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Abstract: Operational flexibility in an aggregate production process is required to adapt to changes
in customer demands. Excessive demand for a particular product fraction can lead to operational
alteration wherein re-crushing of the existing larger-sized product fraction is necessary. The choice of
re-crushing existing product fractions results in feed condition changes to the crusher. One common
approach to producing the desired product is by varying the operation settings of a crusher in a
crushing plant. However, knowledge of differences in operational performance for changing feed
conditions in the circuit is required. This potentially leads to a problem of performance optimization
based on the desired target product, available feed material and capability of the crusher. The paper
presents an application of a multi-objective optimization method to generate multiple operational
settings for the dynamic change in the operation condition in a crushing plant. Controlled exper-
imental survey data with varying feed conditions are used to calibrate the crusher model using
an unconstrained optimization problem solved using a gradient-based algorithm (Quasi-Newton
method). Trade-off curves between various performance indicators of the crushing plant using a
dynamic simulation platform are generated using multi-objective optimization using a non-gradient-
based algorithm (genetic algorithm). The results of the application can help the operators and plant
managers to make proactive decisions to steer the operation of the crushing plant towards the desired
needs of the operation.

Keywords: optimization; dynamic simulation; comminution; Pareto-set; genetic algorithm; perfor-
mance mapping; production balance; crusher calibration

1. Introduction

An aggregate production plant usually produces various sizes of rock products to
meet different customer requirements. The products range from larger sizes, like 31.5 mm
to 50 mm and 31.5 mm to 63 mm [1], used for railway ballast, to smaller sizes, such as
2 mm to 5 mm and 11 mm to 16 mm, used for making asphalt and concrete for road and
building construction [2]. A typical scenario occurring in crushing plants in northern
Europe is changing seasonal product demand from the market, for example, there is a
higher demand for finer fractions (2/5 mm, 5/8 mm) in winter conditions compared to
coarser products (11/16 mm, 16 /22 mm), used in road networks for grip in iced road.
There can be other localized changes in the product demands based on the geographic
location of the crushing plant.

The crushing plant is equipped with a series of machines for crushing (e.g., jaw crusher
and cone crusher), screening (e.g., vibratory screen), material transport (e.g., conveyors,
loaders and feeder), and material storage (e.g., bin, silo and stockpile) to produce the differ-
ent set of products. The plant design provides flexibility to control and drive production
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towards the specific needs of the customer by controlling the settings of machines. For
example, a cone crusher product can be controlled by changing CSS (closed-side setting),
and adjusting the eccentric throw, and a vibratory screen product can be decided by alter-
ing screen panel type, sizes and settings. The experienced plant operator can understand
certain relationships between these operating variables but as the plant complexity and
operating variables grow, it becomes cognitively difficult to correlate the change to op-
erational performance. Coupled with operational setting impacts, the dynamic process
operation phenomenon (bin filling rate, material hold, material delays, etc.) also plays
a role in plant product performance. Together with machine settings and dynamics, the
operational decision becomes increasingly complex and difficult to interpret [3,4]. To facili-
tate decision making for complex relationships, dynamic process simulation tools need to
provide functionality for operators to make optimization decisions.

Figure 1 shows a modular framework consisting of multiple layers of development
needed for the implementation of optimization capability for crushing plants [5]. Devel-
oping a reliable and suitable functionality for decision making in crushing and screening
processes using a simulation platform requires multiple methodical developments. The
essence of the proposed framework is to increase the performance control of the crushing
plant by utilizing simulation systems with suitable functionality.
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Figure 1. A modular framework for the implementation of optimization capabilities for crushing
plants [5].

There is a wide range of models available to replicate the functionality of the physical
equipment [6,7]. The model of cone crusher and screens can be described based on mecha-
nistic principles [8,9], phenomenological principles [10] and empirical principles [7,11,12].
These models help in designing new crushing plants but are limited in providing func-
tionality for daily operations. To make decisions for daily operation, the reliability of the
model output becomes a necessary requirement [13,14]. Another aspect to consider is
finding suitable performance indicators that can help operators make daily operational
decisions [15,16]. The performance indicators need to be interpretable for decision-making.
Lastly, the functionality of optimization needs to be supporting the interpretation of the per-
formance indicators [17]. Previous research has shown partial implementation of methods,
for example, the calibration/validation of the process/equipment model [14,18], and the
optimization of the process plant [17,19–21] and is limited to a holistic application covering
the bottom-up approach as shown in Figure 1.

In this research paper, an optimization case study for an industrial crushing plant
producing multiple aggregate products is presented. The systematic implementation of



Minerals 2023, 13, 1242 3 of 20

multiple optimization methods within the simulation system (S1–S4) is demonstrated. Two
types of optimization methods are applied in this research work. Firstly, a computation-
ally efficient unconstrained gradient-based approach (Quasi-Newton method) is used to
calibrate the crusher model. This is followed by the configuration of the dynamic process
simulation model in MATLAB/Simulink for mapping the industrial test site. Secondly,
a non-gradient-based optimization method (multi-objective genetic algorithm) is used to
generate a trade-off (Pareto-front) using the response from the dynamic process simula-
tion. Specifically, three key performance indicators (KPIs) relevant to the site are used for
trade-off curves: product throughput, product quantity and product yield [15].

2. Industrial Crushing Plant Site

The aggregate production site used in the research consists of tertiary and quaternary
stages (See Figure 2) of a larger production facility situated in West Sweden. This segment
of the facility is built with the flexibility to either produce large quantities of railway ballast
(P1) or smaller fractions of products (P2–P7) used for road and building constructions
(controlled by splitter T0).
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Figure 2. Section of the crushing plant site at Kållered Bergtäkt, Swerock, Sweden.

Out of the two situations, this study focuses on configuration wherein the production
of products P2–P7 needs balancing. The throughput of products (P2–P7) is dependent on
the configuration of the tertiary crusher (CC1—H3000) and quaternary crusher (CC2—H36).
The crusher CC1 is operated with a fixed feed PSD from screen S0 while the crusher CC2 is
operated with varying feed PSD depending on the operators’ decision of the re-crushing
products (P2, P3, P4 and P5). There are external conditions which govern these decisions
such as customer demands, the status of stockpile level and the filling rate of the product
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storage silos. Each selected feed PSD to CC2 creates a configuration scenario for the crushing
plant. Due to varying production rates, the bin/silo filling rate of various products (P2–P5)
differs which leads to dynamic operational situations where bottlenecks can occur. This
results in a need to re-crush products if the backup stockpiles have reached the target
capacity or if the silo has reached its capacity limit. There are two optimization situations
which can occur in such complex operations:

1. For a given configuration scenario of plant operation and selected re-crushing product
stream, what is the trade-off possible in the production KPIs of different product streams?

2. What is the appropriate set of configuration scenarios operation possible to reach a
target customer need from the production facility (considering the dynamic nature of
the production, time duration and crusher setting)?

This research will particularly focus on question 1, wherein trade-off curves for differ-
ent operational configurations will be explored for various KPIs of the plant performance.

3. Method Description

The method applied is divided into three parts: Modeling and Simulation Methods,
Experimental Methods and Optimization Methods. A brief account of different applied
techniques is presented in this section.

3.1. Modeling and Simulation Method

A systematic approach is applied to configure a two-stage industrial crushing plant in
the MATLAB/Simulink environment. The dynamic simulation approach as demonstrated
by Asbjörnsson [3] is applied process modeling of the crushing plant. The simulation
can capture operational behaviors, for example, material delay, start-stop sequences of
equipment, discrete events, control loops, etc. [3,13,22]. The mathematical equations used
for representing mass m and properties γ with respect to time at a given node in the circuit
are given by Equations (1) and (2) [3].

dm(t)
dt

= (
.

mi,in(t)−
.

mj,out(t)) (1)

dγ(t)
dt

=

.
mi,in(t)

m(t)
(γi,in(t)− γ(t)), where γ(t) =

γ1(t)
...

γn(t)

 (2)

The crusher model used in the application is a simplified Whiten’s Cone Crusher
model (see Equation (3)), where p is the product stream, f is the feed stream, C is the
classification function, B is the breakage function and I is an identity matrix [7].

p = (I − C) ∗ (I − BC)−1 ∗ f (3)

The classification function C is given by the probability function shown in Equation (4),
where K1 to K3 are dependent on cone crusher parameters and xsi is the sieve size class.
The model is used as an empirical approach to mapping the cone crusher performance,
the paraments K1 and K2 were simplified to be only dependent on the closed-side setting
(CSS) and throughput (MF) of the tested crushers while K3 is treated as an independent
variable [7].

Ci =


0, f or xsi ≤ K1

1−
(

K2−xsi
K2−K2

)K3
f or K1 < xsi < K2

1, f or xsi ≥ K2
K1 = a0 + a1CSS− a2MF
K2 = b0 + b1CSS + b2MF
K3 = c0

(4)
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The breakage function B used is based on the Reid–Stewart form, see Equation (5),
where φ, λ and β are calibratable factors depending on the material characterization [23].

Bij = φ

(
xsi
xsj

)λ

+ (1− φ)

(
xsi
xsj

)β

(5)

The mass flow of the crusher is modeled using the geometric dimension and CSS value
of the crusher and is calibratable using a parameter alpha (α) [24]. The power draw of the
crusher is estimated using the Bond equation [25]. The total calibratable variables for the
crusher model are given by the vector in Equation (6).

xk = [a0, a1, a2, b0, b1, b2, c0, φ, λ, β, α] (6)

The screen model is based on the Whiten expression as shown in Equation (7), where
Eoa represents the reduced partition curve for calculating the oversized material stream, α
is the sharpness of the separation, di is the geometric mean of the size interval i in sieve
size class xsi, d50 is the separation size, E is the efficiency at the screen aperture and A is the
screen aperture [7,14].

Eoa =
exp(αxi)−1

exp(αxi)+exp(α)−2

xi =
di

d50

d50 = αA
ln[( 100

100−E−1) exp(α)+( 100
100−E−1)−2]

(7)

Bins, splitters and stockpiles are modeled using the perfect-mix principle and first-in-
first-out (FIFO) principle [3,26]. Conveyors are modelled using the state-space model and
represent material delay units in the dynamic process simulation [3]. Power estimations
are based on the mechanistic model principle and are based on a simple linear model using
mass flow value [3]. The material flow between crushers, bins and conveyors is regulated
using interlocks and controlled using a PI controller [3].

3.2. Experimental Method

An experimental method was applied to map the performance of the two crushers
(CC1 and CC2). The purpose of the experiment is to map the input to the crusher such as
feed PSD and CSS to crusher output such as mass flow, power, pressure and product PSD.
Table 1 shows the experimental plan and recorded values for crusher CC1. The crusher
was calibrated using an inbuilt function of mantle-to-mantle calibration. For this study,
four settings of CSS were tested for a constant feed PSD. For each test, the crusher was
operated to achieve a stable power signal followed by a crash stop sequence. Adequate
representative samples of belt-cut samples were collected for each test based on the top
size of the particle and sieving standard [7,27]. Sieving analysis was performed on each
sampled material using the SS-EN 933-1:2012 standard [27].

Table 2 shows the experimental plan and recorded values for crusher CC2. The crusher
was calibrated using the inbuilt function of mantle-to-mantle calibration. For this study,
three settings of CSS were tested for three different feed PSDs. For each test, the crusher
was operated to achieve a stable power signal followed by a crash stop sequence. Adequate
representative samples using belt-cut were collected for each test and sieving analysis was
performed on each sampled material using SS-EN 933-1:2012 standard [27]. The operation
of the crusher and setting change was critical in this experiment as the different feed type
creates different packing density inside the crusher chambers. The minimum CSS operation
of the crusher was limited by the safety pressure setting in the control system. A low CSS
value was selected for the first run for each feed type to push the crusher at the maximum
pressure setting. The purpose of performing three samples for each feed was to eliminate
the risk of sampling errors with crusher operation.
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Table 1. Experimental plan and noted values for the crusher CC1 in the crushing plant.

Test ID CSS Setpoint
[mm]

ASRi CSS
[mm]

Pressure
[MPa] Power [kW] Belt-Cut Sampling Point

C01 CSS Calibration - - - -

T01 20 20.6 5.90 130 Feed and Product

T02 22 21.8–22.2 3.8 103 Product

T03 24 24 4.1 99 Product

T04 26 26 3.3 90 Product

Table 2. Experimental plan and noted values for the crusher CC2 in the crushing plant.

Test ID Feed CSS Setpoint
[mm]

ASRi CSS
[mm]

Pressure
[MPa]

Power
[kW] Belt-Cut Sampling Point

C11 - CSS Calibration - - - -

T11 Feed 1 P3–11/16 5 7.1 3.5 45 Feed and Product

T12 Feed 1 P3–11/16 7 7.2 3.3 44 Product

T13 Feed 1 P3–11/16 10 10.3 1.8 30 Product

C12 CSS Calibration - - - -

T14 Feed 2 P4–8/11 5 7 3.5 42 Feed and Product

T15 Feed 2 P4–8/11 8 8.4 2.6 35 Product

T16 Feed 2 P4–8/11 10 10.3 1.7 25 Product

C13 - CSS Calibration - - - -

T17 Feed 3 P5–5/8 4 7.1 3.5 40 Feed and Product

T18 Feed 3 P5–5/8 8 8.3 2.6 31 Product

T19 Feed 3 P5–5/8 10 10.3 1.6 21 Product

The screens were not sampled as it was in an inaccessible location at the site. The
screen is assumed to be performing in an ideal condition of operation. The screen model
was configured with standard operational value for efficiency (E = 95) and sharpness
(α = 13) factor while the aperture was tuned based on the site data.

3.3. Optimization Method

Two distinct applications of optimization methods are used in this research: Optimiza-
tion for Crusher Model Calibration and Optimization for Trade-off Analysis using Key
Performance Indicators.

3.3.1. Optimization for Crusher Model Calibration

The crusher model is calibrated based on the survey sampling performed at the
industrial site. All the crusher model parameters were backfitted using an unconstrained
gradient-based optimization algorithm, the Quasi-Newton method [14,28]. The crusher
model is treated as completely empirical based on the data from belt-cut experiments. The
crusher model was sequentially calibrated for capacity and product size distribution, see
Equations (8) and (9). A similar optimization approach has been previously demonstrated
in the fast mechanistic crusher model based on the Evertsson crusher model [8,14].

Capacity Optimization: The objective function is to minimize the sum of the relative
errors between crusher measured capacity (CapDi) to simulated capacity (CapSi) for the n
number of tested settings of CSS.
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min
n
∑

i=1

∣∣∣ (CapDi−CapSi)
CapDi

∣∣∣
w.r.t→ xk, [k = 11]
Optimizer = x∗k

(8)

PSD Optimization: The objective function is to minimize the weighted (wj) sum of
errors for the data (PSDfDji) and the simulation (PSDfSji) for the values of the n number of
tested settings. The PSD values are in the frequency domain for m number of given sieve
sizes (xsi). The weighted function (wj) is given in Equation (10), which is a function of the
sieve size used in the simulation for weighing the data points within a sieve size range. The
PSD in the frequency and the cumulative domain is in fraction passing for the sieve size.

min
n
∑

i=1

m
∑

j=1
wj
∣∣(PSD fDji − PSD fSji)

∣∣
w.r.t→ xk, [k = 1, 2, . . . , 10]
Optimizer = x∗k

(9)

zj = log2(xsizej) + |log2(min(xsize)|

wj =

 zj/(max(z))∀(j = 1, 2, . . . , 24)

1, (j = 25)

where,

xsize = [360; 250; 125; 90; 63; 45; 31.5; 22.4; 16; 11.2; 8; 5.6; 4; 2.8; 2; 1.4; 1; 0.7; 0.5; 0.35; 0.25; 0.177; 0.125; 0.088; 0.063]

(10)

3.3.2. Optimization for Trade-Off Analysis Using Key Performance Indicators

Multi-objective optimization (MOO) is used to generate a trade-off analysis (Pareto
Front) between competing objective functions in each problem definition [29–31]. A generic
optimization problem definition for two competing objective functions (f 1, f 2) and a set
of constraints (c) is shown in Figure 3 [5]. Here, a genetic algorithm is applied to solve a
MOO problem [32]. For the current application the design variables (x) are represented
by the operational setting of crushers (CSS1 and CSS2) while the output variables (y) are
performance values of mass flow, power, etc. Using the different performance values from
simulation, objective functions can be formulated such as product throughput rate, product
yield, product quantity and specific energy [15]. The approach treats the entire crushing
plant as one system and the algorithm iteratively communicates with the simulation to
explore the design space of the problem.
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4. Results

The results section is divided into three parts: crusher calibration, process configura-
tion result and trade-off curves for KPIs.

4.1. Crusher Calibration Results

The crusher calibration is based on the back fitting of the crusher model with the
belt-cut data. Figure 4a,b present the crusher calibration results for different tested CSS in
the cumulative domain and frequency domain, respectively, for the optimization problem
posed for crusher CC1) (refer to Equation (7)).
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Figure 4. Cone crusher CC1 calibration to the belt-cut data in (a) cumulative domain and (b) frequency
domain for varying feed and CSS.

Figure 5a,b present the crusher calibration results for different tested feeds and CSS in
the cumulative domain and frequency domain, respectively, for the optimization problem
posed by crusher CC2 (refer to Equation (7)). For the crusher CC2, three experiments were
carried out for each feed condition although the optimization was performed with two
selected experimental data for each feed condition. This was used to avoid overfitting the
model and also to reject the outlier or corrupted datasets. Both the crusher calibration
results show good conformance with the data gathered from the experiment. Also, the
application of the Quasi-Newton method was found to be computationally efficient which
is in line with previous applications [14].

Figure 6 shows the calibrated capacity of the two crushers with respect to the CSS
change. Table 3 presents the optimized variables for the empirically fitted model for both
cone crusher CC1 and CC2. Since the model is empirically fitted using belt-cut samples
without material characterization tests, the interpretation of the calibrated coefficients is lim-
ited. Compared to the constrained optimization problem for crusher model calibration [18],
the presented unconstrained optimization problem formulation is a simplified approach
with less number of variables. The strategy of calibration is a two-step process with capacity
calibration followed by PSD calibration.
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Table 3. Fitted parameters of the cone crusher model.

Cone
Crusher a0 a1 a2 b0 b1 b2 c0 ϕ λ β α

CC1 0.0036 2.1882 0.7518 −0.0091 0.8587 0.6353 2.3424 0.3371 0.76144 5.0079 0.830

CC2 −0.1246 1.8353 1.4846 −0.1597 1.583 0.0777 1.3013 0.08194 0.6876 4.6074
0.595, F1
0.600, F2
0.610, F3

4.2. Dynamic Process Simulation Results

The crushing plant was configured in a Simulink environment, see Figure 7. In this
instance of simulation configuration, the product stream P3–11/16 is recirculated back
for re-crushing in crusher CC2. The flow of material from the bin before the cone crusher
CC2 is controlled based on the level setpoints. The materials start flowing when the level
reaches 90% of the bin capacity and stop when the bin level reaches a lower limit of 10 %.
The mass flow rate for different products for a setting at CSS1 = 20 mm and CSS2 = 6 mm
is shown in Figure 8 and CSS1 = 26 mm and CSS2 = 10 mm is shown in Figure 9. By
changing the CSS points, the production rate of different products changes affecting the
bin filling rate and causing different times of on and off operation of crusher CC2. Also, the
total amount of product produced can be obtained by integrating the area under different
product mass flows.
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As observed in Figures 8 and 9, there is a wide range of operational production rates as
the two crusher settings are changed. It can also be observed that the change in magnitude
of the mass flow rate is different depending on the product specification. This implies that
the optimization problem solution will vary depending on what product is posed in the
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objective of the problem as there is the underlying varying sensitiveness of each product
based on the closed-side setting of the crusher, coupled with the topology of the plant.
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4.3. Trade-Off Analysis of Production KPIs

The application of trade-off analysis is usually applied for competing objective func-
tions. The objective functions formulated for trade-off contain either one product or a
combination of products that can help in process performance exploration and decision-
making. The key performance indicators for different final products of interest here are:

• Throughput Rate (TR)—The value of the mass flow rate of different product streams.
In this application, the throughput rate is retrieved when both crusher CC1 and CC2
are operating.
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• Product Quantity (Q)—The quantity of each product produced for a given opera-
tion time. It is given by the integration of the throughput rate with respect to the
operation time.

• Product Yield (PY)—The proportion of each product compared to the total sum of
different products produced for a given time of operation. This can be obtained either
using throughput rate or product quantity functions.

Case 1: The trade-off curves are generated for an operational scenario where the
product P11/16 is recirculated for re-crushing. Figure 10a shows the trade-off curve
generated for two objective functions f 1 and f 2 expressed as production quantity in tons, as
shown in Equation (11). The respective solution points are shown in Figure 10b. It can be
observed that the major production change happens as CSS1 is reduced. There is an almost
linear decrease in the production of f2 and a corresponding increase in f2 between solution
points 3 and 11. After this point, the change in f2 is minimal and the value of function f1
is increased by reducing the CSS2 setting. This example shows the different sensitivities
of the variables CSS1 and CSS2 on the production quantity of the two functions coupled
with the effect of the choice of re-crushing material. Sensitivities mean a change in the
magnitude of a variable brings different changes in output function.

min f1 = P5/8Q + P2/5Q, f2 = P16/32Q
w.r.t→ CSS1, CSS2
s.t.
20 ≤ CSS1 ≤ 26
6 ≤ CSS2 ≤ 10
where, f1 and f2 is expressed as [t]

(11)
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Figure 10. (a) Trade-off curve and (b) solution points of the optimization problem in Equation (11),
when P11/16 is recirculated.

Case 2: The trade-off curves are generated for an operational scenario where the prod-
uct P8/11 is recirculated for re-crushing. Figure 11a shows the trade-off curve generated
for two objective functions f 1 and f 2 expressed as mass flow rate under the condition of
both crushers is in an operational state, as shown in Equation (12). The respective solution
points are shown in Figure 11b. The trend in results of the trade-off curve is similar to case
1, although, the magnitude of objective functions and the solution space are completely
different. The solutions space for optimizer CSS2 is interior optima as compared to the
boundary optima in Case 1. This example shows the different results of the objective
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function in the solution space in comparison with Case 1 coupled with the effect of change
in the recirculating load.

min f1 = P2/5TR + P11/16TR, f2 = P16/32TR
w.r.t→ CSS1, CSS2
s.t.
20 ≤ CSS1 ≤ 26
6 ≤ CSS2 ≤ 10
where, f1 and f2 is expressed as [t/h]

(12)
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Figure 11. (a) Trade-off curve and (b) solution points of the optimization problem in Equation (12),
when P8/11 is recirculated.

Case 3: This case is an extension of case 2, where the trade-off curves are generated for
an optimization problem with the extension of two objective functions f 1 and f 2 to include
more products, as shown in Equation (13). The operational scenario is with the re-crushing
of the product P8/11. Figure 12a shows the trade-off curve generated for two objective
functions f 1 and f 2 and Figure 12b shows the respective solution points. The trend in the
results of the trade-off curve is linear between the two functions. The solutions space for
optimizer CSS2 is lying on the lower bound value in comparison with cases 1 and 2. This
example shows the effect of the objective function made with a higher number of individual
products coupled with the grouping of products in the objective.

min f1 = P2/5TR + P5/8TR + P11/16TR, f2 = P16/32TR + P32/64TR
w.r.t→ CSS1, CSS2
s.t.
20 ≤ CSS1 ≤ 26
6 ≤ CSS2 ≤ 10
where, f1 and f2 is expressed as [t/h]

(13)

Case 4: For the re-crushing of product P11/16, the trade-off curve for objective func-
tion as the product yield (calculated using throughput rate) is generated. Equation (14)
shows the optimization problem definition which is similar to Case 1 objective functions.
Figure 13a) shows the trade-off curve expressed as per cent between the two objectives and
Figure 13b) shows the respective solution point. As interpreted by the trade-off curve, the
yield can be controlled between the two objectives in a range of 8% to 15% which represents
the flexibility region available in processing. Also, the solution space is found to be in the
boundary region indicating the decoupling of the objectives based on the circuit topology.



Minerals 2023, 13, 1242 14 of 20

This example shows the sensitivities of the variables CSS1 and CSS2 on the product yield
of the two functions for a given re-crushing product.

min f1 = PY5/8TR + PY2/5TR, f2 = PY16/32TR
w.r.t→ CSS1, CSS2
s.t.
20 ≤ CSS1 ≤ 26
6 ≤ CSS2 ≤ 10
where, f1 and f2 is expressed as [%]

(14)
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Figure 12. (a) Trade-off curve and (b) solution points of the optimization problem in Equation (13),
when P8/11 is recirculated.
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Case 5: For the re-crushing of product P8/11, the trade-off curve for objective function
as product yield (calculated using throughput rate) is generated. Equation (15) shows the
optimization problem definition which is similar to Case 2 objective functions. Figure 14a
shows the trade-off and Figure 14b shows the respective solution point. The solution points
are interior optima for both CSS1 and CSS2. The product yield function is suitable for
operational situations when the objective is to minimize/maximize the proportion of a
certain product range. This example shows the sensitivities of the variables CSS1 and CSS2
on the product yield of the two functions coupled with a change in recirculating load.

min f1 = PY5/8TR + PY11/16TR, f2 = PY16/32TR
w.r.t→ CSS1, CSS2
s.t.
20 ≤ CSS1 ≤ 26
6 ≤ CSS2 ≤ 10
where, f1 and f2 is expressed as [%]

(15)
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Figure 14. (a) Trade-off curve and (b) solution points of the optimization problem in Equation (15),
when P8/11 is recirculated.

Case 6: The trade-off curves are generated for an operational scenario where the
product P5/8 is recirculated for re-crushing as per Equation (16). Figure 15a shows the
values for the objective to maximize the production of P2/5 and P8/11 while minimizing
the production of coarser products P11/16 and P16/32. Here, the solution space is in
interior optima for both CSS1 and CSS2 as shown in Figure 15b. This example shows that
the proportion of improvements can be achieved by adjusting both variables simultaneously.

min f1 = P2/5TR + P11/16TR, f2 = P11/16TR + P16/32TR
w.r.t→ CSS1, CSS2
s.t.
20 ≤ CSS1 ≤ 26
6 ≤ CSS2 ≤ 10
where, f1 and f2 is expressed as [t/h]

(16)
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Case 7: In most aggregates’ operations, there are issues with excessive fines. The trade-
off curves are generated for an operational scenario where the product P5/8 is recirculated
for re-crushing. Figure 16a shows the values for the objective to maximize the product yield
of P2/5 while minimizing the yield of the sum of remaining products, see Equation (17).
For the application of one product vs. others, the trade-off of the yield is linear in nature.
Although the solution points are interesting as there are multiple solutions available for
similar performance levels, for example, solution numbers 27, 5 and 15.

min f1 = PY2/5TR, f2 = PY0/2TR + PY8/11TR + PY11/16TR + PY16/32TR + PY32/64TR
w.r.t→ CSS1, CSS2

s.t.
20 ≤ CSS1 ≤ 26
6 ≤ CSS2 ≤ 10
where, f1 and f2 is expressed as [%]

(17)

Case 8: The trade-off curves are generated for an operational scenario where the
product P8/11 is recirculated for re-crushing and the objective is to maximize two product
yields P2/5 and P5/8 against the rest of the product yields. Figure 17a shows the values
for the objective functions and Figure 17b shows the solution points for the optimization
problem posed in Equation (18). Again, the trade-off curve is linear while the solution
points are scattered with multiple solutions at similar performance levels.

min f1 = PY2/5TR + PY5/8TR, f2 = PY0/2TR + PY11/16TR + PY16/32TR + PY32/64TR
w.r.t→ CSS1, CSS2

s.t.
20 ≤ CSS1 ≤ 26
6 ≤ CSS2 ≤ 10
where, f1 and f2 is expressed as [%]

(18)
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5. Discussion and Conclusions

The paper presented systematic implementation optimization functionality for crush-
ing plants. The use of unconstrained gradient-based optimization (Quasi-Newton method)
approach for crusher model calibration together with the configuration of dynamic process
simulation provided a reliable response for crushing plant operation. The model captured
the response of multiple feed changes to the crusher. The dynamic process simulation
showed the effect of variable bin filling rate and production change as the two crusher
settings were changed simultaneously. The response of the simulation is closer to practical
industrial operations.

The operation of complex aggregate plants holds flexibility in production operations.
The use of multi-objective optimization using a non-gradient algorithm (genetic algorithm)
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provided opportunities to explore the solution space depending on the operational ob-
jectives. Multiple cases of trade-off curves (Pareto Front) were demonstrated to provide
the quantification of the production flexibility together with the solution points. The
solution space largely varied as the objectives and scenario of the operation changed.
The solution space for each case can be further restricted if constraints are added to the
optimization problem.

The choice of objective function used for a trade-off analysis is dependent on the
situational requirements of operations. Product quantity can be useful to meet the direct
demands of the customer, although it is dependent on the operational scenario. The product
throughput can be useful to steer the production rate of different products. The product
yield is more useful in a scenario for increasing/decreasing the proportion of production
when there is a sufficient stockpile of products present. All the objectives provide the
quantification of flexibility present for the solution space of an operational setting.

The solution space (CSS solutions) for different optimization cases is dependent on
the topology of the plant. In the presented results, the sensitivity of the crusher CC1 was
higher on the products as compared to the crusher CC2. As the objective function was
based on product throughput, the solution space was largely governed by the crusher CC1
and was decoupled to crusher CC2. When the objective was product yield, both the CSS
were active simultaneously for the two crushers. As the plant topology changes, the results
obtained can be different as the design freedom will change.

The trade-off curves can be useful for plant managers and operators of the crushing
plant to make daily decisions regarding production. The application of trade-off curves
can be extended to connect the market demands to daily operational choices. The trade-
off curves using other objectives such as specific energy can be studied in future works.
The use of trade-off curves can be extended to the design stage of the crushing plant for
greenfield projects, as the flexibility of the new plant design can be quantified easily. This
can enable enhanced knowledge of the plant’s performance at the design stage.
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