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Abstract: In this study, an interactive Ising model having the nearest and prolonged next-nearest
neighbors defined on a Cayley tree is considered. Inspired by the results obtained for the one-
dimensional Ising model, we will construct the partition function and then calculate the free energy
of the Ising model having the prolonged next nearest and nearest neighbor interactions and external
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1. Introduction

For a long time, the Cayley tree (shortly, CT) and the Bethe lattice (shortly, BL)
have been used extensively in many branches such as statistical physics [1], statistical
mechanics [2,3], and mathematics [4,5]. Basically, the main features that make these two
graphs important are that the operations on them are incredibly easy compared to realistic
lattices such as Zd (d ≥ 2) [3]. In particular, the self-similarity feature of the semi-infinite
CT provides great convenience in examining important issues such as the Gibbs measures
and the free energy (see [6–10] for details). A limited number of the total turns in a CT
are located at the boundary. The CT is a substantially in-homogeneous system as a result,
and its characteristics frequently differ greatly from those of a typical finite-dimensional
issue [1]. We refer the reader to Ostilli’s work [6] to understand the relationships between
the CT and the BL.

Deriving the recursive equations characterizing the Gibbs measure for the lattice
models on the CT can be done in a number of different ways. One method is based
on Markov random field (MRF) characteristics on BL [2,11,12]. The recursive equations
for the partition functions are the foundation of another strategy (see [11]). Naturally,
the same equation results from both methods [4,5]. The second strategy works better
with models that have the competing interactions. The second method is also called the
cavity method [1,6]. The cavity method is also known as the self-similarity method [6].
Mezard and Parisi [1] suggested a generic, non-perturbative solution to the BL spin glass
issue using the cavity approach. The cavity method in computer science is called belief-
propagation (BP). The Bethe approximation in statistical physics and the BP method are
closely related concepts (see [13] for details).

In Ref. [10], Gandolfo et al. provide some explicit equations for the free energies
associated with boundary conditions for the Ising model on the CT. The author of [14]
presents a practical method for providing some formulas for the free energy and entropy
for a given Ising model using the Kolmogorov consistency theorem (KCM) taking into
account some boundary conditions. The formula for the free energy connected to the
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translation-invariant Gibbs measures, which enables the calculation of the related entropy,
was obtained by the authors as an illustration of the presented technique in [15].

To the best of the author’s knowledge, the free energy formulas of the lattice models
on the CT were calculated using the KCM [4,10,14,15]. Recently, the Gibbs measures of
lattice models on CT-like lattices and the consequent phase transition problem have been
investigated using the KCM (see [16,17]). The Gibbs measures for the q-state Potts model
on the CT were determined using the self-similarity method [11,18]. In this study, we will
derive the free energy formula for the model using the self-similarity of the semi-infinite CT.
Thanks to this method, we will obtain this formula without constructing Gibbs measures
for the given boundary condition.

As mentioned above, in order to investigate many quantities in the statistical mechan-
ics, it is necessary to derive the partition function for the lattice model under consideration.
Few studies have been done recently using the KCM to calculate the free energy of the
Ising model given on the CT [4,14,19]. In this present work, we will obtain the partition
function by taking into account the self-similarity method to calculate the free energy of
the Ising model defined on the CT. Considering the fractal structure of the semi-infinite CT,
the iterative method contributes to the easy solution of most difficult problems. Here we
will use the iteration approach to derive the partial partition functions. We will investigate
the existence of the phase transition for the Ising system under the given conditions.

2. Preliminaries and Main Definitions

In this section, we will give some concepts that have been defined in different
studies before.

2.1. The Cayley Tree

The CT is straightforward linked undirected graph without cycles. It has a fractal
structure. Let us denote a CT of order k having n shells by Gk,n. Let O be the root vertex,
we use k edges to connect O with k new vertices. This initial set of k vertices makes up
the shell n = 1 of the CT and we denote this set by W1. Then, with n ≥ 2, k vertices are
connected with new k edges to each vertex in the (n− 1)th shell to form the nth shell. Thus,
these added vertices form the set Wn of vertices located on nth shell of the the CT Gk,n. The
structure of the CT G4,4 with the root vertex O is shown in Figure 1 (see [6,8,20] for details).

x
H0L

O

G3

3

Figure 1. (Color online) The image denotes a fourth-order Cayley tree having 4 shells (or levels) by
G4.4, where O is the root vertex of G4.4. The region separated by dashed lines represents a third-order
semi-finite Cayley tree with 3 shells and will be denoted by Γ3

3.



Axioms 2022, 11, 703 3 of 11

Let Γk = (V, L) denote a semi-infinite CT of order k (k ≥ 1) having the root x(0). Here
V is the set of vertices and L is the set of edges. While the root vertex x(0) of the semi-infinite
CT Γk of order k is connected with only k vertices only with one edge, all other vertices of
the tree are connected with (k + 1) vertices by only one edge (see [4] for details).

The distance d(x, y), x, y ∈ V, on the CT, is the length of the shortest path from x to y.
In other words, d(x, y) is the number of edges in the shortest distance connecting the x and
y vertices. For n = 1, 2, . . . , S(x) = {y ∈Wn : d(x, y) = 1} is the set of direct successors of
x ∈Wn−1, where

Wn =
{

x ∈ V | d(x, x(0)) = n
}

.

Throughout the paper, we will denote the semi-finite CT of order k with n shells by
Γk

n = (Vn, Ln), where we have

Vn =
n⋃

m=0
Wm, Ln = {` =< x, y >∈ L | x, y ∈ Vn}.

For example, in Figure 1, the root of the tree Γ3
3 is represented by the vertex that is red

and labeled with x(0). In Figure 1, one can see that each vertex in Γ3
3 has 4 edges except for

the root vertex x(0) having 3 edges. For the sake of completeness, note that Figure 1 and
the explanations for constructing a semi-finite CT are borrowed from Ref. [8].

In this study, we will consider two kinds of neighborhood interactions. Let us now
give their definition.

Definition 1. 1. For x, y ∈ V, the vertices x and y are called nearest-neighbors (NN) if there
exists a single edge 〈x, y〉 ∈ L connecting them.

2. The vertices x and y are called prolonged next-nearest-neighbors (PNNN) if d(x, x(0)) 6=
d(y, x(0)) and d(x, y) = 2 it is denoted by 〉x, y〈, where x(0) is the root of the CT Γk.

2.2. Ising Model

In this paper, we will consider the Ising model on the second-order CT defined by the
Hamiltonian

H(σ) = −J ∑
〈x,y〉

σ(x)σ(y)− Jp ∑
〉x,y〈

σ(x)σ(y)− ∑
x∈V

hxσ(x), (1)

where the first term is the energy of each of the bonds between nearest neighboring sites,
and the second term is the energy of each of the bonds between prolonged next-nearest
neighboring sites, and the third is the energy of each of the sites.

Let U be a finite subset of V. We shall indicate the restriction of σ to U by σ(U).
Consider the fixed boundary configuration σ(V \ U). Under the boundary condition
σ(V \U), the total energy of σ(U) is defined as

HU(σ(U)|σ(V \U)) = −J

 ∑
〈x,y〉:x,y∈U

σ(x)σ(y) + ∑
〈x,y〉:x∈U,y/∈U

σ(x)σ(y)

 (2)

−Jp

 ∑
〉x,y〈:x,y∈U

σ(x)σ(y) + ∑
〉x,y〈:x∈U,y/∈U

σ(x)σ(y)

− ∑
x∈U

hxσ(x).

Considering σ(V \U), we define the partition function ZU(σ(V \U)) in volume U by

ZU(σ(V \U)) = ∑
σ(U)∈ΦU

e−βHU(σ(U)|σ(V\U)), (3)

where β = 1
T is the inverse temperature.
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For the sake of simplicity, we shall refer to ZVn and the configuration σ(Vn) in volume
Vn as σn and Z(n), respectively. The total partition function Z(n) may be broken down into
the summands:

Z(n) = ∑
i∈Φ

Z(n)
i , (4)

where
Z(n)

i = ∑
σn∈ΦVn :σ(x(0))=i

exp(−βHVn(σn|σ(V \Vn)).

In order to fundamentally simplify the problem, Ganikhodjaev et al. [11] suggested a
procedure for calculating the partial partition functions of 3-state Potts model of order two
utilizing the self-similarity of the semi-infinite CT. Ganikhodjaev et al. [11] computed the
partial partition functions as

Z(n)
i0

= ∑
η∈{1,2,3}B1(x(0))

exp
(
−βH(η) + βhδ1i0

)
Z(n−1)

i1
Z(n−1)

i2
,

where δ1i0 is a Kronecker’s symbol, H is a Hamiltonian of the Potts model having two
competing binary interactions, and h is an external field (also see [21] for details).

3. Partition Function and Free Energy

In this section, we will first construct the partition function for the Ising model using
the self-similarity approach, and then calculate the free energy of the model with the help
of the partition function. Here, the iterative approach will be considered.

The Self-Similarity Approach

Let us consider a CT of order two having the root vertex x(0) (see Figure 2a). Two
edges pointing at the vertices x1 and x2 emerge from the root vertex x(0). If we consider the
lattice G as infinite, then we obtain two infinite subgraphs G1 and G2 which are equivalent
to each other. Thus, we obtain the self-similarity G = G1 = G2 (see [6] for details).

x2

x12
x21

x22

x1

x11

x
H0L

G

G2G1

H

(a)

i2

i12
i22

i1

i11
i21

i0

G

G1 G21

(b)

Figure 2. (Color online) (a) A semi-ball B2(x(0)) with the center x(0) and radius 2 on the second-order
CT. (b) Possible configurations that can be placed on the semi-ball B2

(
x(0)

)
given on the left.

We define a semi-ball with radius 2 and the center x(0) by

B2

(
x(0)

)
:=
{

x(0), x1, x2, x11, x12, x21, x22

}
(see Figure 2a), and denote the set of configurations to be placed on the semi-ball

B2

(
x(0)

)
by

ΦB2(x(0)) = {i0, i1, i2, i11, i12, i21, i22},

where Φ = {−1,+1} (see Figure 2b).
Note that in this paper we assume hx = h for all x ∈ V. Taking into account the

Hamiltonian (1), we define the energy of a configuration on the semi-ball B2

(
x(0)

)
by
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E
(

σ
(

B2(x(0))
))

= −βJpσ(x(0)) ∑
a,b∈{1,2}

σ(xab)− βJσ(x(0))(σ(x1) + σ(x2)) (5)

−βJ
2

∑
a=1

(σ(xa)(σ(xa1) + σ(xa2))− ∑
a,b∈{1,2}

h σ(xab),

where the configurations σ
(

B2(x(0))
)
∈ ΦB2(x(0)).

Let us consider Figure 2b. We can calculate the full energy of the configurations on the
semi-ball B2(x(0)) with the help of the following function

E(i0, i1, i2) := ∑
i11∈Φ

∑
i12∈Φ

∑
i21∈Φ

∑
i22∈Φ

eβJ(i1(i11+i12)+i2(i21+i22))+βJpi0(i11+i12+i21+i22)+βh(i11+i12+i21+i22). (6)

It should be noted here that the expression βJσ(x(0))(σ(x1) + σ(x2)) in Equation (5)
is not taken into account in Equation (6). As is known, the structure of a semi-infinite CT
constitutes a fractal. If βJσ(x(0))(σ(x1) + σ(x2)) is taken into account in (6), in sequential
calculations, the total energy between the nearest vertices on first two consecutive levels will
be calculated twice. For example, in the first step, in addition to βJσ(x(0))(σ(x1) + σ(x2)),
the total energy between the nearest vertices of the W1 and W2 will also be calculated.
When the second step is passed, both the total energy between the nearest vertices in W1
and W2 and the total energy between the nearest vertices in W2 and W3 will be calculated.
However, in the first step, we have already calculated the total energy between the nearest
vertices in W1 and W2. Ignoring βJσ(x(0))(σ(x1) + σ(x2)) does not change the value of the
total partition function. Therefore, we will consider Equation (6) in our future calculations.

Lemma 1. Let us consider the Hamiltonian (1) and Equation (6), then we have

∑
η∈ΦB2(x(0))

E(η) =

((
1 + θ2)+ 4θϕu + ϕ2(1 + θ2)u2

θϕu

)2

+

((
1 + θ2)u2 + 4θϕu + ϕ2(1 + θ2)

θϕu

)2

. (7)

Proof. Let us calculate E(i0, i1, i2) values separately for i0, i1, i2 ∈ Φ. Obviously, 8 different
values are obtained here.

E(1, 1, 1) = e−4(h+J+Jp)β
(

1 + e2(h+J+Jp)β
)4

,

E(1, 1,−1) = E(1,−1, 1) = e−4(h+J+Jp)β
(

e2Jβ + e2(h+Jp)β
)2(

1 + e2(h+J+Jp)β
)2

,

E(1,−1,−1) = e−4(h+J+Jp)β
(

e2Jβ + e2(h+Jp)β
)4

,

E(−1, 1, 1) = e−4(h+J+Jp)β
(

e2(h+J)β + e2Jp β
)4

,

E(−1, 1,−1) = E(−1,−1, 1) = e−4(h+J+Jp)β
(

e2(h+J)β + e2Jp β
)2(

e2hβ + e2(J+Jp)β
)2

,

E(−1,−1,−1) = e−4(h+J+Jp)β
(

e2hβ + e2(J+Jp)β
)4

.

(8)

For sake of brevity, let us do the variable substitution θ = e
βJ
2 , ϕ = e

βJp
2 and u = e

βh
2 .

From the equations given in (8), we obtain

E(1, 1, 1) + 2E(1, 1,−1) + E(1,−1,−1) =

((
1 + θ2)+ 4θϕu + ϕ2(1 + θ2)u2

θϕu

)2

, (9)

E(−1, 1, 1) + 2E(−1, 1,−1) + E(−1,−1,−1) =

((
1 + θ2)u2 + 4θϕu + ϕ2(1 + θ2)

θϕu

)2

. (10)
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If we add Equations (9) and (10) side by side, we complete the proof of the lemma.

One of our main results is the following theorem.

Theorem 1. Fix a finite volume Vn ⊂ V. Then on Vn the partition function of the Ising model that
corresponds to the Hamiltonian given in (1) on the second-order CT is defined by

Z(n)
i0

=

((1 + θ2)+ 4θϕu + ϕ2(1 + θ2)u2

θϕu

)2

+

((
1 + θ2)u2 + 4θϕu + ϕ2(1 + θ2)

θϕu

)2
2n−1−1

. (11)

Proof. From Equations (6)–(10) and Lemma 1, we have

∑
i0,i1,i2∈Φ

E(i0, i1, i2) = ∑
σ∈ΦB2(x(0))

exp(−βH(σ) + βh ∑
x∈B2(x(0))\B1(x(0))

σ(x)) (12)

=

((
1 + θ2)+ 4θϕu + ϕ2(1 + θ2)u2

θϕu

)2

+

((
1 + θ2)u2 + 4θϕu + ϕ2(1 + θ2)

θϕu

)2

.

For brevity’s sake, let us assume A(θ, ϕ, u) := ∑
i0,i1,i2∈Φ

E(i0, i1, i2).

Due to the disconnected structure of sub-graphs G1 and G2 (see Figure 2a) and the
self-similarity approach, calculating the partition function is easier than other lattices. It is
common knowledge that the problem can be solved iteratively on tree-like structures. Let
us think about the merging of two branches of the tree into the vertex x(0) (see Figure 2a).
Using the cavity method, Ganikhodjaev et al. [11] constructed the limiting Gibbs measures
of the Potts model on a two-order CT. Now, considering this approach, let us first obtain
the partial partition functions.

From Equations (2) and (3), we obtain the following recursive equation

Z(n)
i0

= ∑
η∈ΦB2(x(0))

exp

−βH(η) + βh ∑
x∈B2(x(0))\B1(x(0))

σ(x)

Z(n−1)
i1

Z(n−1)
i2

(13)

= A(θ, ϕ, u)Z(n−1)
i1

Z(n−1)
i2

,

where one can obtain as

Z(n−1)
i1

= ∑
η∈ΦB2(x1)

exp

−βH(η) + βh ∑
x∈B2(x1)\B1(x1)

σ(x)

Z(n−2)
i11

Z(n−2)
i12

(14)

= A(θ, ϕ, u)Z(n−2)
i11

Z(n−2)
i12

,

Z(n−1)
i2

= ∑
η∈ΦB2(x2)

exp

−βH(η) + βh ∑
x∈B2(x2)\B1(x2)

σ(x)

Z(n−2)
i21

Z(n−2)
i22

(15)

= A(θ, ϕ, u)Z(n−2)
i21

Z(n−2)
i22

.
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If Equations (14) and (15) are substituted in Equation (13), the following recurrence
equation is obtained.

Z(n)
i0

= A(θ, ϕ, u)3Z(n−2)
i11

Z(n−2)
i12

Z(n−2)
i21

Z(n−2)
i22

(16)

= A(θ, ϕ, u)7
2

∏
a=1

Z(n−3)
i11a

2

∏
a=1

Z(n−3)
i12a

2

∏
a=1

Z(n−3)
i21a

2

∏
a=1

Z(n−3)
i22a

...

= A(θ, ϕ, u)A(θ, ϕ, u)2 A(θ, ϕ, u)4 · · · A(θ, ϕ, u)2n−3
A(θ, ϕ, u)2n−2

= A(θ, ϕ, u)1+2+22+···+2n−3+2n−2
= A(θ, ϕ, u)2n−1−1.

This completes the proof of the theorem.

As is known, with the help of the partition function Z(n)(β, h) associated with the lat-
tice models [2], we can calculate many quantities that are widely studied in statistical mechan-
ics. Some of the most important of these are the free energy F(β, h) = lim

n→∞
1

β|Vn | ln Z(n)(β, h),

the entropy S(β, h) = − dF(β,h)
dT , the thermal average spin 〈σj〉 = 1

Z(n)(β,h) ∑
{σ}

σje−βH({σ}),

and the spin–spin correlation 〈σiσj〉 = 1
Z(n)(β,h) ∑

{σ}
σiσje−βH({σ}).

At the same time, different thermodynamic properties of given lattice models such as
the Ising and the Potts can be examined by the partition function.

Let us now give our result, which provides the exact formula for free energy.

Theorem 2. For each all sequence (Vn)n≥2 of cubes with |Vn| → ∞, the limit

F(β, h) = lim
n→∞

1
β|Vn|

ln(Z(n)
i0

) (17)

exists and satisfies the equation

F(β, h) =
1

4β
ln

((
(1 + θ2) + 4θϕu + ϕ2(1 + θ2)u2)2

+
(

ϕ2(1 + θ2)+ 4θϕu +
(
1 + θ2)u2)2

θ2 ϕ2u2

)
. (18)

Proof. From the simple property of the logarithm and exponentiation functions, it is easy
to show the existence of the limit given in Equation (17).

From the definition of the free energy and Equation (16), we have

F(β, h) = lim
n→∞

1
β|Vn|

ln(Z(n)
i0

) (19)

= lim
n→∞

1
β|Vn|

ln(A(θ, ϕ, u))2n−1−1 (20)

= lim
n→∞

2n−1 − 1
β(2n+1 − 1)

ln(A(θ, ϕ, u)) (21)

=
1

4β
ln

((
(1 + θ2) + 4θϕu + ϕ2(1 + θ2)u2)2

+
(

ϕ2(1 + θ2)+ 4θϕu +
(
1 + θ2)u2)2

θ2 ϕ2u2

)
. (22)

Thus, the proof is completed.

4. Limiting Gibbs Measures and the Phase Transition

This section deals with the existence of the phase transition of the model by means
of the self-similarity method. Recently, many papers have discussed the phase transition
problem of the given lattice models using the KCM method [4,16–18].
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First, we need to derive the partial partition functions. Using the self-similarity
method, from Equations (2) and (3) we can reconsider the equation

Z(n)
i0

= ∑
η∈ΦB2(x(0))

e

(
−βH(η)+β ∑x∈B2(x(0))\B1(x(0))

hσ(x)
)

Z(n−1)
i1

Z(n−1)
i2

. (23)

Design the configurations on the semi-ball B2(x(0)) (see Figure 2b). Since infinite grids
G1 and G2 are not connected, we can use the self-similarity to our advantage; therefore,
we obtain

Z(n)
i0

:= ∑
i1∈Φ

∑
i2∈Φ

∑
i12∈Φ

∑
i21∈Φ

∑
i22∈Φ

eC(β,J,Jp ,h)Z(n−1)
i1

Z(n−1)
i2

. (24)

where

C(β, J, Jp, h) := βJ(i1(i11 + i12) + i2(i21 + i22)) + βJpi0(i11 + i12 + i21 + i22) + βh(i11 + i12 + i21 + i22). (25)

We obtain the partial partition functions for i0 = −1 and i0 = +1, respectively, as

Z(n)
−1 =

((
e2h + e2J+2S

)2
Z(n−1)
−1 +

(
e2h+2J + e2S

)2
Z(n−1)

1

)2
, (26)

Z(n)
1 =

((
e2J + e2h+2S

)2
Z(n−1)
−1 +

(
1 + e2h+2J+2S

)2
Z(n−1)

1

)2
. (27)

Let P(i0) be the probability with spin i0 at root vertex x(0).
Assume V(n) := P(−1)/P(+) = Z(n)

−1 /Z(n)
+1 (see [6,11,21] for details). If we divide

Equations (26) and (26) side by side, we obtain

Z(n)
−1

Z(n)
1

=

((
e2h + e2J+2S

)2
Z(n−1)
−1 +

(
e2h+2J + e2S

)2
Z(n−1)

1

)2

((
e2J + e2h+2S

)2Z(n−1)
−1 +

(
1 + e2h+2J+2S

)2Z(n−1)
1

)2 . (28)

Here again we will consider it as θ = e
βJ
2 , ϕ = e

βJp
2 and u = e

βh
2 for brevity’s sake.

Therefore, from (28), one obtains the recursive equation

V(n) =


(
(u + θϕ)2V(n−1) + (uθ + ϕ)2

)2

(
(θ + uϕ)2V(n−1) + (1 + uθϕ)2

)2


2

. (29)

4.1. The Zero External Field

If we consider the zero external field, i.e., h = 0, then we obtain a new recursive equation

V(n) =

(
(θ + ϕ)2 + (1 + θϕ)2V(n−1)

)2

(
(1 + θϕ)2 + (θ + ϕ)2V(n−1)

)2 . (30)

If we consider limn→∞ V(n) = v (see [6,11,18] for details), we obtain the dynamical system

fθ,ϕ(v) :=

(
(θ + ϕ)2 + (1 + θϕ)2v

)2

((1 + θϕ)2 + (θ + ϕ)2v)2 = v. (31)

Note that the solutions of the equation given in (31) determine the Gibbs measures
corresponding to the model. One can easily see that one of the fixed points of the function
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fθ,ϕ given in (31) is v = 1. Now let us investigate the existence of other fixed points of fθ,ϕ.
After some algebraic operations, from fθ,ϕ(v) = v, we obtain

(θ + ϕ)4(v2 + 1) + vB(θ, ϕ) = 0, (32)

where B(θ, ϕ) := 2θ2 + θ4 + 8θ3 ϕ + 2ϕ2 + 8θ2 ϕ2 + 2θ4 ϕ2 + 8θϕ3 + ϕ4 + 2θ2 ϕ4 − θ4 ϕ4 − 1.
If you divide both sides of Equation (32) by v and consider τ = v + 1

v , we obtain the
following first-order equation:

(θ + ϕ)4τ +
(

2θ2 + θ4 + 8θ3 ϕ + 2ϕ2 + 8θ2 ϕ2 + 2θ4 ϕ2 + 8θϕ3 + ϕ4 + 2θ2 ϕ4 − θ4 ϕ4 − 1
)
= 0. (33)

So, from (33) we have

τcrt =
1− 2θ2 − θ4 − 8θ3 ϕ− 2ϕ2 − 8θ2 ϕ2 − 2θ4 ϕ2 − 8θϕ3 − ϕ4 − 2θ2 ϕ4 + θ4 ϕ4

(θ + ϕ)4 . (34)

One can clearly show that τcrt > 2. From (34), we obtain(
1− 3θ2 − 4θϕ− 3ϕ2 + θ2 ϕ2)(1 + θ2 + 4θϕ + ϕ2 + θ2 ϕ2)

(θ + ϕ)4 > 0. (35)

From (35), one has (
1− 3θ2 − 4θϕ− 3ϕ2 + θ2 ϕ2

)
> 0.

Remark 1. Here the existence of the phase transition phenomena for given model has been
investigated for the zero external field (h = 0). For h 6= 0, a more detailed examination
can be made.

The blue region in Figure 3 represents the solution set of the inequality(
1− 3θ2 − 4θϕ− 3ϕ2 + θ2 ϕ2

)
> 0.

Accordingly, while the phase transition is provided for the model in the blue regions
of Figure 3, no phase transition phenomenon occurs in the white region of Figure 3.

PT

PT

0 1 2 3 4 5 6

0

1

2

3

4

5

6

Θ

j

Figure 3. (Color online) The blue regions show the phase transition regimes for the model.
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4.2. Illustrative Examples

Figure 4 shows the graphs of the function fθ,ϕ for given values of θ and ϕ. For
(θ = 6, ϕ = 3) and (θ = 4, ϕ = 3), the function fθ,ϕ has three fixed points. For (θ = 4, ϕ = 0.2),
(θ = 2, ϕ = 2) and (θ = 8, ϕ = 2), the function fθ,ϕ has a single fixed point.

Θ = 4, j = 3

Θ = 2, j = 2

Θ = 8, j = 2

Θ = 4, j = 0.2

Θ = 6, j = 3

0 2 4 6 8 10
0

2

4

6

8

10

v

Figure 4. (Color online) The graphs of the function fθ,ϕ for given values of θ and ϕ.

The graph of the function fθ,ϕ for (θ = 0.2, ϕ = 0.3) is plotted in Figure 5. One can see
that there are tree fixed points for (θ = 0.2, ϕ = 0.3).

0 2 4 6 8 10
0

2

4

6

8

10

v

Figure 5. (Color online) The graph of the function fθ,ϕ for θ = 0.2, ϕ = 0.3.

Note that each of these fixed points determines the limiting Gibbs measure associated
with the model. As is known, if the number of the Gibbs measures corresponding to the
model is more than one, then the phase transition is provided for the model. Therefore, from
the Figures 4 and 5, we can see that for (θ = 6, ϕ = 3), (θ = 4, ϕ = 3) and (θ = 0.2, ϕ = 0.3),
there are the phase transition. For (θ = 4, ϕ = 0.2), (θ = 2, ϕ = 2) and (θ = 8, ϕ = 2), the
phase transition does not occur.

5. Conclusions

In this elucidation, inspired by the results obtained for the one-dimensional Ising
model, we have computed the partition function and then the free energy associated with
the Ising model having the NN and PNNN interactions and external field on a two-order
CT. We have obtained a formula for the free energy of the Ising model on the semi-infinite
CT of order two. Considering the self-similarity method, we will derive the free energy
and the entropy formulas for other lattice models on the semi-infinite CT, such as the Potts
model, the SOS model in our next work.

The most interesting finding here is that the phase transition occurs when both J
and Jp are negative (in the anti-ferromagnetic case). For the Ising model with the same
Hamiltonian, no phase transition has occurred in the anti-ferromagnetic regimes in previous
studies (see [16,22]).
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It is well known that the entropy of the model is computed by S(β, h) = − F(β,h)
dT [10,14,15].

Using this formula, the entropy of our current model will be investigated in more detail in
future studies. In addition, the phase transition types of the system will be determined by
considering both the free energy formula and the entropy function.
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