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Abstract: Malachite is one of the most important copper-bearing oxide minerals; however, it shows
poor floatability prior to sulfidization under the thiol collector system. This study investigated the
reasons for the low recovery of malachite flotation without sulfidization. The results of adsorption
capacity and contact angle test indicated that the malachite surface could adsorb a sufficient amount of
the collector, obviously increasing the hydrophobicity of the malachite surface under static conditions.
By measuring the amount of inorganic carbon in the flotation solution, it was found that the amount
of inorganic carbon in the solution increased significantly when the thiol collectors were added into
pulp, which could be attributed to the induced dissolution of the malachite surface by thiol collectors.
Solubility tests further demonstrated that the copper ions released from the natural dissolution of
malachite proved difficult in regard to reactions with thiol collector to form precipitates; however,
the thiol collector induced the dissolution of malachite surface, and so the hydrophobic complexes’
copper-collector could not firmly adsorb on the mineral surface. Fourier transform infrared (FTIR)
analysis revealed that thiol collectors do not adsorb stably on malachite surfaces. This was considered
to be a substantial reason for the poor performance of malachite flotation without sulfidization.

Keywords: malachite; induced dissolution; thiol collector; flotation without sulfidization

1. Introduction

Copper is widely used in power transmission, air conditioning refrigeration, trans-
portation, electronics, construction and other industries, and it has also proven to be an
indispensable base metal in the national industrial system [1–4]. By 2025, global copper
demand will rise to around 29 million tonnes, of which 83.5% will be used in renewable
energy industries such as wind power and energy storage [5,6]. Therefore, the stable supply
of copper resources has aroused widespread concerns [6–9]. Copper sulfide minerals and
copper oxide minerals are two major copper-bearing resources in natural deposits [10,11].
Generally speaking, copper sulfide minerals exhibit good floatability with thiol collector, as
their inherent surfaces properties allow them to easily interact with thiol collectors, forming
hydrophobic complexes on mineral surfaces [12,13]. However, copper oxide minerals,
unlike copper sulfide minerals, are generally characterized by non-conductivity, so they
do not respond efficiently to thiol collectors in flotation [14–17]. Malachite (Cu2(OH)2CO3)
is one of the most common copper oxide minerals, and numerous investigations have
indicated that it was difficult to achieve efficient recovery of malachite by flotation without
sulfidization using thiol collectors [18,19], but such a procedure, featuring the sulfidization
of malachite before flotation, was feasible to remarkably promote the flotation recovery
of malachite with thiol collectors [20–23]. It was reported that there were various reasons
accounting for the drawback of malachite flotation without sulfidization: (1) the adsorption
layer of thiol collectors on the malachite surface is unstable [24,25], which some researchers
believe is because the stability index of the thiol collector’s adsorption layer on the surface
of malachite is too low [26,27]; (2) malachite is prone to metal ion dissolution, meaning that
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the collector will react with the metal ions in solution, resulting in a high collector dosage
requirement [26,28,29]; (3) the portion of ionic bonding in the crystal lattice of malachite
is high, leading to the establishment of a stronger hydrated shell [30]; (4) copper oxide
minerals often exhibit a metal-deficient surface in pulp due to their high solubility, which
is detrimental to xanthate adsorption [31,32].

For the efficient flotation of malachite, some new mechanisms have now been proposed.
Qiming Zhuo et al. [33] observed sulfide product evolution on malachite surfaces treated
with sodium sulfide. The results revealed the direct growth process of the sulfide film
on malachite, the presence of Cu(I) in sulfide products, and the sulfide film’s role in
promoting the formation of butyl xanthate layers and enhancing interfacial interactions
between malachite and bubbles. The development of new chelating collectors is also of
great significance for the efficient flotation of malachite. Jun Liu et al. [34] found that
TMATT exhibits superior hydrophobicity and flotation performance for malachite. The
adsorption mechanism of TMATT was revealed and involves the reduction of Cu(II) to
Cu(I) and the formation of TMATT-Cu(I) complexes, which enhances its flotation response
to malachite over calcite. Zhang Xingrong et al. [35] investigated the flotation separation
of malachite from calcite using a new chelating collector, CMDTP. CMDTP exhibited a
superior performance compared to other collectors. Successful separation was achieved at
pH 9.0 with Na2S as a regulator. Its affinity for a malachite surface was stronger than for
calcite, with CMDTP reacting easily with Cu2+ sites on malachite.

Many of the above-mentioned reasons could be found to explain the importance and
necessity of sulfidization during malachite flotation in the available literature; however, few
studies have tried to systematically explain the reason for the poor floatability of malachite
flotation without sulfidization using thiol collectors. There is no doubt that a comprehensive
understanding of the reason for the poor floatability of malachite is crucial in identifying
the root cause of inefficiency of flotation without sulfidization. Such an understanding
will also help to modify malachite flotation for an improved recovery and efficiency while
allowing us to better understand the interaction between malachite and thiol collectors.
In this study, the effect of the surface dissolution behavior of malachite on its flotation
was studied under a thiol collector system. This was accomplished through the use of a
series of experiments and analytical techniques, including micro-flotation tests, adsorption
capacity tests and organic carbon content determinations. The findings presented in this
study provided new evidence for the poor floatability of malachite without sulfidization
and could inspire scholars in related fields to formulate corresponding countermeasures to
optimize or maximize the utilization efficiency of malachite.

2. Materials and Methods
2.1. Materials and Reagents

The malachite samples used in this study were obtained from the Yunnan province,
China, and the results of chemical analysis indicated the malachite contained 56.58% Cu,
similar to its theoretical copper mass fraction at 57.57%. The characteristic diffraction
peak at 2θ of 14.800◦, 17.567◦, 24.090◦, 31.275◦ and 35.574◦ is in good accordance with the
reported data (PDF# 41-1390), and any other impurity diffraction peaks can be observed in
the X-ray diffraction pattern, indicating that the purity of the malachite sample exceeds
95%. Malachite samples were crushed, followed by being ground using agate mortar, and
they were then sieved to obtain powder particles with two size fractions. The malachite
particles with a size of −75 + 38 µm were used for micro-flotation, adsorption amount
determination and inorganic carbon (IC) measurement, and those with a size of −38 µm
were further ground to less than 5 µm to be used for chemical analysis, X-ray diffraction
(XRD) analysis and solubility testing. Bulk malachite samples were used in the contact
angle test. The X-ray diffraction analysis results of malachite samples are shown in Figure 1.
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Figure 1. The XRD analysis results of malachite.

Thiol collectors are characterized by having one minerophilic thiol group (-SH) at the
polar end and one or two hydrophobic alkyl groups (-RH) at the nonpolar end of their
molecule structures. The main types of thiol collectors include xanthates, dithiophosphates
and dithiocarbamates, and five specific types (ethyl xanthate (EX), butyl xanthate (BX),
pentyl xanthate (PX), sodium diethyldithiocarbamate (DDTC) and ammonium dibutyl
dithiphosphate (DDTP)) were used in this study. The purity of the thiol collectors was
more than 95%. Analytical-grade Na2S·9H2O and methyl isobutyl carbinol (MIBC) were
employed as the sulfidizing agent and foaming agent, respectively. The deionized (DI)
water was used in all tests.

2.2. Micro-Flotation Experiments

All micro-flotation experiments were carried out using an XFG series laboratory
flotation machine (Jilin Exploration Equipment, Changchun, China) with a flotation cell
(effective volume 40 mL). The spindle speed of the flotation machine was set at 1690 rpm.
The micro-flotation procedure proceeded as follows: First, prior to each test, pure mineral
particles (2 g) and distilled water (35 mL) were sequentially added into 40 mL plexiglass
cells and stirred for one minute to prepare the slurry. In sulfidization flotation, Na2S·9H2O
was added as a sulfidizing agent and conditioned for 3 min. Next, one of the five thiol
collectors and methyl isobutylcarbinol (MIBC) as a frother were added into the slurry in
sequence, then conditioned for 3 min and 2 min, respectively. The time for froth collection
was 3 min. The flowsheet of microflotation was presented in Figure 2. Finally, the concen-
trates and tailings were separately collected, dried and then weighted, and the malachite
recovery was calculated using Equation (1). Each experiment was repeated three times
and averaged.

ε =
m1

m1 + m2
× 100% (1)

where ε represents flotation recovery (%); m1 and m2 represent masses (g) of concentrates
and tailings, respectively.
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2.3. Adsorption Amount Determinations

A TOC-LCPH analyser (Shimadzu, Kyoto, Japan) was used to determine the amount
of each thiol collector adsorbed on the malachite surface by measuring the residual concen-
tration of total organic carbon in the supernatant. The adsorption test protocol was carried
out as follows: First, 2.0 g of malachite sample (−75 + 38 µm) was dispersed in 35 mL of DI
water. The malachite-DI-water mixture was then agitated at 1690 rpm for 3 min to produce
a suspension. Each collector was then added to the suspension and stirred at 1690 rpm
for a further 3 min. The resulting suspension was centrifuged at 9000 rpm for 20 min to
separate the solids from the liquid. The supernatant was then collected for further analysis.
The amount of flotation reagents adsorbed on the mineral surface was calculated using the
residual concentration method.

Γ =
(C0 − C)V

M
(2)

where C0 and C are the initial and final concentrations (mg/L) of the flotation reagents,
respectively; V is the volume (mL) of the flotation slurry; and M is the weight (g) of the
mineral samples.

2.4. Inorganic Carbon Measurement

TOC-LCPH Analyzer (Shimadzu, Kyoto, Japan) was used to quantitatively determine
the concentration of inorganic carbon in the supernatant after centrifugation. There are
four potential sources of IC in supernatant, i.e., blank DI water, thiol collectors added,
natural dissolution of malachite, and malachite dissolution induced by thiol collectors, and
the testing procedure for inorganic carbon (IC) measurement was performed as follows:
(1) The inorganic carbon content in DI water was determined and denoted C1, which was
set up as a blank control group. (2) A 2.0 g malachite sample (−75 + 38 µm) was dispersed
into 35 mL DI water and stirred at 1690 r/min for 3 min. Then, the suspension was filtered
and centrifuged to separate the malachite from the slurry, followed by the determination
of IC content in the supernatant, which was denoted as C2, and the result of C2–C1 was
responsible for the natural dissolution of malachite in the aqueous environment, releasing
the inorganic anions, such as CO2−

3 , HCO−
3 , into the solution. (3) Each solution of the five

thiol collectors was diluted to the desired concentration used in micro-flotation, and the
corresponding IC content in each collector solution was determined separately and denoted
as C3. The result of C3–C1 was the amount of inorganic carbon released into the solution
by the dissolution of each collector. (4) Malachite samples were added to the flotation
cell, and then each thiol collector, at different concentrations, was added to interact with
the malachite. The stirring time (3 min) and spindle speed (1690 r/min) were consistent
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with that of the micro-flotation experiment. The suspension was filtered and centrifuged
to separate the malachite from the slurry, followed by the determination of IC content in
the supernatant, which was denoted as C4. The result of (C4–C1–(C2–C1)–(C3–C1)) was
identified as the amount of IC released into the solution after the action of malachite with
the thiol collector, which could be attributed to the malachite dissolution induced by thiol
collectors. To determine the amount of inorganic carbon released into the slurry by the
sulfidized malachite, only the step of sulfidization was added to Steps (2) and (4). The
conditions for sulfidization remained the same as for the micro-flotation experiment.

2.5. Contact Angle Test

Using the JY-82C Automatic Video Contact Angle Meter (Ding-sheng Tester, Chengde,
China), contact angle measurements were conducted through the sessile drop method.
Initially, ore samples of 2.0 × 2.0 × 1.0 cm3 were prepared by cutting mineral samples
with surfaces identical to those used in the micro-flotation experiments. These block ore
samples were then sequentially polished using Wuxi brand sandpaper of various mesh
sizes (200, 600, 1000, 2000 and 3000 mesh). Prior to testing, the polished samples were
immersed in a beaker containing 35 mL of DI water. The samples were then treated with
the required amount of flotation reagents, rinsed repeatedly with DI water and dried with
nitrogen. A drop of DI water was deposited on the surface of the treated sample and a
series of microscopic images were taken. The most stable image was selected for analysis
to determine the contact angle. Following the measurement, the tested sample surface was
cleaned with soap and a soft toothbrush, dried, re-polished with 3000 mesh sandpaper,
rinsed with DI water and prepared for the next round of tests.

2.6. Solubility Test

A solubility test was designed to clarify the reason for the large consumption of thiol
collector. The testing procedure for solubility of malachite was performed as follows:
(1) The solution of thiol collector with a curtained concentration (e.g., 150 mg/L) was
prepared and denoted as solution A. (2) A 2.0 g sample of malachite powder (−38 µm) was
dispersed into 35 mL DI water and stirred at 1690 r/min for 3 min, and then the suspension
was filtered to obtain the supernatant, which was denoted as solution B. (3) An amount of
2.0 g of solution A was added to 10 mL of solution B, obtaining solution C, which was then
shook well in order for the changes to be observed. (4) An amount of 2.0 g of solution B
was added to 10 mL of solution A, obtaining solution D, which was then shook well so the
changes could be observed. (5) A 0.57 g sample of malachite powder (−38 µm) was added
to 10 mL of solution A, obtaining solution E, which was then shook well so the changes
could be observed.

ICP-OES (PlasmaQuant PQ9000, Jena, Germany) was used to detect the total Cu
concentration in the slurry. Malachite samples (−75 + 38 µm) of 2.0 g were dispersed into
35 mL DI water, and each of the five thiol collectors was stirred at 1690 r/min for 3 min.
Then, the suspension was filtered and centrifuged to separate the malachite from the slurry,
followed by the determination of Cu content in the supernatant.

2.7. FTIR Spectra

FTIR was used to determine the presence of the adsorption collector. The massive
malachite (Φ 20 mm) was divided into two groups, with one group being treated with
sulfidizing agent under conditions consistent with the sulfidization flotation tests while
the other group was left untreated. The resulting massive malachite samples were fixed
to the impeller of the flotation machine with synthetic fibers, as shown in Figure 3. The
concentration of collector in the flotation cell was fixed at 150 mg/L, and the stirring time
was kept the same as that of the micro-flotation test. The external force on the surface of
the malachite was varied by changing the spindle speed of the flotation machine and by
adding quartz to the flotation tanks; the FTIR spectra of the massive malachite samples
were determined separately. The effect of external forces on the stability of the adsorption
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of the thiol collector on the malachite surface was determined by comparing the FTIR
spectra of the individual massive malachite samples.
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3. Results and Discussion
3.1. Micro-Flotation Experiments

As shown in Figure 4, the results indicate that sulfidization can significantly improve
the recovery of malachite. Although the recovery rate of malachite flotation without sul-
fidization presented an obvious upward trend with the increase in collector concentration,
it was not satisfactory. The best results were observed in the flotation group using sodium
diethyl dithiocarbamate (DDTC) as the collector at a dosage of 200 mg/L, but the recovery
rate of the malachite only reached 25%. Additionally, the lowest flotation recovery of
sulfidized malachite was 40%. From above results, it was confirmed that, in the absence of
sulfurization, the flotation effect of the thiol collector on malachite was poor even if the
concentration of the collector was increased to a high level, which was consistent with the
literature reports.
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3.2. Adsorption Amount Measurements

In general, there is a direct relationship between the floatability of a mineral and the
amount of collector adsorbed on its surface during the flotation. In order to find out the
relationship between the recovery rate of malachite and the adsorption amount of collector
on its surface, the residual concentration method was used in this section to determinate
the adsorption amount of collector on malachite surface at different concentrations. As
illustrated in Figure 5a, it could be seen that the adsorption amount increased with the
increase in collector concentration. However, as illustrated in Figure 4a, although there
was an obvious increase in the adsorption amount of collector on the malachite surface, it
did not result in a satisfactory recovery of malachite all the time. This is consistent with
what other researchers have observed [26,29]. Figure 5b demonstrates the adsorption of
sulfidized malachite to different concentrations of collectors. From the figure, it can be
seen that the adsorption of sulfidized malachite to the collectors does not increase with the
increase in the concentration of the collectors, indicating that it can be effectively floated as
long as it adsorbs a certain amount of the collectors. It was reported that the adsorption
amount of thiol collector (i.e., xanthate) on the sulfurized malachite surface was similar to
that of the untreated malachite surface, but the recovery of sulfurized malachite by xanthate
collector was greatly improved and satisfactory [17,36]. Therefore, it could be found that,
during the un-sulfurized malachite flotation with thiol collectors, the adsorption amount
of collector on mineral surface was not low and should not be the main cause of low
flotation recovery of un-sulfurized malachite in this study. The low flotation recovery of
untreated malachite may be due to the unstable adsorption of thiol collectors on the surface
of malachite. The adsorption amount of different thiol collectors on malachite surface as a
function of collector concentration were shown in Figure 5.
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3.3. Inorganic Carbon Measurement

As illustrated in Figure 6a, after the interaction of malachite with five thiol collectors,
the detected amount of inorganic carbon released into the solution was obviously higher
than the total amount of inorganic carbon sourced from the DI water itself, the natural
dissolution of malachite in the pure water environment, and the thoil collectors added to
the flotation system. In other words, there was a macroscopic increase in the inorganic
carbon in the solution after the reaction of malachite with the collector. The reason for
this result might be that the presence of thiol collectors could induce the dissolution of
malachite, leading to the acceleration of surface dissolution of malachite and the release
of extra amounts of inorganic carbon, such as CO3

2−, HCO3
−, into the solution. This was
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considered to be an important aspect that could account for the poor flotation of malachite
with thiol collectors in this study, i.e., the presence of thiol collector accelerated the surface
dissolution of malachite, which made it difficult for the collectors to stably adsorb on the
mineral surfaces or caused the adsorbed collectors to fall off from the mineral surfaces. In
contrast, as shown in Figure 6b, the amount of inorganic carbon released into the solution
was found to be much less than that of malachite without sulfidization when sulfidized
malachite was treated with the thiol collectors. This suggests that sulfidization is capable of
potentially inhibiting the induced dissolution of thiol collectors on the surface of malachite.
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3.4. Contact Angle Test

As shown in Figure 7a, the contact angle of malachite without flotation agent treat-
ment was only 12.52◦, indicating a strong hydrophilicity. As shown in Figure 7b–f, after
reacting with five thiol collectors, the contact angle on the surface of malachite all increased
significantly, indicating that the collector improved the hydrophobicity of malachite. This
evidence supported the previous results of the adsorption amount measurements (i.e.,
the high contact angle of surface justified the sufficient adsorption amount of collectors).
However, although the malachite surface tended to be hydrophobic under the action of
thiol collectors, the flotation recovery was unsatisfactory (i.e., enough hydrophobicity did
not return to a high recovery). The reason for the low recovery of flotation malachite
might be that the surface dissolution of malachite induced by collectors resulted in the
detachment of the collector adsorption layers, which led to the loss of hydrophobicity
during the flotation. The effect of thiol collectors on the hydrophobicity and hydrophilicity
of malachite is shown in Figure 7.
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3.5. Solubility Test

Some researchers believed that the reason for the poor flotation behavior of non-
sulfurized malachite with thiol collector was that a large amount of collector was consumed
by the dissolved copper ions from the soluble malachite surface [28,29]. To uncover the
real reason for the poor flotation behavior of non-sulfurized malachite by thiol collectors,
the solubility test was carried out in this section. As shown in Figure 8, solution A was
the BX solution with a concentration of 150 mg/L, while solution B was the filtrate of
malachite after stirring. BX solution was dropped into the filtrate of malachite, and no
significant change in the color of the solution C was observed, as it remained clear even
after shaking; conversely, there was also no significant change in the color of the solution
when the filtrate of malachite was dropped into the BX solution, and solution D also
remained clear. The above two facts indicated that the copper ions released by natural
dissolution of malachite in aqueous system were too limited to react with the xanthate (X−)
and form copper-xanthate precipitate; therefore, they could not have consumed a large
amount of the thiol collector. Note that the solubility product (Ksp) of copper-xanthate
precipitate was about 10−20, which was so small that trace copper ions could be captured in
solution and, consequently, a macroscopic phenomenon (i.e., yellow precipitate) could be
observed. However, when a small amount of malachite powder was added to BX solution,
a significant change in the color of the solution was observed after shaking the solution E
well. The added malachite powder gradually reacted with the BX solution, forming the
yellow precipitates, and the initial clear solution transformed into a yellow color. It thus
could be found that, when malachite was exposed to the aqueous flotation system with thiol
collector, its surface dissolution would be greatly accelerated because of the inducement of
xanthate collector. As a result, a large amount of the copper ions and inorganic anions (e.g.,
CO3

2−, HCO3
−) were released from the malachite surface. The copper sites on the mineral

surface easily reacted directly with the collector, forming the copper-xanthate precipitates
that were responsible for the hydrophobic surface of the malachite; however, a considerable
number of precipitates fell off the malachite surface and entered the aqueous flotation
system because of the accelerated dissolution of the malachite surface induced by thiol
collector. The free copper-xanthate detached from malachite surface easily adhered to the
flotation bubbles and was floated out. That was why the adsorption amount of collector
detected on the malachite surface was not low, the inorganic carbon content in the solution
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increased significantly after reaction, and the hydrophobic surface did not deliver a desired
flotation recovery. The induced dissolution of the malachite surface by thiol collector might
be one of the real reasons why malachite was difficult to float out with thiol collectors prior
to sulfidization. The procedure of the solubility test is shown in Figure 8.

Minerals 2024, 14, 483 10 of 14 
 

 

in the solution increased significantly after reaction, and the hydrophobic surface did not 
deliver a desired flotation recovery. The induced dissolution of the malachite surface by 
thiol collector might be one of the real reasons why malachite was difficult to float out 
with thiol collectors prior to sulfidization. The procedure of the solubility test is shown in 
Figure 8. 

 
Figure 8. The procedure of solubility test: (a) Butyl xanthate, (b) Filtrate of malachite after stirring 
(c) Add butyl xanthate to the filtrate of malachite (d) Add the filtrate of malachite to butyl xanthate 
(e) Add malachite powder to butyl xanthate. 

Above, the inorganic carbon measurement and solubility test were used to analyze 
the dissolution of the malachite surface. It is known that malachite surface dissolution can 
release copper ions. Therefore, this section focuses on the amount of copper ions released 
by malachite stirred in DI water and the aqueous flotation system with thiol collector. The 
concentration of copper ions in the stirred supernatant of malachite with DI water and 
thiol collectors was determined by ICP-OES analysis. As shown in Figure 9, the highest 
concentration of copper ions released from malachite after stirring in pure water was only 
1.2 mg/L, which was not enough to consume a large amount of collector. The concentra-
tion of copper ions released from malachite in the collectors solution was lower than those 
released in DI water due to the reaction of copper ions with the collector to form a precip-
itate. The smaller the solubility product (Ksp) of copper-xanthate precipitate, the easier 
the precipitation, i.e., the smaller the concentration of copper ions in the supernatant. The 
solubility product (Ksp) of copper-xanthate precipitate is shown in Table 1. 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 C
on

ce
nt

ra
tio

n 
of

 C
u2+

(m
g/

L)

DI         EX       BX       PX DDTPDDTC  
Figure 9. Concentration of copper ions in the supernatant after malachite stirred with DI water and 
thiol collectors. 

Table 1. The Ksp(PLMeX2) of copper-xanthate precipitate. 

Thiol collector EX BX PX DDTC DDTP 

Ksp(PLMeX2) 24.20 26.20 27.00 30.85 16.00 

  

Figure 8. The procedure of solubility test: (a) Butyl xanthate, (b) Filtrate of malachite after stirring
(c) Add butyl xanthate to the filtrate of malachite (d) Add the filtrate of malachite to butyl xanthate
(e) Add malachite powder to butyl xanthate.

Above, the inorganic carbon measurement and solubility test were used to analyze
the dissolution of the malachite surface. It is known that malachite surface dissolution
can release copper ions. Therefore, this section focuses on the amount of copper ions
released by malachite stirred in DI water and the aqueous flotation system with thiol
collector. The concentration of copper ions in the stirred supernatant of malachite with DI
water and thiol collectors was determined by ICP-OES analysis. As shown in Figure 9, the
highest concentration of copper ions released from malachite after stirring in pure water
was only 1.2 mg/L, which was not enough to consume a large amount of collector. The
concentration of copper ions released from malachite in the collectors solution was lower
than those released in DI water due to the reaction of copper ions with the collector to form
a precipitate. The smaller the solubility product (Ksp) of copper-xanthate precipitate, the
easier the precipitation, i.e., the smaller the concentration of copper ions in the supernatant.
The solubility product (Ksp) of copper-xanthate precipitate is shown in Table 1.
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Table 1. The Ksp(PLMeX2) of copper-xanthate precipitate.

Thiol
Collector EX BX PX DDTC DDTP

Ksp(PLMeX2) 24.20 26.20 27.00 30.85 16.00
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3.6. FTIR Spectra

In order to further investigate the stability of the adsorption of the thiol collector
on the malachite surface, a FTIR analysis was carried out, and the results are shown in
Figures 10 and 11. In the Infrared spectrogram of butyl xanthate shown in Figure 10, the
asymmetric stretching vibration of C–O–C is observed at 1310 cm−1. The methylene group
has a deformation vibrational absorption peak at 1431 cm−1. The vibrational absorption
peak of C–O=S is at 1631 cm−1.
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Figure 11. Infrared spectra of: (a) Massive malachite without sulfidization, (b) Sulfidized massive
malachite.

Figure 11a shows the FTIR spectra of massive malachite after interaction with butyl
xanthate at different spindle speeds of the flotation machine. From the figure, it can be
established that the infrared spectra of the massive malachite samples showed absorption
peaks at 1304 cm−1, 1425 cm−1 and 1631 cm−1 when the spindle speed of the flotation
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machine spindle was 845 r/min, indicating that butyl xanthate was adsorbed on the
surface of the malachite. When the spindle speed of the flotation machine was increased
to 1056 r/min, the absorption peaks at 1031 cm−1 and 1035 cm−1 had disappeared, and
the absorption peak at 1425 cm−1 was still present, although its intensity had diminished.
With the gradual increase in the spindle speed, the intensity of the absorption peak at
1425 cm−1 became weaker and weaker. When the spindle speed reached 1690 r/min, the
characteristic peaks of butyl xanthate were hardly observed on the surface of the massive
malachite. This result indicates that the xanthate collector is able to adsorb on the surface
of malachite, but the adsorption is not stable, and the adsorbed layer of the collector falls
off when there is an external force (for example, in an agitated fluid environment). The
contradiction between the results of the previous contact angle test and the micro-flotation
test is also well explained by this result. In the contact angle test, since the external force
on malachite is small, the collector can still be adsorbed more firmly on the surface of the
mineral, resulting in a large contact angle. However, during the micro-flotation test, the
spindle speed of the flotation machine was too fast, and the fluid force on the malachite
surface was sufficient to dislodge the poorly adsorbed collector, resulting in low flotation
recoveries of malachite despite a large amount of collector being consumed.

Figure 11b shows the FTIR spectra of sulfidized malachite after interaction with butyl
xanthate at different spindle speeds of the flotation machine. As can be seen from the figure,
three infrared absorption peaks of butyl xanthate were always observed on the surface
of the massive malachite even when the spindle speed was increased from 845 r/min to
1690 r/min. In order to increase the friction force on the surface of the malachite, 2.0 g of
quartz particles with a size of −75 + 38 µm were added to the flotation tank, the spindle
speed was kept at 1690 r/min, and the infrared spectra of the surface of the massive
malachite were tested. It was found that, even at the highest spindle speed and in the
presence of friction from the quartz particles, three characteristic absorption peaks of the
xanthate could be observed on the surface of the sulfidized malachite. This implies that
sulfidization significantly improves the stability of the adsorption of the xanthate collector
on the surface of malachite, explaining the previous results of micro-flotation as well as
inorganic carbon measurement. The schematic model of the induced dissolution of the
malachite surface by thiol collector is shown in Figure 12.
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as an example.
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4. Conclusions

The experimental findings reveal that, under static conditions, malachite surfaces
without sulfidization exhibit a strong capacity to adsorb thiol collectors, resulting in a
significant enhancement of their hydrophobicity. This property augmentation is particularly
noteworthy given the potential for improved flotation efficiency. However, despite this
positive adsorption behavior, a surprisingly low flotation recovery rate is observed, with
the maximum only reaching 25% even when using high concentrations of DDTC. This
discrepancy is attributed to the unstable adsorption of thiol collectors on the malachite
surfaces during the flotation process. A significant increase in inorganic carbon levels in
the solution upon the addition of thiol collectors is observed. This increase is attributed
to the induced dissolution of malachite surfaces, a previously unrecognized phenomenon
that adds a new dimension to the flotation mechanism. Furthermore, solubility tests
demonstrate that, while copper ions released from natural malachite dissolution do not
readily react with thiol collectors to form precipitates, the collectors themselves play a
pivotal role in inducing surface dissolution.
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