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Abstract: Integral equations, which are defined as “the equation containing an unknown function
under the integral sign”, have many applications of real-world problems. The second type of
Fredholm integral equations is generally used in radiation transfer theory, kinetic theory of gases, and
neutron transfer theory. A special case of these equations, known as the quadratic Chandrasekhar
integral equation, given by x(s) = 1 + λx(s)

∫ 1
0

s
t+s x(t)dt, can be very often encountered in many

applications, where x is the function to be determined, λ is a parameter, and t, s ∈ [0, 1]. In this paper,
using a fixed-point theorem, the existence conditions for the solution of Fredholm integral equations
of the form χ(l) = ϱ(l) + χ(l)

∫ q
p k(l, z)(Vχ)(z)dz are investigated in the space Cω [p, q], where χ is

the unknown function to be determined, V is a given operator, and ϱ, k are two given functions.
Moreover, certain important applications demonstrating the applicability of the existence theorem
presented in this paper are provided.

Keywords: Fredholm integral equations; quadratic Chandrasekhar integral equation; Hölder space,
tempered modulus of continuity; the space Cω(X); fixed-point theorem

MSC: 45G10; 45B05; 47H10

1. Introduction

Fredholm integral equations are a class of integral equations named after the Swedish
mathematician Erik Ivar Fredholm. These equations are of the form

ϕ(x) = f (x) + λ
∫ b

a
K(x, t)ϕ(t)dt,

where ϕ(x) is the unknown function to be determined, f (x) is a given function, K(x, t) is
the kernel function, and λ is a parameter, often referred to as the Fredholm parameter.

Fredholm integral equations arise in various areas of mathematics and physics, includ-
ing potential theory, signal processing, and quantum mechanics. They represent a wide
range of problems where an unknown function is defined in terms of its integral over some
interval or domain.

One of the key aspects of Fredholm integral equations is the study of their solvability
and properties of their solutions. Depending on the properties of the kernel function
K(x, t) and the interval of integration, solutions to Fredholm integral equations may exhibit
different behaviors, including uniqueness, existence, and convergence properties.

Fredholm integral equations have been extensively studied, and various numerical
and analytical methods have been developed to solve them. These methods include—but
are not limited to—Fredholm’s alternative, Green’s functions, eigenfunction expansions,
and numerical quadrature techniques.
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Overall, Fredholm integral equations play a significant role in mathematical analysis
and have applications in diverse fields, making them an essential topic of study in both
pure and applied mathematics.

Fractional integral and differential equations are becoming increasingly vital for model-
ing real-world scenarios in physics, mechanics, and related fields. They provide a powerful
framework for describing complex phenomena that traditional integer-order calculus
struggles to capture adequately.

Quadratic integral equations are a specific class of integral equations where the un-
known function appears squared within the integral. They are represented by equations of
the form

ϕ(x) = f (x) + λ
∫ b

a
K(x, t)ϕ(t)2dt.

These equations arise in various fields of science and engineering, particularly in
problems where phenomena exhibit quadratic dependencies. Examples include nonlinear
wave propagation, population dynamics, and certain types of chemical reaction kinetics.

The study of quadratic integral equations involves investigating the existence, unique-
ness, and certain properties of their solutions. Analytical techniques such as iteration
methods, Fredholm alternative, and fixed-point theorems are often employed. Numerical
methods may also be used for practical solutions.

Understanding quadratic integral equations is crucial for modeling nonlinear phenom-
ena accurately and finding solutions to a wide range of problems in diverse scientific and
engineering applications.

Quadratic integral equations, in particular, have significant applications in fields like
radiative transfer, neutron transport, and kinetic theory of gases. They arise naturally
in these contexts and have been extensively studied for their existence properties and
solution behavior.

Recent developments in fractional calculus, including Riemann–Liouville, Caputo, and
Hadamard approaches, have further enriched our understanding and application of these
equations. Researchers have been exploring various types of quadratic integral equations
and extending their study to fractional versions like Urysohn type, Erdélyi–Kober type,
and Hadamard types.

The existence, local attractivity, and stability of solutions to these fractional quadratic
integral equations are crucial aspects of the research. Additionally, recent works have
focused on studying the solvability of quadratic integral equations of Fredholm type in
spaces of functions satisfying specific continuity conditions, such as the Hölder condition.
These investigations contribute to both theoretical understanding and practical applications
of these equations in diverse fields [1–25].

Moreover, the mathematical description of many processes in engineering, biological
and physical sciences give rise to quadratic integral equations. For instance, research in ra-
diative transfer theory and in kinetic theory of gases leads to the quadratic integral equation
(see [15,16]).

x(t) = 1 + tx(t)
∫ 1

0

Φ(τ)

t + τ
x(τ)dτ,

Furthermore, some articles using simulant techniques have been applied to vibrations
in thermoelasticity and a micropolar porous body [21,22]. That is, these articles are applied
to a micropolar porous body, including voidage time derivative among the independent
constitutive variables.

Quadratic integral equations are frequently applicable in neutron transport, radia-
tive transfer and traffic theories and in kinetic theory of gases [16–18]. Particularly, the
Chandrasekhar-type quadratic integral equation, which is defined as

x(s) = 1 + λx(s)
∫ 1

0

s
t + s

x(t)dt,
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can be very frequently encountered in many applications [16].
Moreover, certain biology and queuing theory research problems lead to the following

nonlinear integral equation [20]:

y(t) = f (t) +
y(t)
Γ(α)

∫ t

0

u(τ, y(τ))
(t − τ)1−α

dτ, t ∈ [0, T], α ∈ (0, 1].

The aim of current paper is to prove an existence theorem for the nonlinear quadratic
integral equation of the following form in the space Cω [p, q], where ω is a modulus of
continuity (see Section 2):

χ(l) = ϱ(l) + χ(l)
∫ q

p
k(l, z)(Vχ)(z)dz, (1)

where V is a given operator and ϱ, k THE GAP BEFORE k IS REMOVED are two given
functions.

By using a sufficient condition for the relative compactness in the space of functions
with moduli of continuity and the classical Schauder fixed-point theorem, we derive a new
existence result (see Theorem 4).

In Section 2, general definitions and theorems are given. The third section provides
the main result of the paper and shows that there is at least one solution of the investigated
equation. In the last section, two applications are given to support our main result.

2. Preliminaries

Let us give the notations, definitions and theorems that we will use in the paper .

Definition 1 ([8]). A nondecreasing function ω : R+ → R+ is said to be a modulus of continuity
if ω(0) = 0 and ω(ϵ) > 0 for ϵ > 0.

The space of continuous functions on [p, q] with the sup norm

∥χ∥∞ = sup{|χ(l)| : l ∈ [p, q]}

is denoted by C[p, q] for χ ∈ C[p, q]. Let ([p, q], d) be a given bounded metric space and
Cω [p, q] be the set of all real functions defined on [p, q] such that their growths are tempered
by the modulus of continuity ω with respect to d. A function χ = χ(l) is in the set Cω [p, q]
if there exists a constant H > 0 satisfying

|χ(l)− χ(m)| ⩽ Hω(d(l, m)) (2)

for all l, m ∈ [p, q]. Also, Cω [p, q] is a linear subspace of C[p, q].
The least possible constant Hω

χ for which the inequality (2) is satisfied is given as

Hω
χ = sup

{
|χ(l)− χ(m)|

ω(d(l, m))
: l, m ∈ [p, q], l ̸= m

}
, (3)

where χ ∈ Cω [p, q].
The norm on the space Cω [p, q] is

∥χ∥ω = |χ(p)|+ sup
{
|χ(l)− χ(m)|

ω(d(l, m))
: l, m ∈ [p, q], l ̸= m

}
(4)

for χ ∈ Cω [p, q]. By (3) and (4), we can write

∥χ∥ω = |χ(p)|+ Hω
χ .

The space Cω [p, q] depends on the metric d and continuity modulus ω.
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If we take d(l, m) = |l − m| and ω(ε) = εα for 0 < α < 1, the space Cω [p, q] becomes
the space Hα[p, q] (i.e., Hölder Space). In [8], the authors proved that (Cω [p, q], ∥ · ∥ω) is a
Banach space.

Lemma 1 ([25]). The following relation is satisfied for each χ ∈ Cω [p, q]:

∥χ∥∞ ⩽ max{1, ω(diam[p, q])}∥χ∥ω,

where diam[p, q] denotes the diameter of the metric space [p, q].

Lemma 2 ([25]). The following relation is satisfied for each χ ∈ Cω[p, q]. Suppose that ω2(d(l, m)) ⩽
Lω1(d(l, m)) for all l, m ∈ [p, q], where L > 0. Then

Cω2 [p, q] ⊂ Cω1 [p, q] ⊂ C[p, q].

Furthermore, the following expression is satisfied for any χ ∈ Cω2 [p, q]:

∥χ∥ω1
⩽ max{1, L}∥χ∥ω2

.

Remark 1 ([25]). Let limε→0
ω2(ε)
ω1(ε)

= 0 then, there exists a number M > 0 satisfying

ω2(d(l, m)) ⩽ Mω1(d(l, m))

for all l, m ∈ [p, q] and so imbedding relations in Lemma 2 and the inequality

∥χ∥ω1
⩽ max{1, M}∥χ∥ω2

.

also hold for any χ ∈ Cω2 [p, q].

Theorem 1 (Theorem 5 in [8]). Let (X, d) be a compact metric space and

lim
ε→0

ω2(ε)

ω1(ε)
= 0,

where ω1, ω2 are moduli of continuity being continuous at zero. Then, if A is a bounded subset of
the space Cω2(X), the set A is relatively compact in the space Cω1(X).

Theorem 2 ([25]). Let limε→0
ω2(ε)
ω1(ε)

= 0. Then the set Bω2
r ∈ Cω1 [p, q] given by Bω2

r ={
χ ∈ Cω2 [p, q] : ∥χ∥ω2

⩽ r
}

is compact.

Theorem 3 (Schauder’s fixed-point theorem [23]). Let T : Ω → Ω be a continuous mapping,
where Ω is a nonempty, compact and convex subset of a Banach space (X, ∥ · ∥), then T has at least
one fixed point in Ω.

3. Existence Theorem

In this part, we provide sufficient conditions that guarantee the Equation (1) has at
least one solution in Cω1 [p, q].

Let ([p, q], d) be a compact metric space and

lim
ε→0

ω2(ε)

ω1(ε)
= 0,

where ω1, ω2 are moduli of continuity being continuous at zero. We use the hypotheses
presented below:

(i) ϱ ∈ Cω2 [p, q],
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(ii) The continuous function k : [p, q]× [p, q] → R satisfies the tempered by the modulus
of continuity with respect to the first variable, that is, there exists a constant kω2

such that
|k(l, z)− k(m, z)| ⩽ kω2 ω2(d(l, m))

for any l, m, z ∈ [p, q].
(iii) Let V : Cω2 [p, q] → C[p, q] be a continuous operator on Cω2 [p, q] with respect to norm

∥.∥ω1
and f : R+ → R+

be a non-decreasing function, the following inequality is
satisfied for each χ ∈ Cω2 [p, q] :

∥Vχ∥∞ ⩽ f (∥χ∥ω2).

(iv) There exists a positive solution r = r0 of the inequality

P + [η2K + K + η2kω2(q − p)] f (r)r ⩽ r,

where P, K and η2 are the constants such that ∥ϱ∥ω2
⩽ P,

sup
{∫ q

p
|k(l, z)|dz : l ∈ [p, q]

}
⩽ K

and
η2 = max{1, ω2(diam[p, q])}.

Theorem 4. The Equation (1) has at least one solution belonging to the space Cω1 [p, q] under the
assumptions (i)–(iv).

Proof. We set the operator Λ ∈ Cω2 [p, q] as follows:

(Λχ)(l) = ϱ(l) + χ(l)
∫ q

p
k(l, z)(Vχ)(z)dz, l ∈ [p, q].

We first show that Λ transforms the space Cω2 [p, q] into itself. For arbitrarily fixed
χ ∈ Cω2 [p, q] and l, m ∈ [p, q], taking into account the assumptions, we obtain that

(Λχ)(l)− (Λχ)(m) = ϱ(l) + χ(l)
∫ q

p
k(l, z)(Vχ)(z)dz

−ϱ(m)− χ(m)
∫ q

p
k(m, z)(Vχ)(z)dz

= ϱ(l)− ϱ(m) + [χ(l)− χ(m)]
∫ q

p
k(l, z)(Vχ)(z)dz

+χ(m)
∫ q

p
[k(l, z)− k(m, z)](Vχ)(z)dz

which implies that
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|(Λχ)(l)− (Λχ)(m)|
ω2(d(l, m))

⩽
|ϱ(l)− ϱ(m)|
ω2(d(l, m))

+
|χ(l)− χ(m)|
ω2(d(l, m))

∫ q

p
|k(l, z)||(Vχ)(z)|dz

+|χ(m)|
∫ q

p

|k(l, z)− k(m, z)|
ω2(d(l, m))

|(Vχ)(z)|dz

⩽
|ϱ(l)− ϱ(m)|
ω2(d(l, m))

+
|χ(l)− χ(m)|
ω2(d(l, m))

∥Vχ∥∞

∫ q

p
|k(l, z)|dz

+∥χ∥∞∥Vχ∥∞

∫ q

p

kω2 ω2(d(l, m))

ω2(d(l, m))
dz

⩽ Hω2
ϱ + Hω2

χ ∥Vχ∥∞K + ∥χ∥∞∥Vχ∥∞kω2(q − p) (5)

for all l, m ∈ [p, q] and l ̸= m. By using the fact that Hω
χ ⩽ ∥χ∥ω and Lemma 1, we infer

from (5) that

|(Λχ)(l)− (Λχ)(m)|
ω2(d(l, m))

⩽ Hω2
ϱ + ∥Vχ∥∞∥χ∥ω2

K

+η2∥Vχ∥∞∥χ∥ω2
kω2(q − p)

⩽ Hω2
ϱ + f

(
∥χ∥ω2

)
∥χ∥ω2

K

+ f
(
∥χ∥ω2

)
η2∥χ∥ω2

kω2(q − p), (6)

where
η2 = max{1, ω2(diam[p, q])}.

From (6), we have Λχ ∈ Cω2 [p, q]. This proves that the operator Λ maps the space
Cω2 [p, q] into itself.

Also, we derive that

|(Λχ)(p)| =

∣∣∣∣ϱ(p) + χ(p)
∫ q

p
k(p, z)(Vχ)(z)dz

∣∣∣∣
⩽ |ϱ(p)|+ |χ(p)|

∫ q

p
|k(p, z)||(Vχ)(z)|dz

⩽ |ϱ(p)|+ ∥χ∥∞∥Vχ∥∞K

⩽ |ϱ(p)|+ (max{1, ω2(diam[p, q])})∥χ∥ω2
∥Vχ∥∞K

⩽ |ϱ(p)|+ η2∥χ∥ω2
f
(
∥χ∥ω2

)
K. (7)

By using definition of the norm ∥Λχ∥ω2
, (6) and (7), we can write

∥Λχ∥ω2
= |(Λχ)(p)|+ sup

{
|(Λχ)(l)− (Λχ)(m)|

ω2(d(l, m))
: l, m ∈ [p, q], l ̸= m

}
⩽ |ϱ(p)|+ f

(
∥χ∥ω2

)
η2∥χ∥ω2

K

+Hω2
ϱ + f

(
∥χ∥ω2

)
∥χ∥ω2

K

+ f
(
∥χ∥ω2

)
η2∥χ∥ω2

kω2(q − p)

⩽ ∥ϱ∥ω2
+ [η2K + K + η2kω2(q − p)] f

(
∥χ∥ω2

)
∥χ∥ω2

(8)
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for any χ ∈ Cω2 [p, q]. So, if we take χ in Bω2
r0 then by (8) and the assumption (iv) we get

the following inequality:

∥Λχ∥ω2
⩽ P + [η2K + K + η2kω2(q − p)] f (r0)r0 ⩽ r0.

So Λχ ∈ Bω2
r0 . Thus, Λ transforms the ball

Bω2
r0 = {χ ∈ Cω2 [p, q] : ∥χ∥ω2 ⩽ r0}

into itself. That is, Λ : Bω2
r0 → Bω2

r0 . Next, we will show that the operator Λ is continuous on
Bω2

r0 with respect to norm ∥ · ∥ω1 . To carry this out, we fix ψ ∈ Bω2
r0 and an arbitrary ε > 0.

Since the operator V : Cω2 [p, q] → C[p, q] is continuous on Cω2 [p, q] with respect to norm
∥.∥ω1

, there is a positive number δ such that the estimate

∥Vχ − Vψ∥∞ <
ε

2(KL + L(q − p)η2kω2 + Kη2)r0

is satisfied for all χ ∈ Bω2
r0 , where ∥χ − ψ∥ω1

< δ, where δ is a number satisfying the
following inequality:

0 < δ <
ε

2(K + η1L(q − p)kω2 + Kη1) f (r0)
,

where
max{1, ω1(diam[p, q])} = η1.

By using the equality

(Λχ)(l)− (Λψ)(l)− ((Λχ)(m)− (Λψ)(m))

= χ(l)
∫ q

p
k(l, z)(Vχ)(z)dz − ψ(l)

∫ q

p
k(l, z)(Vψ)(z)dz

−χ(m)
∫ q

p
k(m, z)(Vχ)(z)dz + ψ(m)

∫ q

p
k(m, z)(Vψ)(z)dz

= [χ(l)− ψ(l)]
∫ q

p
k(l, z)(Vχ)(z)dz + ψ(l)

∫ q

p
k(l, z)[(Vχ)(z)− (Vψ)(z)]dz

−[χ(m)− ψ(m)]
∫ q

p
k(m, z)(Vχ)(z)dz − ψ(m)

∫ q

p
k(m, z)[(Vχ)(z)− (Vψ)(z)]dz

= {[χ(l)− ψ(l)]− [χ(m)− ψ(m)]}
∫ q

p
k(l, z)(Vχ)(z)dz

+[χ(m)− ψ(m)]
∫ q

p
[k(l, z)− k(m, z)](Vχ)(z)dz

+[ψ(l)− ψ(m)]
∫ q

p
k(l, z)[(Vχ)(z)− (Vψ)(z)]dz

+ψ(m)
∫ q

p
[k(l, z)− k(m, z)][(Vχ)(z)− (Vψ)(z)]dz,

we obtain that
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|[(Λχ)(l)− (Λψ)(l)]− [(Λχ)(m)− (Λψ)(m)]|
ω1(d(l, m))

⩽
1

ω1(d(l, m))
|[χ(l)− ψ(l)]− [χ(m)− ψ(m)]|

∣∣∣∣∫ q

p
k(l, z)(Vχ)(z)dz

∣∣∣∣
+

1
ω1(d(l, m))

|χ(m)− ψ(m)|
∣∣∣∣∫ q

p
[k(l, z)− k(m, z)](Vχ)(z)dz

∣∣∣∣
+

1
ω1(d(l, m))

∣∣∣∣[ψ(l)− ψ(m)]
∫ q

p
k(l, z)[(Vχ)(z)− (Vψ)(z)]dz

∣∣∣∣
+

1
ω1(d(l, m))

∣∣∣∣ψ(m)
∫ q

p
[k(l, z)− k(m, z)][(Vχ)(z)− (Vψ)(z)]dz

∣∣∣∣
which yields that

|[(Λχ)(l)− (Λψ)(l)]− [(Λχ)(m)− (Λψ)(m)]|
ω1(d(l, m))

⩽
|[χ(l)− ψ(l)]− [χ(m)− ψ(m)]|

ω1(d(l, m))
∥Vχ∥∞

∫ q

p
|k(l, z)|dz

+∥χ − ψ∥∞∥Vχ∥∞

∫ q

p

|k(l, z)− k(m, z)|
ω1(d(l, m))

dz

+
|ψ(l)− ψ(m)|

ω1(d(l, m))

∣∣∣∣∫ q

p
k(l, z)[(Vχ)(z)− (Vψ)(z)]dz

∣∣∣∣
+|ψ(m)|

∣∣∣∣∫ q

p

k(l, z)− k(m, z)
ω1(d(l, m))

[(Vχ)(z)− (Vψ)(z)]dz
∣∣∣∣

⩽ Hω1
χ−ψ∥Vχ∥∞K + η1∥χ − ψ∥ω1

∥Vχ∥∞

∫ q

p

|k(l, z)− k(m, z)|
ω1(d(l, m))

dz

+
|ψ(l)− ψ(m)|

ω1(d(l, m))

∫ q

p
|k(l, z)||(Vχ)(z)− (Vψ)(z)|dz

+|ψ(m)|
∫ q

p

|k(l, z)− k(m, z)|
ω1(d(l, m))

|(Vχ)(z)− (Vψ)(z)|dz (9)

for all l, m ∈ [p, q] with l ̸= m. The estimates

∥χ∥∞ ⩽ max{1, ω2(diam[p, q])}∥χ∥ω2

and
Hω

χ ⩽ ∥χ∥ω

hold from Lemma 1 and definition of the norm ∥χ∥ω. By (9), we derive the following
estimate:

|[(Λχ)(l)− (Λψ)(l)]− [(Λχ)(m)− (Λψ)(m)]|
ω1(d(l, m))

⩽ K∥Vχ∥∞Hω1
χ−ψ + η1∥χ − ψ∥ω1

∥Vχ∥∞

∫ q

p

kω2 ω2(d(l, m))

ω1(d(l, m))
dz

+
|ψ(l)− ψ(m)|

ω2(d(l, m))

ω2(d(l, m))

ω1(d(l, m))

∫ q

p
|k(l, z)||(Vχ)(z)− (Vψ)(z)|dz

+|ψ(m)|
∫ q

p

kω2 ω2(d(l, m))

ω1(d(l, m))
|(Vχ)(z)− (Vψ)(z)|dz

⩽ K∥Vχ∥∞∥χ − ψ∥ω1
+ η1L(q − p)kω2∥Vχ∥∞∥χ − ψ∥ω1

+KLHω2
ψ ∥Vχ − Vψ∥∞ + L(q − p)kω2∥ψ∥∞∥Vχ − Vψ∥∞, (10)
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Then, by the assumption (iii), Lemma 1 and (10), we obtain the following inequality:

|[(Λχ)(l)− (Λψ)(l)]− [(Λχ)(m)− (Λψ)(m)]|
ω1(d(l, m))

⩽ K f
(
∥χ∥ω2

)
∥χ − ψ∥ω1

+ η1L(q − p)kω2 f
(
∥χ∥ω2

)
∥χ − ψ∥ω1

+KL∥ψ∥ω2
∥Vχ − Vψ∥∞ + L(q − p)η2kω2∥ψ∥ω2

∥Vχ − Vψ∥∞

⩽ K f (r0)δ + η1L(q − p)kω2 f (r0)δ + KLr0∥Vχ − Vψ∥∞

+L(q − p)η2kω2 r0∥Vχ − Vψ∥∞. (11)

On the other hand,

(Λχ)(p)− (Λψ)(p) = χ(p)
∫ q

p
k(p, z)(Vχ)(z)dz

−ψ(p)
∫ q

p
k(p, z)(Vψ)(z)dz

= χ(p)
∫ q

p
k(p, z)[(Vχ)(z)− (Vψ)(z)]dz

+[χ(p)− ψ(p)]
∫ q

p
k(p, z)(Vψ)(z)dz

and hence

|(Λχ)(p)− (Λψ)(p)|

⩽ |χ(p)|
∫ q

p
|k(p, z)||(Vχ)(z)− (Vψ)(z)|dz

+|χ(p)− ψ(p)|
∫ q

p
|k(p, z)||(Vψ)(z)|dz

⩽ K∥χ∥∞∥Vχ − Vψ∥∞ + K∥Vψ∥∞∥χ − ψ∥∞

⩽ K∥χ∥ω2
η2∥Vχ − Vψ∥∞ + K∥Vψ∥∞η1∥χ − ψ∥ω1

⩽ Kη2∥χ∥ω2
∥Vχ − Vψ∥∞ + Kη1 f (∥ψ∥ω2

)∥χ − ψ∥ω1

⩽ Kη2r0∥Vχ − Vψ∥∞ + Kη1 f (r0)δ. (12)

From (11) and (12), it follows that

∥Λχ − Λψ∥ω1

= |(Λχ)(p)− (Λψ)(p)|+ Hω1
Λχ−Λψ

= |(Λχ)(p)− (Λψ)(p)|

+ sup
{
|[(Λχ)(l)− (Λψ)(l)]− [(Λχ)(m)− (Λψ)(m)]|

ω1(d(l, m))
: l, m ∈ [p, q], l ̸= m

}
⩽ (K + η1L(q − p)kω2 + Kη1) f (r0)δ

+(KL + L(q − p)η2kω2 + Kη2)r0∥Vχ − Vψ∥∞

<
ε

2
+

ε

2
= ε.

Therefore, the operator Λ is continuous at the point χ ∈ Bω2
r0 . We conclude that Λ

is continuous on Bω2
r0 with respect to the norm ∥ · ∥ω1 . By Theorem 2, Bω2

r0 is compact in
Cω1 [p, q] and through Schauder fixed-point theorem proof is completed.

4. Applications

In this section, we employed the regularization method combined with some of the
proper well-known techniques to handle the Fredholm integral equations. Our approach
has demonstrated reliability in tackling these challenging problems. To further illustrate
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the effectiveness of our method, we present two numerical applications that corroborate
our fundamental theorem. Through these applications, we aim to reinforce our findings
and foster a deeper, more abstract comprehension of the topic.

Application 1. Let n and n̂ be two non-negative constants and l ∈ [0, 1]. Consider the
integral equation given below:

χ(l) = 3
√

n sin(πl) + n̂ + χ(l)
∫ 1

0

5
√

5l2 + z
√
|χ(z)| dz. (13)

Also, define the operator V as (Vχ)(z) =
√
|χ(z)| for all l, z ∈ [0, 1] and set ϱ(l) =

3
√

n sin(πl) + n̂, k(l, z) = 5
√

5l2 + z.
Additionally we choose ω2(ε) = ε

1
3 , ω1(ε) = εα such that 0 < α < 1/3 and d(l, m) =

|l − m|. Since the function h(l) = 3
√

l is concave for h : R+ → R+, this function is
subadditive from Lemma 4.4 in [24]. Moreover, if we take into account |sin χ − sin ψ| ⩽
|χ − ψ| for χ, ψ ∈ R, we have

|ϱ(l)− ϱ(m)| =
∣∣∣ 3
√

n sin πl + n̂ − 3
√

n sin πm + n̂
∣∣∣

⩽ 3
√
|n(sin πl − sin πm)|

⩽ 3
√

nπ|l − m|
1
3 .

Thus,

∥ϱ∥ω2
= |ϱ(0)|+ sup

{
|ϱ(l)− ϱ(m)|
ω2(d(l, m))

: l, m ∈ [0, 1], l ̸= m
}

=
∣∣∣ 3
√

n̂
∣∣∣+ sup

{
|ϱ(l)− ϱ(m)|

|l − m|
1
3

: l, m ∈ [0, 1], l ̸= m

}

⩽
∣∣∣ 3
√

n̂
∣∣∣+ sup

{
3
√

nπ|l − m|
1
3

|l − m|
1
3

: l, m ∈ [0, 1], l ̸= m

}
⩽ 3

√
n̂ + 3

√
nπ = P

which means that the condition (i) of Theorem 4 is fulfilled.
Further, we have

|k(l, z)− k(m, z)| =
∣∣∣ 5
√

5l2 + z − 5
√

5m2 + z
∣∣∣

⩽ 5
√
|5l2 − 5m2|

⩽ 5√10|l − m|
1
5

for all l, m ∈ [0, 1]. The condition (ii) of Theorem 4 holds with kω2 = 5
√

10, d(l, m) = |l − m|
and ω2(d(l, m)) = |l − m|1/5.

Since

sup
{∫ 1

0
|k(l, z)|dz : l ∈ [0, 1]

}
= sup

{∫ 1

0

∣∣∣ 5
√

5l2 + z
∣∣∣dz : l ∈ [0, 1]

}
=

5
6
(5l2 + z)6/5|10

⩽
5
6
(6 5
√

6 − 5 5
√

5),

the constant K can be taken as K = 5
6 (6

5
√

6 − 5 5
√

5).
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Since
η2 = max{1, ω2(diam[0, 1])} = max

{
1, 1

1
5

}
= 1,

we have

|(Vχ)(z)| =
√
|χ(z)| ⩽

√
∥χ∥∞ ⩽

√
η2∥χ∥ω2

=
√
∥χ∥ω2

(14)

for all χ ∈ Cω2 [0, 1] and z ∈ [0, 1]. (14) yields that

∥Vχ∥∞ ⩽
√
∥χ∥ω2

for all χ ∈ Cω2 [0, 1]. Therefore, V is an operator from Cω2 [0, 1] into C[0, 1] and we can
choose the function f : R+ → R+ as f (χ) =

√
χ. This function is non-decreasing and

verifies the assumption (iii).
Now, we prove that V is continuous on Cω2 [0, 1] with ∥.∥ω1

. Let ψ ∈ Cω2 [0, 1] and
ε > 0. Also, let χ ∈ Cω2 [0, 1] be an arbitrary function satisfying ∥χ − ψ∥ω1

< δ such that
0 < δ ⩽ ε2.

The inequality

|(Vχ)(z)− (Vψ)(z)| =
√
|χ(z)− ψ(z)| ⩽

√
∥χ − ψ∥∞ ⩽

√
η1∥χ − ψ∥ω1

holds for all χ, ψ ∈ Cω2 [0, 1] and z ∈ [0, 1]. Since

η1 = max{1, ω1(diam[0, 1])} = max{1, 1α} = 1,

we have

∥Vχ − Vψ∥∞ ⩽
√
∥χ − ψ∥ω1

for all χ, ψ ∈ Cω2 [0, 1].
Hence, V is continuous at the point ψ ∈ Cω2 [0, 1] with ∥.∥ω1

since ψ is arbitrarily
selected.

P + [η2K + K + η2kω2(q − p)] f (r)r ⩽ r

is equivalent to

3
√

n̂ + 3
√

nπ +

[
5
3

(
6 5
√

6 − 5 5
√

5
)
+

5√10(1 − 0)
]

r
√

r ⩽ r. (15)

If we take the constants n and n̂ as suitable, then there exists a positive number r0
satisfying (15). For instance, if we select n = 0 and n̂ = 0, then (15) holds for r = r0 ∈
(0, 0.0517272].

Therefore, we show the existence of the solution for Equation (13) in the space Cω1 [0, 1]
via Theorem 4.

Application 2. Consider the following quadratic integral equation:

χ(l) =
1

100

√
arctan(l − 1) + χ(l)

∫ e

1

3
√

ln l + ln z
z

sin χ(z)dz, (16)

where l, z ∈ [1, e].
Set ϱ(l) = 1

100

√
arctan(l − 1), k(l, z) =

3√ln l+ln z
z , (Vχ)(z) = sin χ(z) and ω2(ε) = ε

1
3 ,

ω1(ε) = εα for 0 < α < 1/3, d(l, m) = |ln l − ln m|.
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Since the function h : R+ → R+ defined by h(χ) =
√

χ is concave and h(0) = 0, this
function is subadditive from Remark 4.5 in [24] ref IS CHANGED AS cite. If we consider
|arctan χ − arctan ψ| ⩽ |χ − ψ| for χ, ψ ∈ R, we can write

|ϱ(l)− ϱ(m)| =

∣∣∣∣ 1
100

√
arctan(l − 1)− 1

100

√
arctan(m − 1)

∣∣∣∣
⩽

1
100

√
|arctan(l − 1)− arctan(m − 1)|

⩽
1

100

√
|l − m|

for all l, m ∈ [1, e].
Let l < m, so there is ξ ∈ (l, m) satisfying

|ln l − ln m| = 1
ξ
|l − m|

which yields that

|ln l − ln m| ⩾ 1
e
|l − m|

and hence
1

|ln l − ln m|
1
3
⩽

3
√

e

|l − m|
1
3

for all l, m ∈ [1, e] and l ̸= m.
Since

∥ϱ∥ω2
= |ϱ(1)|+ sup

{
|ϱ(l)− ϱ(m)|
ω2(d(l, m))

: l, m ∈ [1, e], l ̸= m
}

= sup

{
|ϱ(l)− ϱ(m)|
|ln l − ln m|

1
3

: l, m ∈ [1, e], l ̸= m

}

⩽
3
√

e
100

sup
{
|l − m|

1
6 : l, m ∈ [1, e], l ̸= m

}
⩽

1
50

= P,

assumption (i) of Theorem 4 is satisfied.
Further, we have

|k(l, z)− k(m, z)| =
1
z

∣∣∣ 3
√

ln l + ln z − 3
√

ln m + ln z
∣∣∣

⩽
1
z

3
√
|ln l − ln m|

⩽ |ln l − ln m|
1
3

= ω2(d(l, m))

for all l, m, z ∈ [1, e]. Condition (ii) of Theorem 4 holds with the constant kω2 = 1.
Also,

sup
{∫ e

1
|k(l, z)|dz : l ∈ [1, e]

}
= sup

{∫ e

1

∣∣∣∣∣ 3
√

ln l + ln z
z

∣∣∣∣∣dz : l ∈ [1, e]

}

⩽
∫ e

1

3
√

1 + ln z
z

dz

=
3
4

(
3
√

16 − 1
)

.
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So the constant K can be taken as 3
4

(
3
√

16 − 1
)

.
Since

η2 = max{1, ω2(diam[1, e])} = max
{

1, (ln e − ln 1)
1
3

}
= 1,

the estimate

|(Vχ)(z)| = |sin χ(z)| ⩽ |χ(z)| ⩽ ∥χ∥∞ ⩽ η2∥χ∥ω2
= ∥χ∥ω2

holds for all χ ∈ Cω2 [1, e] and z ∈ [1, e], and hence

∥Vχ∥∞ = sup
z∈[0,1]

|(Vχ)(z)| ⩽ ∥χ∥ω2
.

Therefore, V is an operator from Cω2 [1, e] into C[1, e], and we can take the function f :
R+ → R+ as f (χ) = χ. It is obvious that the function f is non-decreasing and satisfies
assumption (iv).

Now, we show that the operator V is continuous on Cω2 [1, e] with ∥.∥ω1
. Let ψ ∈ Cω2 [1, e]

be arbitrarily selected, ε > 0 and χ ∈ Cω2 [1, e] be an arbitrary function, and inequality
∥χ − ψ∥ω1

< δ be satisfied such that 0 < δ ⩽ ε.
Then, for arbitrary l, m ∈ [1, e], we obtain

|sin χ(z)− sin ψ(z)| ⩽ |χ(z)− ψ(z)| ⩽ ∥χ − ψ∥∞ ⩽ η1∥χ − ψ∥ω1
= ∥χ − ψ∥ω1

,

where
η1 = max{1, ω1(diam[1, e])} = max{1, (ln e − ln 1)α} = 1.

Thus,

∥Vχ − Vψ∥∞ = sup
z∈[0,1]

|sin χ(z)− sin ψ(z)| ⩽ ∥χ − ψ∥ω1

which implies
∥Vχ − Vψ∥∞ < δ ⩽ ε

is satisfied for all χ ∈ Cω2 [1, e]. This proves that the operator V is continuous at the point
ψ ∈ Cω2 [1, e], and it is continuous on Cω2 [1, e] with ∥.∥ω1

because ψ is arbitrarily selected.
Hypothesis (iv) of Theorem 4

P + [η2K + K + η2kω2(q − p)] f (r)r ⩽ r

is equivalent to
1

50
+

[
3
2

(
3
√

16 − 1
)
+ (e − 1)

]
r2 ⩽ r. (17)

The number r0 chosen as r0 ∈ [0.0219212, 0.228201] satisfies inequality (17).
Therefore, we show the existence of solution for Equation (16) in the space Cω1 [1, e]

via Theorem 4.

5. Conclusions

In this paper, using a fixed-point theorem, the existence conditions for the solution of
Fredholm integral equations of the form

χ(l) = ϱ(l) + χ(l)
∫ q

p
k(l, z)(Vχ)(z)dz

are investigated in the space Cω [p, q]. The main theorem is based on a useful technique.
It is clear that this theorem is more general than many equations considered so far. By
using a sufficient condition for the relative compactness in the space of functions with
tempered moduli of continuity (see Theorem 2) and the classical Schauder fixed-point
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theorem, we derive a new existence result (see Theorem 4). Fredholm integral equations
are used in various scientific and engineering disciplines to model phenomena like heat
transfer, population dynamics, and signal processing. The established results in this paper
could be applied to problems in these fields where existence of solutions is crucial for
model validity. The existence theorems provide a theoretical foundation for developing
numerical methods to solve Fredholm integral equations. By guaranteeing the existence
of a solution, these results can help guide the development of more robust and efficient
numerical algorithms.
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