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Abstract: The flotation of unoxidized and oxidized molybdenite fines is a challenging job world-
wide. In this work, dodecylamine (DDA) was developed as a potential collector to improve the
flotation of molybdenite fines with and without oxidation. The flotation behaviors and interaction
mechanisms were probed through flotation tests, contact angle, Zeta potential, Scanning Electron
Microscope-Energy Dispersive Spectrometer(SEM-EDS), and X-ray Photoelectron Spectroscopy (XPS).
The flotation tests revealed that DDA improved the flotation of unoxidized or oxidized molybdenite
fines efficiently. The results of Zeta potential, contact angle, and SEM-EDS uncovered that a substan-
tial number of DDA species adsorbed on both fresh and oxidized molybdenite faces and edges, thus
enhancing their hydrophobicity. XPS analysis further manifested that RNH2 and RNH3

+ adsorbed
on the S atoms of fresh faces through hydrogen bonding. Meanwhile, RNH2 and RNH3

+ mainly
adsorbed on fresh edges via chemical bonding between amine groups and Mo sites and electrostatic
force. For oxidized molybdenite, RNH2 and RNH3

+ interacted with oxidized faces through hydrogen
bonding while adsorbed on oxidized edges via hydrogen bonding and electrostatic interaction.

Keywords: molybdenite fines; face and edge; flotation; dodecylamine; oxidation

1. Introduction

Molybdenum (Mo) is a rare and strategic metal that has been broadly used in the
metallurgy, machinery, chemical, and aerospace industries owing to its high strength and
excellent corrosion resistance [1,2]. Up to now, 95% of molybdenum production originates
from molybdenite. With the gradual reduction of high-grade molybdenite ores, exploiting
fine-disseminated and low-grade molybdenite deposits is essential to satisfy increasing
consumption demand. Nevertheless, these refractory ores are required to be finely ground
to liberate them from other gangue minerals. As a laminar mineral with distinct anisotropic
properties, molybdenite possesses polar edges and non-polar faces [3]. The hydrophilic
edge originates from the cleavage of S–Mo covalent bonds, while the hydrophobic face
is derived from the break of van der Waals force between S–Mo–S layers [4]. Notably,
molybdenite hydrophobicity depends on the edge/face ratio. As particle size decreases,
the hydrophilic edge gradually dominates, leading to a significant decline in the floatability
of molybdenite fines [5].
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In addition, oxidation is another important factor affecting the flotation of molybdenite
ores. Molybdenite ores are prone to be oxidized in the presence of oxygen, moisture, micro-
bial activity, and acidic substances [6], leading to diminishing hydrophobicity. [7]. Yi et al.
reported that the oxidation reaction made the molybdenite surface less hydrophobic [8].
Wei et al. further revealed that both faces and edges exhibited hydrophilic properties after
oxidation [9]. Because covalent bonds are ruptured to produce edges, they are known to be
considerably more reactive than faces. As a result, the oxidation reaction occurs primarily
on edges, and on the defect sites in faces [10]. Notably, molybdenite fines are more readily
oxidized due to the dominant edges, and then the hydrophobicity significantly decreases,
resulting in the poor flotation performance of oxidized molybdenite fines.

Kerosene is a commonly used collector for molybdenite flotation that preferentially
adsorbs on molybdenite faces rather than edges via van der Waals forces and hydrophobic
interactions [11]. However, kerosene cannot efficiently collect molybdenite fines owing to
its poor affinity toward hydrophilic edges. After oxidation, since the hydrophobicity of
the faces decrease, the affinity between kerosene and the faces becomes weaker, leading
to worse floatability. Consequently, exploring novel collectors to improve the flotation of
oxidized and unoxidized molybdenite fines is essential.

Dodecylamine (DDA) is a common cationic collector, which can be used to collect
silicate and oxidized minerals. In its molecular structure, DDA contains a long carbon chain
and an amine group. The amine group has a lone-pair electron that can complex with metal
sites. Meanwhile, the long carbon chain renders the mineral surface hydrophobic. In this
work, DDA was first tested as a collector of molybdenite fines. The flotation performances
and interaction mechanisms were probed via flotation, contact angle, Zeta potential, SEM-
EDS, and XPS measurements. The objective was to verify if it was suitable for promoting
the flotation of molybdenite fines and to shed some light on its interaction mechanism.

2. Experimental
2.1. Materials

Molybdenite samples were purchased from Guangxi province, China. These samples
were selected, ground, and screened to obtain −20 µm size fractions for flotation tests and
measurements. The XRD (D8 Advance, Bruker, Billerica, MA, USA) pattern of molybdenite
is illustrated in Figure 1, and there was no apparent impurity peak. The results of XRD and
the chemical assay showed that the molybdenite samples were of high purity (97%).
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Figure 1. XRD pattern of raw mineral samples. 
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Reagents utilized in this work include the collectors DDA and kerosene, pH modifiers
NaOH and HCl, the frother methyl isobutyl carbinol (MIBC), and oxidant hydrogen
peroxide (H2O2), which were all obtained from Aladin, China. Ultrapure water was used.

2.2. Oxidation Treatment and Flotation Tests

Molybdenite powders (2 g) were added to 1 M H2O2 (30% v/v) solution, and the
suspension was stirred at 300 rpm for 24 h. Then, the pulp was transferred to a flotation cell.
After pH adjustment, DDA or kerosene was introduced and conditioned for 5 min. When
kerosene was employed as the collector, MIBC was introduced to the pulp and conditioned
for 1 min before flotation. When DDA was used as a collector, MIBC was not needed. The
flotation was performed for three minutes.

2.3. Contact Angle Measurement

A contact angle goniometer (Dataphysics OCA20, Filderstadt, Germany) was em-
ployed to measure the contact angles of the face and edge samples using the sessile drop
method. During the measurements, the needle with a diameter of 0.5 mm was used to inject
ultrapure water droplets, resulting in a droplet size of about 4 mm. The bulk molybdenite
with good crystallinity was used to prepare the faces and edges samples. The fresh faces
(0.5 × 0.5 cm2) were obtained by mechanically exfoliating the top layers of molybdenite
utilizing Scotch tape. An approximate 0.5 cm thick molybdenite sample was cut into
0.4 × 0.3 cm2 for preparing the edges sample. The edges sample were polished with wet
silicon carbide paper in the sequence of 240, 400, 800, 1200, 3000, and 7000 grit, and then
polished with 1 and 0.3 µm alumina powder suspensions, respectively. Moreover, the fresh
faces and edges were immersed in H2O2 solution for 24 h to prepare the oxidized faces and
edges samples. For the treated samples with DDA, the fresh and oxidized faces and edges
were immersed in 100 mg/L DDA solution (pH = 7) for 5 min. Afterwards, these samples
were blown dry for measurement.

2.4. Zeta Potential Measurement

Zeta potential was measured using a Zetasizer Nano (Malvern, UK). First, 0.1 g
oxidized or unoxidized molybdenite samples were added into a DDA solution (100 mg/L,
10−3 M NaCl) and stirred for 5 min. After pH regulation, 1 mL of suspension was takenfor
measurements.

2.5. SEM-EDS Measurement

Molybdenite faces and edges samples were prepared as presented in Section 2.3. SEM
(JEM-2100F, JEOL, Tokyo, Japan) was used to observe the morphology characteristics. The
element distribution was detected with an Energy Dispersive Spectrometer (EDAX Elite,
Pleasanton, CA, USA).

2.6. Raman Measurement

Raman spectra were obtained using an INVIA Raman microscope with a 532 nm
Ar laser (Renishaw, Gloucestershire, UK). The faces and edges samples with and without
oxidation were prepared as presented in Section 2.3. Moreover, the H2O2 solution remaining
after oxidation of the faces and edges was also used for measurements.

2.7. XPS Measurement

First, 2 g of unoxidized and oxidized molybdenite samples were treated with DDA so-
lution (100 mg/L, pH = 7) and conditioned for 5 min. Then, the samples were collected and
dried for measurements. XPS spectra were obtained by an X-ray photoelectron spectrome-
ter (Thermo Scientific K-Alpha, Waltham, MA, USA). The measurement was conducted via
an Al Kα sputtering ray source at 12 kV and pass energy of 50 eV. The spectra were fitted
using Avantage software 5.9922. The standard C 1s peak was calibrated to 284.80 eV.
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3. Results and Discussion
3.1. Flotation Tests

Figure 2a presents the floatability of molybdenite fines as a function of pH. It was
clear that molybdenite floatability decreased gradually as pH increased, which might be
due to the generation of hydrophilic molybdate ions [12]. After the addition of DDA,
the floatability of molybdenite fines surged to 97% at a pH of 5, whereas a high dosage
of kerosene achieved a floatability of 88.82%. Compared with kerosene, a lower dosage
of DDA could achieve higher floatability, indicating that DDA was more efficient in the
flotation of molybdenite fines at a broad pH range.
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Figure 2. The influence of pH and collector dosage on the floatability of unoxidized (a,b) or oxidized
(c,d) molybdenite fines.

Figure 2b shows the impact of collector dosage on the floatability of molybdenite fines.
Notably, molybdenite floatability improved remarkably as the collector dosage increased.
At DDA dosage of 50 mg/L, the floatability reached 94.96%, which was much higher than
that (88.56%) obtained at kerosene dosage of 400 mg/L. These results revealed that DDA
exhibited much stronger collecting ability to molybdenite fines, which had the potential to
replace kerosene.

Figure 2c illustrates molybdenite floatability after oxidation as a function of pH. When
kerosene was used as a collector, the floatability of oxidized molybdenite fines decreased
slightly as pH increased. On the contrary, the floatability improved substantially after
the introduction of DDA at a pH of 5–7. It was clear that a low dosage of DDA achieved
floatability of 74.52% while a high dosage of kerosene only obtained floatability of 33.62%
at a pH of 7. The huge difference in floatability meant that less reagent was needed when
DDA was used. These results indicated that DDA also significantly improved the flotation
of oxidized molybdenite fines.

The influence of collector dosage on the flotation of oxidized molybdenite fines is
presented in Figure 2d. It was obvious that oxidized molybdenite exhibited very poor
floatability (8.69%). After the addition of kerosene, the floatability reached 33.62% at
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400 mg/L of kerosene. Notably, the floatability surged dramatically to nearly 90% when
100 mg/L of DDA was introduced. These results indicated that DDA was more effective
than kerosene in collecting oxidized molybdenite fines.

3.2. Contact Angle

Figure 3 depicts contact angles of treated and untreated faces and edges under various
conditions. The contact angle of fresh molybdenite faces and edges was 76.5◦ and 42.5◦,
respectively. After adding DDA, the contact angle of the faces and edges increased to 89◦

and 86◦, suggesting that DDA improved the hydrophobicity of fresh faces and edges. After
oxidation, the contact angle of both the faces and edges reduced to 38.5◦ and 20◦, which
explained the poor flotation of oxidized molybdenite fines. For oxidized molybdenite
fines treated with DDA, the contact angle of the faces and edges reached 88◦ and 80◦,
respectively, which elucidated that DDA could also remarkably enhance the hydrophobicity
of both oxidized faces and edges. These results revealed that DDA could improve the
hydrophobicity of the faces and edges before and after oxidation, which corresponded well
with the flotation results.
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3.3. Zeta Potential

The effect of pH on Zeta potential of oxidized and unoxidized molybdenite fines
with and without DDA is displayed in Figure 4a. For molybdenite, Zeta potential was
negative throughout the pH range. After oxidation, Zeta potential shifted towards a more
negative direction over the pH range, which might be ascribed to the formation of more
negatively charged molybdate ions (HMoO4

−/MoO4
2−) [7]. After the introduction of

DDA, Zeta potential of both oxidized and unoxidized molybdenite fines became positive
at a pH around 2–10, and their isoelectric point (IEP) moved to an approximate pH of 10.54
and 10.70, respectively. Based on the DDA species distribution diagram (Figure 4b), the
cationic species RNH3

+ dominated, where a few neutral species of RNH2(aq) were also
present in the pH range of 0–9.54. Consequently, it was easy to understand that these DDA
species adsorbed on unoxidized and oxidized molybdenite surfaces and reversed their
Zeta potential from negative to positive [13].
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Figure 4. Zeta potential of treated and untreated molybdenite fines (a), DDA species distribution
(b) as a function of pH.

3.4. Raman and SEM-EDS Analysis

The species of molybdenite faces and edges were examined using Raman spectrum.
Figure 5a depicts Raman spectra of faces and edges before and after oxidation. The distinct
peaks at 380 and 405 cm−1 represented the in-plane E1

2g and out-of-plane A1g vibration
modes of Mo-S bonds [14], which were detected on both unoxidized faces and edges. For
oxidized edges, a new peak at 285 cm−1 appeared, which was ascribed to MoO3, indicating
that the oxidation degree of the edges increased. For oxidized faces, the A1g peak was
broadened, suggesting the softening of the Mo–S phonon mode, which might be due to the
decrease in Mo–S bonds [15]. Furthermore, both faces and edges exhibited red shifts of E1

2g
and A1g peaks after oxidation, which might be due to the generation of sulfur vacancies
during oxidation [16].
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Figure 5. The Raman spectra of molybdenite faces and edges with and without H2O2 treatment (a),
oxidation leach liquor (b).

Raman spectra of molybdenite species in oxidation leach liquor are displayed in
Figure 5b. For the edge liquor, the peaks at 899 and 1054 cm−1 represented Mo=O in
MoO4

2− and HSO4
−. For the face liquor, the same two peaks were also detected, and

another peak at 979 cm−1 of the faces was ascribed to SO4
2− [17]. The appearance of

HSO4
− and SO4

2− indicated the oxidation of sulfur in molybdenite. Compared with the
edge liquor, the intensity of MoO4

2− reduced while HSO4
− increased in the face liquor,

and the new peak of SO4
2− appeared, indicating that more sulfur and fewer molybdenum

oxidized products dissolved from faces than edges. Furthermore, ICP results illustrated
that the sulfur and molybdenum elemental contents were 1016.84 mg/L and 330.03 mg/L
in the liquor, suggesting the oxidized products of sulfur were more soluble than those
of molybdenum.

Figure 6 and Table 1 present the SEM images and elemental atomic concentration of
fresh and oxidized molybdenite faces and edges. The fresh faces and edges surfaces were
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smooth and O content was relatively low. After oxidation, many hexagonal defects formed
on faces. Meanwhile, the EDS results showed that the S and Mo content decreased slightly
while the O content increased around these defects. Therefore, it was reasonable to deduce
that the oxidation mainly caused the generation of defects on faces. For oxidized edges,
large white oxides were observed. EDS analysis indicated that these oxides were primarily
molybdenum oxide. Combined with Raman results, the broadened A1g peak and red shift
further demonstrated that these defects on oxidized faces might be sulfur vacancies, and
the deposited molybdenum oxide on oxidized edges could be ascribed to MoO3.
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Figure 6. SEM-EDS images of molybdenite faces and edges before and after oxidation.

Table 1. Elemental atomic concentration of the face and edge with and without oxidation.

Surface Oxidation State
Element Atomic Conc.

S Mo O

Face
Before 59.417 37.121 2.462
After 57.568 36.937 5.495

Edge Before 59.278 37.258 3.464
After 31.736 50.530 17.734

The effect of DDA on oxidized and unoxidized faces and edges was also investigated
by SEM-EDS. The photographs and element atomic concentration are displayed in Figure 7
and Table 2. Notably, a lot of the N element was detected on both fresh and oxidized faces
and edges, suggesting DDA species adsorbed onto fresh and oxidized faces and edges,
which was consistent with the contact angle results. Furthermore, the N atom concentration
on oxidized faces and edges was higher than fresh faces and edges, which implied that DDA
species were more readily adsorbed on the oxidized face and edge. Therefore, DDA species
enhanced the hydrophobicity of the fresh and oxidized faces and edges, thus improving
the floatability of unoxidized and oxidized molybdenite fines, which was in line with the
contact angle result.
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Table 2. Elemental atomic concentration of oxidized and unoxidized molybdenite faces and edges
with and without DDA treatment.

Surface Oxidation State
Element Atomic Conc.

S Mo O N

Face
Before 59.417 37.121 2.462 0.798
After 57.568 36.937 5.495 1.173

Edge Before 61.212 37.895 0.344 0.549
After 26.880 61.514 9.125 2.481

3.5. XPS Analysis

The XPS spectra of Mo 3d, S 2p, N 1s, and O 1s are shown in Figure 8. The peak
binding energy and atomic concentration are listed in Table 3. In Figure 8a, the peak at
226.72 eV represented S 2s. The peaks at 229.37, 230.22, and 231.88 eV were ascribed to
the Mo 3d5/2 of MoS2, MoO2, and MoO3. The peaks at 232.52, 233.57, and 235.17 eV were
attributed to the Mo 3d3/2 of MoS2, MoO2, and MoO3, respectively [12]. After adding
DDA, the peak of MoS2 moved by approximately 0.33 eV, elucidating that DDA species
might adsorb on the Mo sites of molybdenite. After oxidation, it was clear that the MoO3
concentration greatly increased from 7.672% to 21.7% and the MoO2 concentration slightly
increased from 4.79% to 8.04%. For oxidized molybdenite treated with DDA, the movement
of MoS2 was 0.24 eV, while the movements of MoO2 (0.09 eV) and MoO3 (0.05 eV) were
insignificant, implying that DDA species might chemisorb on MoS2 but physisorb on MoO3
and MoO2.
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Figure 8. XPS spectra of Mo 3d (a), S 2p (b), N 1s (c), and O 1s (d) for treated and untreated
molybdenite fines.
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Table 3. Fitting parameters of XPS spectra.

Orbital Species
Untreated +DDA +H2O2 +H2O2+DDA

BE AC BE AC BE AC BE AC

Mo 3d

a(MoS2) 229.37 40.58 229.70 41.64 229.61 32.71 229.85 33.89
a1(MoS2) 232.52 28.07 232.85 26.13 232.81 21.81 233.05 23.4

b(S2s) 226.72 19.31 226.90 20.33 226.83 15.75 277.01 18.39
c(MoO2) 230.22 2.83 230.43 2.97 230.40 4.82 230.49 4.69
c1(MoO2) 233.57 1.96 233.74 2.05 233.75 3.22 233.86 3.24
d(MoO3) 231.88 4.29 232.19 4.06 232.32 13.02 232.47 9.68

d1(MoO3) 235.17 2.97 233.54 2.81 235.88 8.68 236.03 6.7

S 2p a(S 2p3/2) 162.30 64.53 162.24 66.19 162.53 66.19 162.42 66.61
a1(S 2p1/2) 163.50 35.37 163.45 33.81 163.74 33.81 163.63 33.39

N 1s

a(Mo3p) - - 395.64 75.98 - - 395.60 68.05
b(Mo-N) - - 397.63 13.74 - - 397.79 14.62
c(RNH2) - - 399.22 8.25 - - 399.19 12.71

d(RNH3
+) 401.35 100 401.42 2.02 - - 401.45 4.63

O 1s
a(MoO2) 530.68 19.47 530.59 19.94 530.94 1.88 530.87 2.18
b(MoO3) 531.85 55.69 531.70 57.65 532.06 76.61 531.86 73.63

c(O2/MoS2) 533.20 24.84 533.15 22.41 533.55 21.51 533.40 24.18
BE—bind energy (eV), AC—atomic concentration (%), “-” denotes none.

In S 2p spectra (Figure 8b), for untreated molybdenite, the peaks centered at 162.30 and
163.50 eV, which denoted S 2p3/2 and S 2p1/2 of MoS2 [18]. For the oxidized molybdenite,
the S 2p3/2 and S 2p1/2 of MoS2 shifted to 162.53 and 163.74 eV. After the addition of DDA,
the peaks of both unoxidized and oxidized molybdenite moved slightly to a lower binding
energy. It has been reported that the sulfur atom was prone to form H bonds with RNH2
and RNH3

+ species [19,20]. Thus, it was safe to say that the decrease in binding energy
might be attributed to hydrogen bonding.

In Figure 8c, the peak at 401.35 eV represented RNH3
+ of DDA [19]. For molybdenite

treated with DDA, the peaks at 395.64, 397.63, 399.22, and 401.42 eV denoted Mo 3p of
MoS2 [4], Mo-N [21], RNH2 [22], and RNH3

+. The same peaks were also detected on the
oxidized molybdenite treated with DDA, which centered at 395.60, 397.79, 399.19, and
401.45 eV, respectively. The appearance of RNH2 and RNH3

+ demonstrated that DDA
species adsorbed on both unoxidized and oxidized molybdenite surfaces [23]. Meanwhile,
the appearance of the Mo–N bond might imply the formation of a molybdenum–amine com-
plex ion, in which the RNH2 bonded with the Mo sites [19]. In addition, the higher RNH2
and RNH3

+ concentrations on oxidized molybdenite compared to unoxidized molybdenite
suggested that RNH2 and RNH3

+ were more readily adsorbed on oxidized molybdenite
surfaces, which was in accordance with SEM-EDS results.

In Figure 8d, for pure molybdenite, the peaks at 530.68, 531.85, and 533.20 eV cor-
respond to MoO2, MoO3, and O2/MoS2 [24]. After oxidation, the three peaks moved to
530.94, 532.06, and 533.55 eV. Meanwhile, the atomic concentration of MoO3 increased
greatly, confirming that the surface oxidation degree increased. After the treatment of DDA,
three peaks of unoxidized and oxidized molybdenite also shifted to lower binding energies,
which was similar to the S 2p. Since the electronegativity of the O atoms was higher than
the S atoms, RNH2 and RNH3

+ might adsorb on the O atoms of unoxidized and oxidized
molybdenite surface via hydrogen bonding.

3.6. Interaction Mechanism

Based on the analysis of Zeta potential, contact angle, SEM-EDS, and XPS, the adsorp-
tion mechanism of DDA species on fresh and oxidized faces and edges could be proposed.
As illustrated in Figure 9, for fresh faces, RNH3

+ and RNH2 interacted with S atoms by
hydrogen bonding. For fresh edges, RNH2 and RNH3

+ adsorbed on the negatively charged
edges via chemical bonding and electrostatic force. On the other hand, for oxidized faces,
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RNH2 and RNH3
+ adsorbed on newly exposed S atoms by hydrogen bonding and inter-

acted with oxidized micro-edges through hydrogen bonding and electrostatic forces. For
oxidized edges, RNH2 and RNH3

+ adsorbed on deposited MoO3 by hydrogen bonding
and electrostatic force.
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4. Conclusions

(1) DDA was more efficient than kerosene in the flotation of unoxidized and oxidized
molybdenite fines. For unoxidized molybdenite fines, a low dosage of DDA (50 mg/L)
achieved a much higher floatability (94.96%) than that (88.56%) obtained at kerosene
dosage of 400 mg/L. For oxidized molybdenite fines, the floatability was only 33.62%
using 400 mg/L kerosene, while the floatability sharply surged to about 90% at DDA
dosage of 100 mg/L. DDA could effectively improve the flotation of unoxidized or
oxidized molybdenite fines because of the adsorption of DDA species on both faces
and edges.

(2) RNH2 and RNH3
+ interacted with S atoms on fresh faces through hydrogen bonding

while adsorbed on fresh edges by chemical bonding and electrostatic interaction.
(3) After oxidation, RNH2 and RNH3

+ adsorbed on newly exposed S atoms by hydrogen
bonding or interacted with MoO3 on oxidized micro-edges by hydrogen bonding and
electrostatic forces. RNH2 and RNH3

+ interacted with deposited MoO3 on oxidized
edges via hydrogen bonding and electrostatic force interaction.
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