), C0 and Ct (mg/L) are
the MO concentrations of the solutions before and after contact, respectively, V (L) is the
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volume of the solution, and m (g) is the mass of the adsorbent. To study the adsorption
kinetics, the contact time was varied from 15 min to 4 h. The equilibrium adsorption
capacity qe (mg/g) was calculated from the equilibrium concentration Ce (mg/L) obtained
after contact for more than 24 h using Equation (1). In addition, the adsorbent dosage
(= m/V), initial solution pH, and temperature were also varied between 0.24 g/L and
1.5 g/L, between 3.1 and 10.9, and between 301 K and 333 K, respectively. The pH was
adjusted by using 0.1 mol/L HCl and 0.1 mol/L NaOH solutions. Furthermore, to investi-
gate the adsorption properties of various dyes, experiments using several anionic (Congo
red and eosin Y) and cationic (methylene blue, crystal violet, and rhodamine B) dyes were
also conducted. In the adsorption experiments, the initial dye concentrations were varied
as shown in Table 1, and the adsorption isotherms were analyzed. The reproducibility of
each adsorption as well as the synthesis of organoclay samples was confirmed through
repeated experiments. The Fourier transform infrared (FT-IR) spectra of the organoclay
powder before and after the adsorption were recorded on a spectrophotometer (IRAffinity-
1, Shimadzu, Kyoto, Japan) with the KBr pellet technique. The TG/DTA curves were also
measured with the thermal analyzer mentioned above.

Table 1. Anionic and cationic dyes used in this work.

Dye Supplier * Initial Concentration
C0 (mg/L)

Natural pH of
20 mg/L Solution Wavelength (nm)

Anionic:
Methyl orange (MO) KC 20–300 6.9 464

Congo red (CR) NT 20–600 7.1 498
Eosin Y (EY) FW 20–100 5.1 517

Cationic:
Methylene blue (MB) KC 20–350 5.7 665

Crystal violet (CV) KC 20–500 5.6 595
Rhodamine B (RB) FW 20–100 4.8 554

* KC = Kishida Chemical (Japan), NT = Nacalai Tesque (Japan), FW = FUJIFILM Wako Pure Chemical (Japan).

3. Results and Discussion
3.1. Change in the Structure of Organoclay with DA Content

The X-ray diffraction (XRD) pattern and basal spacing of the organoclay samples are
shown in Figures 1 and 2, respectively, together with those of the original clay. The original
Japanese acid clay (DA0) had a diffraction peak at 2θ ≈ 6◦, which almost coincided with
acidic (protonated) montmorillonite [30] with a basal spacing of 1.5 nm. When the DA
content was 4.5 mass% (i.e., DA1 sample), the crystal structure was almost the same as
that of the original, which suggested that the DA molecules adhered onto the exterior
surface of clay particles without intercalation into the montmorillonite interlayer spaces.
As the DA content was increased, the basal spacing increased due to the intercalation of
DA molecules. The DA2 sample (9.3 mass%) had a basal spacing of 1.8 nm, which was
similar to the diameter (approximately 0.3 nm) of the DA molecule, which was estimated
assuming that the shape of the DA molecule was cylindrical. This suggests that the DA2
sample has a lateral monolayer-type structure [31,32]. The DA3 sample (16.2 mass%) had a
broad peak, indicating a disordered structure due to the transition region. In contrast, the
diffraction peaks of the DA4 and DA5 samples (20.0 and 25.6 mass%, respectively) were
sharp. In particular, the DA5 sample had a well-ordered intercalation structure with a basal
spacing of 3.1 nm, suggesting a paraffin-type bilayer structure [31,32].
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Figure 2. Change in basal spacing of samples with DA content.

Typical FE-SEM images of DA0 (pristine), DA1 (exterior surface-modified), and DA5
(intercalated) samples are shown in Figure 3 as representatives. The morphologies of the
DA1 sample were almost the same as those of the DA0 sample, which was similar to typical
bentonite clays. The particles of the DA5 sample tended to aggregate more strongly. The
nitrogen adsorption–desorption isotherms were measured to investigate the changes in
the pore structure with surface modification and intercalation. As illustrated in Figure 4,
the adsorption–desorption isotherms showed type IV adsorption behavior with a typical
H3 hysteresis loop, which can be attributed to the slit-shaped pores of aggregates of plate-
shaped particles. The pore size distribution curves are shown in Figure 5. The BET surface
area, pore volume, and average pore diameter of the samples are summarized in Table 2.
Although the original clay had a relatively large amount of mesopores and a relatively high
specific surface area, modification with DA decreased the pore structure. In particular, the
micropores and mesopores were drastically decreased by the modification, which may have
resulted in a decrease in the specific surface area and pore volume. This result suggests
that the DA molecules partially block the micropores and mesopores of the original clay.
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Table 2. Specific surface area, pore volume, and pore diameter of the DA0, DA1, and DA5 samples.

Sample BET Surface Area
(m2/g)

Pore Volume
(cm3/g)

Average Pore Diameter
(nm)

DA0 87.9 0.278 21.1
DA1 52.1 0.218 18.3
DA5 16.4 0.118 27.8
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3.2. Effect of Adsorbent Structure on MO Equilibrium Adsorption Capacity

The change in the MO equilibrium adsorption capacity with the DA content of the
organoclay samples is illustrated in Figure 6. The equilibrium adsorption capacity drasti-
cally increased with increasing DA content below 9.3 mass%, which indicates that the DA
molecules in the organoclays act as the adsorption sites for MO. The adsorption capacity
reached 36 mg/g at a DA content above 20 mass% (i.e., the DA4 and DA5 samples). How-
ever, at higher than 9.3 mass% the increase in the adsorption capacity was slight, which
suggested that the rate of effective adsorption sites decreased at high DA contents.
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The relationship between the equilibrium adsorption capacity and the basal spacing of
the samples is shown in Figure 7. Although the DA1 sample (4.5 mass% DA) had almost the
same basal spacing as DA0 (original clay), the DA1 sample had a much larger adsorption
capacity than DA0 due to surface modification with DA. The DA-intercalated samples
with large values of basal spacing possessed relatively large amounts of DA molecules
in the interlayer spaces, which resulted in high adsorption capacities. To investigate the
effectiveness of DA in MO adsorption, the equilibrium adsorption capacity qe’ [mg/g-DA]
per unit mass of DA was calculated for each organoclay sample. As shown in Figure 8, qe’
monotonically decreased with increasing DA content, which suggests that DA molecules
on the exterior surface of clay particles acted as relatively more effective adsorption sites
than in the interlayer spaces.

Minerals 2023, 13, x FOR PEER REVIEW 7 of 18 
 

 

 
Figure 7. Relationship between equilibrium adsorption capacity and basal spacing (dosage = 0.5 g/L, 
initial concentration = 20 mg/L, initial pH = 6.9, temperature = 301 K). 

 
Figure 8. MO equilibrium adsorption capacity per unit mass of DA (dosage = 0.5 g/L, initial concen-
tration = 20 mg/L, initial pH = 6.9, temperature = 301 K). 

3.3. Dependence of Adsorbent Dosage, pH, and Temperature on MO Removal 
The effects of adsorbent dosage, initial pH value, and temperature on the MO equi-

librium adsorption capacity and removal efficiency of the DA5 sample, which had the 
maximal adsorption capacity among the samples, are displayed in Figure 9. With increas-
ing adsorbent dosage, the removal efficiency gradually increased and reached 98% at 1.5 
g/L due to an increase in the total surface area of the adsorbent (Figure 9a). However, the 
equilibrium adsorption capacity decreased as the adsorbent dosage was increased, which 
suggested a decrease in the rate of effective adsorption sites in the adsorbent.  

Figure 7. Relationship between equilibrium adsorption capacity and basal spacing (dosage = 0.5 g/L,
initial concentration = 20 mg/L, initial pH = 6.9, temperature = 301 K).



Minerals 2023, 13, 41 7 of 17

Minerals 2023, 13, x FOR PEER REVIEW 7 of 18 
 

 

 
Figure 7. Relationship between equilibrium adsorption capacity and basal spacing (dosage = 0.5 g/L, 
initial concentration = 20 mg/L, initial pH = 6.9, temperature = 301 K). 

 
Figure 8. MO equilibrium adsorption capacity per unit mass of DA (dosage = 0.5 g/L, initial concen-
tration = 20 mg/L, initial pH = 6.9, temperature = 301 K). 

3.3. Dependence of Adsorbent Dosage, pH, and Temperature on MO Removal 
The effects of adsorbent dosage, initial pH value, and temperature on the MO equi-

librium adsorption capacity and removal efficiency of the DA5 sample, which had the 
maximal adsorption capacity among the samples, are displayed in Figure 9. With increas-
ing adsorbent dosage, the removal efficiency gradually increased and reached 98% at 1.5 
g/L due to an increase in the total surface area of the adsorbent (Figure 9a). However, the 
equilibrium adsorption capacity decreased as the adsorbent dosage was increased, which 
suggested a decrease in the rate of effective adsorption sites in the adsorbent.  

Figure 8. MO equilibrium adsorption capacity per unit mass of DA (dosage = 0.5 g/L, initial
concentration = 20 mg/L, initial pH = 6.9, temperature = 301 K).

3.3. Dependence of Adsorbent Dosage, pH, and Temperature on MO Removal

The effects of adsorbent dosage, initial pH value, and temperature on the MO equi-
librium adsorption capacity and removal efficiency of the DA5 sample, which had the
maximal adsorption capacity among the samples, are displayed in Figure 9. With increasing
adsorbent dosage, the removal efficiency gradually increased and reached 98% at 1.5 g/L
due to an increase in the total surface area of the adsorbent (Figure 9a). However, the
equilibrium adsorption capacity decreased as the adsorbent dosage was increased, which
suggested a decrease in the rate of effective adsorption sites in the adsorbent.
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Subsequently, as shown in Figure 9b, the equilibrium adsorption capacity and removal
efficiency gently decreased with increasing pH, and a relatively low adsorption capacity
was observed under basic conditions. MO adsorption with a removal efficiency higher than
90% was achieved under both acidic and neutral conditions.

At low temperatures, the equilibrium adsorption capacity and removal efficiency were
relatively high and decreased with increasing temperature (Figure 9c), which suggests
that MO adsorption is an exothermic process. Based on the adsorption data obtained at
different temperatures, the MO adsorption onto the DA5 sample was thermodynamically
analyzed. The Gibbs free energy ∆G◦ (J/mol) is expressed as

∆G◦ = ∆H − T∆S◦ (2)
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where ∆H◦ (J/mol) is the standard enthalpy, ∆S◦ (J/(mol·K)) is the standard entropy
and T (K) is the absolute temperature. The thermodynamic parameters ∆H◦ and ∆S◦ for
adsorption are expressed by the Van ’t Hoff equation.

ln Kd =
∆S◦

R
− ∆H◦

RT
(3)

where R (J/(mol·K)) is the gas constant and Kd (–) is the distribution coefficient defined by
Equation (4) [33].

Kd =
qem
CeV

(4)

where qe (mg/g) is the equilibrium uptake of MO, m (g) is the mass of the adsorbent, Ce
(mg/L) is the MO concentration at equilibrium, and V (L) is the volume of the solution.
Using the experimental data shown in Figure 9c, ln Kd was plotted against 1/T. As shown
in Figure 10, a linear relationship between ln Kd and 1/T was obtained. The values of ∆H◦

and ∆S◦ were determined from the slope and intercept, respectively, using Equation (3)
and the value of ∆G◦ at each temperature was calculated using Equation (2). The thermo-
dynamic parameters are summarized in Table 3. The values of ∆G◦, ∆H◦, and ∆S◦ were all
negative within the temperature range, which suggests the feasibility and spontaneity of
the adsorption process, the exothermic adsorption process, and the decrease in randomness
at the adsorbent/dye interface during the adsorption process. In addition, large negative
values of ∆G◦ at low temperatures suggest that the DA5 sample has a high affinity for MO
removal at lower temperatures.
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Table 3. Thermodynamic parameters for MO adsorption on the DA5 sample.

Temperature (K) ∆G◦ (kJ/mol) ∆H◦ (kJ/mol) ∆S◦ (kJ/(mol·K))

301 –6.00

–38.9 –0.109
313 –5.00
323 –4.36
333 –2.29

3.4. Analysis of Adsorption Kinetics and Isotherm

The change in the adsorbed amount of MO with the contact time is illustrated in
Figure 11. The adsorbed amount of MO rapidly increased in the initial stage and approxi-
mately reached equilibrium after several hours. To investigate the mechanism of adsorption,
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two kinetic models (pseudo-first-order and pseudo-second-order equation models), which
are expressed by Equations (5) and (6), respectively, were applied to the experimental data.

ln(qe − qt) = ln qe − k1t (5)

t
qt

=
1

k2qe2 +
t
qe

(6)

where k1 (h–1) and k2 (g/(mg·h)) are the rate constants of adsorption, qt (mg/g) is the
adsorbed amount at contact time t (h), and qe (mg/g) is the equilibrium uptake. As shown
in Figure 12 and Table 4, the experimental data clearly fit well with the pseudo-second-order
model, which indicates that the pseudo-second-order model more accurately expressed the
MO adsorption kinetics than the pseudo-first-order model. The results are similar to the
results reported in the literature [18,23]. This suggests that the adsorption of MO by the
DA-intercalated clay is a chemisorption process, which is the rate-determining step [34,35].
The rate constant k2 of the pseudo-second-order model is relatively large compared with
literature values [36–38], which resulted in a high adsorption rate and a short equilibrium
arrival time, suggesting that the DA5 sample exhibits good adsorption performance.
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Table 4. Values of parameters for MO adsorption kinetic models.

Kinetic Model Parameter Value

Pseudo-first-order
qe (mg/g) 4.88

k1 (h–1) 0.481
R2 0.876

Pseudo-second-order
qe (mg/g) 35.2

k2 (g/(h·mg)) 0.524
R2 0.999

The adsorption of various dyes onto the DA5 sample was examined. The removal
efficiency of the DA5 sample for the anionic and cationic dyes listed in Table 1 at initial
concentrations C0 of 20 and 100 mg/L is shown in Figure 13. The DA5 sample exhibited
good removability for the anionic and cationic dyes. In particular, the CR and CV dyes
were almost completely removed successfully. The difference in the removal efficiency
among the dyes may be attributed to variations in the hydrophobic interaction between
dye and decylamine. The details are not clear at present and will be studied in future work.
The FT-IR spectra of the DA5 samples after the adsorption at the initial concentration of
100 mg/L were shown in Figure 14. The DA0 and DA5 samples had typical absorption
bands attributed to the hydroxyl group and alkyl chain, respectively [39,40]. The dye-
loaded DA5 samples had characteristic absorption bands of each dye (indicated by the
arrows in Figure 14) [41–46], which confirmed the dye adsorption. The TG/DTA curves
were also illustrated in Figure 15. The DA0 sample had an endothermic peak below 100 ◦C
which can be caused by the elimination of the adsorbed water. The DA5 sample before the
adsorption had not only the endothermic peak but also an additional endothermic peak at
approximately 150 ◦C and two exothermic peaks above 170 ◦C which may be attributed
to the elimination and thermal decomposition of decylamine. In the dye-loaded samples,
the small exothermic peak observed at 180 ◦C for the DA5 sample before the adsorption
tended to shift toward higher temperatures while the large exothermic peak was observed
around 340 ◦C for all the DA5 samples before and after the adsorption. Furthermore, the
dye-loaded samples had an additional exothermic peak at high temperatures. As a result,
the weight could decrease in a wide temperature range.
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(MB, CV and RB) dyes at different initial concentrations (dosage = 0.5 g/L, temperature = 301 K).
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Figure 15. TG-DTA curves of (a) DA0 and DA5 samples (b) before adsorption and after adsorption of
(c) MO, (d) CR, (e) EY, (f) MB, (g) CV and (h) RB (dosage = 0.5 g/L, initial concentration = 100 mg/L,
temperature = 301 K).

Subsequently, the adsorption isotherms for MO, CR, MB, and CV, for which relatively
good adsorption was observed, were further investigated. According to the variation in the
equilibrium uptake qe with the dye concentration Ce at equilibrium at various initial dye
concentrations, the adsorption isotherm was analyzed by using the Langmuir model [47]
and the Freundlich model [48], which are described by Equations (7) and (8), respectively.
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Ce

qe
=

1
qLKL

+
Ce

qm
(7)

ln qe = ln KF +
1
n

ln Ce (8)

where qL (mg/g) is the maximum adsorption capacity of the adsorbent, KL (L/mg) is the
Langmuir constant, and KF (L/mg) and n (–) are the Freundlich constants. As shown in
Figure 16 and Table 5, the Langmuir equation fit the experimental adsorption data well,
thereby representing monolayer adsorption on a homogeneous surface.

 

2 

       
(a)  (b)  (c)  (d) 

 

Figure 16. Adsorption isotherms of anionic and cationic dyes onto the DA5 sample using the
Langmuir model and Freundlich model: (a) MO, (b) CR, (c) MB, and (d) CV (dosage = 0.5 g/L,
temperature = 301 K).

Table 5. Adsorption isotherm constants of the DA5 sample for the adsorption of anionic (MO and
CR) and cationic (MB and CV) dyes.

Dye
Langmuir Model Freundlich Model

qL (mg/g) KL (L/mg) R2 KF
(mg/(g·(mg/L)1/n)) n R2

MO 629 0.129 0.996 169 3.19 0.910
CR 954 1.386 0.999 473 5.58 0.889
MB 225 2.282 0.996 157 12.16 0.652
CV 577 0.292 0.999 327 9.02 0.974

To investigate in detail the Langmuir isotherm, a dimensionless parameter (the sepa-
ration factor RL), which was proposed by Hall et al. [49] and is defined by Equation (9), can
be used [50,51].

RL =
1

1 + KLC0
(9)

where C0 is the initial dye concentration. As shown in Figure 17, the RL values for the MO,
CR, MB and CV adsorption onto the DA5 sample were between 0.001 and 0.3, which were
in the range of 0 < RL < 1; hence, the DA5 sample shows satisfactory adsorption of the dyes
under the specified conditions [52]. In particular, RL for the CR, MB, and CV adsorption was
below 0.01 in many experiments, suggesting that the DA5 sample undergoes an irreversible
dye adsorption process over a wide range of initial dye concentrations.
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(MO and CR) and cationic (MB and CV) dyes (dosage = 0.5 g/L, temperature = 301 K).

The Langmuir adsorption capacities of the DA5 sample for the MO, CR, MB, and CV
dyes were compared with those of various conventional adsorbents. The comparison with
some recently reported literature values is shown in Table 6. Although the adsorption con-
ditions differed from each other and some adsorbents had a maximum adsorption capacity
higher than 1000 mg/g for these dyes, the DA5 sample had a high level of adsorption
capacity among recently developed adsorbents including functional mesoporous silica
materials with highly efficient removal of dyes [53–55]. This suggests that the DA5 sample
can be widely used for the adsorption of anionic and cationic dyes.

Table 6. Comparison of Langmuir adsorption capacities of the DA5 sample with literature values.

Dye Main Components of Adsorbent qL (mg/g) Ref.

MO

Japanese acid clay/decylamine 629 This work
Carbon/ethylenediamine/trimethylamine 1487 [56]

Cotton/trimethyl ammonium 645 [57]
Carbon/Fe3O4/β-cyclodextrin/chitosan 269 [58]

Cellulose/silica 187 [59]
Activated carbon/chitosan 105 [60]

CR

Japanese acid clay/decylamine 954 This work
γ-AlOOH 3881 [61]

MgNiCo LDH 1195 [62]
ZIF-8/MWCNT 1186 [63]

Fe(OH)3/NiCo LDH 658 [64]
Nickel silicate 415 [65]

MB

Japanese acid clay/decylamine 225 This work
Limonene-derived polymer 909 [66]

Peanut shell 538 [67]
Bluecoke 341 [68]

Nickel silicate 196 [65]
Holocellulose 142 [69]

CV

Japanese acid clay/decylamine 577 This work
Cellulose/succinic acid/choline chloride 2608 [70]

Trithiocyanuric acid polymer 1181 [71]
Carbon/dopamine/Fe3O4/citric acid/β-cyclodextrin 585 [72]

MWCNT/iron oxide 165 [73]
Montmorillonite/NiFe2O4/ethylenediamine/chitosan 125 [74]

4. Conclusions

An organoclay, which consisted of Japanese acid clay and decylamine as the synthetic
dye adsorbent, was successfully synthesized in a simple and cost-effective process with
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low environmental impact. The structure of the organoclay changed with the decylamine
content. The anionic dye (MO) removal from the aqueous solution varied depending
on the structure of the organoclay; the decylamine-intercalated acid clay showed a high
adsorption capacity. The adsorption conditions (dosage of adsorbent, solution pH, and
temperature) for obtaining relatively high removal efficiencies were determined. Thermo-
dynamic analysis revealed the feasibility and spontaneity of the adsorption process. The
adsorption kinetics and isotherm were expressed by the pseudo-second-order equation and
Langmuir models, respectively. Relatively large values of the adsorption rate constant and
maximum adsorption capacity of the models suggest that the organoclay adsorbent with
the decylamine-intercalated structure has good adsorption performance. The adsorbent
was also found to be effective for the adsorption of various anionic and cationic dyes; in
particular, Congo red and crystal violet were more effectively removed. The results suggest
that the organoclay adsorbent is promising for the adsorption removal of toxic organic
pollutants from wastewater.
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