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Abstract: In this paper, we introduce the concept of monotonicity according to a direction for a set
of random variables. This concept extends well-known multivariate dependence notions, such as
corner set monotonicity, and can be used to detect dependence in multivariate distributions not
detected by other known concepts of dependence. Additionally, we establish relationships with
other known multivariate dependence concepts, outline some of their salient properties, and provide
several examples.
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1. Introduction

There are numerous methodologies and approaches available for the exploration
and analysis of the intricate relationships of dependence among random variables. As
underscored by Jogdeo [1], this area stands as a cornerstone of extensive research within
the expansive domains of probability theory and statistics. The investigation of dependence
among variables is fundamental in understanding the underlying structure and behavior
of complex systems, making it a focal point of study across various scientific disciplines.

When delving into the examination of a multivariate model, it becomes imperative to
conduct a thorough analysis of the specific type of dependence structure it encapsulates.
This meticulous scrutiny is essential for discerning the suitability of a particular model for a
given dataset or practical application. By comprehensively understanding the nature of de-
pendence presents, researchers can make informed decisions regarding model selection and
parameter estimation, thereby enhancing the robustness and reliability of their analyses.

Within the vast landscape of studied dependence types, our attention is particularly
drawn to the nuanced distinctions between positive and negative dependence. Positive
dependence expresses a tendency for the variables to move in the same direction, exhibit-
ing a mutual influence that often reflects synergistic relationships. Conversely, negative
dependence denotes an inverse relationship, where the movement of one variable is ac-
companied by a corresponding opposite movement in another, indicative of regulatory or
inhibitory interactions.

By elucidating the intricacies of positive and negative dependence, researchers gain
valuable insights into the underlying dynamics of the systems under study. This deeper
understanding not only enriches theoretical frameworks but also has practical implications
in various fields, including finance, engineering, and epidemiology. Moreover, it under-
scores the importance of considering diverse dependence structures in statistical modeling,
ensuring that analyses accurately capture the complexities of real-world phenomena.

Positive dependence is defined by any criterion capable of mathematically characteriz-
ing the inclination of components within an n-variate random vector to assume concordant
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values [2]. As emphasized by Barlow and Proschan [3], the concepts of (positive) de-
pendence in the multivariate context are more extensive and intricate compared to the
bivariate case.

The literature contains various extensions of the bivariate dependence concepts to the
multivariate domain (we refer to [4–7] for more details). Our objective in this study is to
extend certain established notions of multivariate positive and negative dependence. This
includes the exploration of concepts such as orthant dependence and corner set monotonic-
ity, investigating their connections with other dependence concepts and presenting several
associated properties.

The paper is organized as follows. We begin with some preliminaries (Section 2)
pertaining to the properties of multivariate dependence. This section serves to lay the foun-
dation for our subsequent analyses by elucidating key concepts and frameworks, essential
for understanding the complexities of dependence structures among random variables.
Following the preliminaries, in Section 3, we delve into the concept of monotonic random
variables with respect to a given direction. This extends the notion of corner set monotonic-
ity and provides a more nuanced understanding of the directional dependence present in
multivariate systems. We further explore several properties pertaining to these monotonic
random variables and provide some examples. Finally, Section 4 is dedicated to presenting
our conclusions drawn from the analyses and discussions shown in the preceding sections.

2. Preliminaries

In the sequel, by convention, we will indistinctly use “increasing” (respectively,
“decreasing”) and “nondecreasing” (respectively, “nonincreasing”). In addition, a sub-
set A ⊆ Rd, with d ≥ 1, is an increasing set if its indicator function χA is increasing.

Let n ≥ 2 be a natural number. Let (Ω,F ,P) be a probability space, where Ω is a
nonempty set, F is a σ-algebra of subsets of Ω, and P is a probability measure on F , and
let X = (X1, X2, . . . , Xn) be an n-dimensional random vector from Ω to IRn

= [−∞, ∞]n.
The orthant dependence according to a direction is defined as follows [8]: Let

α = (α1, α2, . . . , αn) be a vector in Rn such that |αi| = 1 for all i = 1, 2, . . . , n. An n-
dimensional random vector X—or its joint distribution function—is said to be orthant
positive (respectively, negative) dependent according to direction α—written PD(α) (respectively,
ND(α))—if

P
[

n⋂
i=1

(αiXi > xi)

]
≥

n

∏
i=1

P[αiXi > xi] for all (x1, x2, . . . , xn) ∈ Rn
(1)

(respectively, with the reversed inequality in (1)).
Note that for some elections of direction α—e.g., for α = 1 = (1, 1, . . . , 1) or α =

−1 = (−1,−1, . . . ,−1)—we obtain different known (bivariate and multivariate) depen-
dence concepts in the literature, as positive quadrant dependence, positive upper orthant
dependence, etc. (we refer to [2,7,9–12] for more details).

Let X be an n-dimensional random vector. The following two multivariate positive
dependence notions—on corner set monotonicity—were introduced in [13], where the
expression “nonincreasing in x”—and similarly for nondecreasing—means that it is nonin-
creasing in each of the components of x, and X ≤ x means Xi ≤ xi for all i = 1, 2, . . . , n:

1. X is left corner set decreasing, denoted by LCSD(X), if

P[X ≤ x|X ≤ x′] is nonincreasing in x′ for all x. (2)

2. X is right corner set increasing, denoted by RCSI(X), if

P[X > x|X > x′] is nondecreasing in x′ for all x. (3)
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The corresponding negative dependence concepts LCSI(X) (left corner set increasing)
and RCSD(X) (right corner set decreasing) are defined in a similar manner by exchanging
“nondecreasing” and “nonincreasing” in (2) and (3), respectively.

Let H be the joint distribution function of X. We note that condition (2) can be written as

H(x ∧ x′)
H(x′)

is nonincreasing in x′ for all x,

where x ∧ x′ = (min{x1, x′1}, min{x2, x′2}, . . . , min{xn, x′n}). Denoting by H the survival
function of H, i.e., H(x) = P[X > x], condition (3) can be written as

H(x ∨ x′)
H(x′)

is nondecreasing in x′ for all x,

where x ∨ x′ = (max{x1, x′1}, max{x2, x′2}, . . . , max{xn, x′n}).
For properties of these notions and relationships with other multivariate dependence

concepts, see, e.g., refs. [7,14].

3. Monotonic Dependence According to a Direction

In this section, we undertake a comprehensive examination of the concepts of left-
corner set and right-corner set dependence in sequence according to a direction, delineating
their definitions within the framework of directional dependence for a set of random vari-
ables. Building upon the foundations laid out in Section 2, where the concepts of LCSD
and RCSI were recalled, we extend these notions to incorporate directional considerations,
thus offering a more nuanced understanding of dependence structures. It is worth noting
that a similar analytical approach could be applied to explore negative dependence con-
cepts, mirroring the methodology employed for positive dependence. Furthermore, we
not only define these directional dependence concepts but also delve into some of their
salient properties.

3.1. Definition

We begin with the key definition of this work, in which for a direction α and an
n-dimensional random vector X, αX denotes the vector (α1X1, α2X2, . . . , αnXn).

Definition 1. Let X be an n-dimensional random vector and α = (α1, α2, . . . , αn) ∈ Rn such that
|αi| = 1 for all i = 1, 2, . . . , n. The random vector X—or its joint distribution function—is
said to be increasing (respectively, decreasing) according to the direction α—denoted by I(α)
(respectively D(α))—if

P
[
αX > x|αX > x′

]
is nondecreasing (respectively, nonincreasing) in x′ for all x.

In the sequel, we focus on the I(α) concept. Similar results can be obtained for the D(α)
concept, so we omit them.

Observe that the I(α) concept generalizes the LCSD and RCSI concepts defined in
Section 2; that is, I(−1) (respectively, I(1)) corresponds to LCSD (respectively, RCSI).

We wish to emphasize that, in general, the I(α) concept signifies positive dependence.
This means that large values of the variables Xj, for j ∈ J, are associated with small values
of the variables Xj, for j ∈ I\J, where I = {1, 2, . . . , n} and J = {i ∈ I : αi = 1}. Therefore,
if a random vector X is I(α), then

P

⋂
j∈J

(
Xj > xj

)
,
⋂

j∈I\J

(
Xj ≤ xj

)
|
⋂
j∈J

(
Xj > x′j

)
,
⋂

j∈I\J

(
Xj ≤ x′j

)
is nondecreasing in each x′j for j ∈ J, and nonincreasing in each x′j for j ∈ I\J, for all x.
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3.2. Relationships with Other Multivariate Dependence Concepts

In this subsection, our focus lies on exploring the connections between the I(α) depen-
dence notion and several established multivariate dependence concepts within the context
of directional analysis. By examining these relationships, we aim to elucidate how the I(α)
concept aligns with or diverges from other well-known measures of dependence, thus pro-
viding a more comprehensive understanding of their interplay. Through this investigation,
we seek to uncover potential insights into the nature of multivariate dependence and its
implications in various analytical scenarios.

We begin our study by recalling the increasingness in the sequence dependence concept.

Definition 2 ([15]). Let X1, X2, . . . , Xn be n random variables and α = (α1, α2, . . . , αn) ∈ Rn

such that |αi| = 1 for all i = 1, 2, . . . , n. The random variables X1, X2, . . . , Xn are said to be
increasing in sequence according to direction α—denoted by IS(α)—if, for any xi ∈ R,

P[αiXi > xi|α1X1 > x1, . . . , αi−1Xi−1 > xi−1]

is nondecreasing in x1, x2, . . . , xi−1 ∈ R for all i = 2, 3, . . . , n.

The relationship between I(α) and IS(α) dependence concepts is given in the following result.

Proposition 1. If a random vector X is I(α), then it is IS(α).

Proof. Let x1, x2, . . . , xn, x′1, x′2, . . . , x′n ∈ R such that xi ≤ x′i for 1 ≤ i ≤ n. Since X is I(α),
for any i, 2 ≤ i ≤ n, we have

P

αiXi > xi|
i−1⋂
j=1

(αjXj > xj)

 = P

 n⋂
j=1

(
αjXj > tj

)
|

n⋂
j=1

(
αjXj > sj

)
≤ P

 n⋂
j=1

(
αjXj > tj

)
|

n⋂
j=1

(
αjXj > s′j

)
= P

αiXi > xi|
i−1⋂
j=1

(αjXj > x′j)


where

tj =

{
xi, j = i,

−∞, j ̸= i,

sj =

{
xj, for j = 1, 2, . . . , i − 1,

−∞, for j = i, . . . , n,

and

s′j =

{
x′j, for j = 1, 2, . . . , i − 1,

−∞, for j = i, . . . , n;

whence X is IS(α), which completes the proof.

The converse of Proposition 1 does not hold in general: see, for instance, (Ref. [16],
Exercise 5.33) for a counterexample in the bivariate case.

In [15], the authors establish a significant result demonstrating that the IS(α) condition
implies PD(α). Building upon this crucial insight, we can readily derive the following result,
thereby highlighting the logical consequence of this implication.

Corollary 1. If a random vector X is I(α), then it is PD(α).
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The next definition involves the concept of multivariate totally positive of order two.

Definition 3 ([17]). Let X be an n-dimensional random vector with joint density function f , and
α ∈ Rn, with |αi| = 1 for all i = 1, 2, . . . , n. Then, X is said to be multivariate totally positive of
order two according to direction α—denoted by MTP2(α)—if

f (α(x ∨ y)) f (α(x ∧ y)) ≥ f (αx) f (αy) (4)

for all x, y ∈ Rn
.

The relationship between the notions I(α) and MTP2(α) is given in the following result.

Proposition 2. If a random vector X is MTP2(α), then it is I(α).

Proof. Let X = (X1, X2, . . . , Xn) be an n-dimensional random vector such that X is MTP2(α).
Given xi, x′i ∈ R, for i = 1, 2, . . . , n, we consider three cases:

1. If xi > x′i for all i = 1, 2, . . . , n, we have that

P
[

n⋂
i=1

(αiXi > xi)|
n⋂

i=1

(
αiXi > x′i

)]
=

P
[

n⋂
i=1

(αiXi > xi)

]

P
[

n⋂
i=1

(
αiXi > x′i

)]
is nondecreasing in x′1, x′2, . . . , x′n.

2. If xi ≤ x′i for all i = 1, 2, . . . , n, we have

P
[

n⋂
i=1

(αiXi > xi)|
n⋂

i=1

(
αiXi > x′i

)]
= 1,

and hence it is nondecreasing in x′1, x′2, . . . , x′n.
3. Given j ∈ {1, 2, . . . , n}, consider, without loss of generality, xi ≤ x′i for 1 ≤ i ≤ j and

xi > x′i for j + 1 ≤ i ≤ n. Then, we have

P
[
αX > x|αX > x′

]
=

P
[

n⋂
i=1

(αiXi > xi),
n⋂

i=1

(
αiXi > x′i

)]

P
[

n⋂
i=1

(
αiXi > x′i

)]

=

P

 j⋂
i=1

(
αiXi > x′i

)
,

n⋂
i=j+1

(αiXi > xi)


P
[

n⋂
i=1

(
αiXi > x′i

)] . (5)

Since

P
[

n⋂
i=1

(
αiXi > x′i

)]
≥ P

[
n⋂

i=1

(
αiXi > x′′i

)]
for all x′i , x′′i ∈ R such that x′i ≤ x′′i for 1 ≤ i ≤ n, we have that (5) is nondecreasing in
x′j+1, . . . , x′n. In order to prove that (5) is also nondecreasing in x′1, . . . , x′j, considering

x′′1 , . . . , x′′j ∈ R such that x′i ≤ x′′i for 1 ≤ i ≤ j, we need to verify

P

 n⋂
i=j+1

(αiXi > xi)|
n⋂

i=1

(
αiXi > x′i

) ≤ P

 n⋂
i=j+1

(αiXi > xi)|
j⋂

i=1

(
αiXi > x′′i

)
,

n⋂
i=j+1

(
αiXi > x′i

). (6)
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For that, it suffices to show that the determinant

D =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P

 j⋂
i=1

(
αiXi > x′i

)
,

n⋂
i=j+1

(αiXi > xi)

 P

 j⋂
i=1

(
αiXi > x′′i

)
,

n⋂
i=j+1

(αiXi > xi)



P
[

n⋂
i=1

(
αiXi > x′i

)]
P

 j⋂
i=1

(
αiXi > x′′i

)
,

n⋂
i=j+1

(
αiXi > x′i

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
is non-positive (note that, in this case, the quotient between the elements of the first
column would be less than the quotient between the elements of the second column,
obtaining (6)). First of all, if we add the second column changed of sign to the first
column, we have

D =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P

 j⋂
i=1

(
x′i < αiXi ≤ x′′i

)
,

n⋂
i=j+1

(αiXi > xi)

 P

 j⋂
i=1

(
αiXi > x′′i

)
,

n⋂
i=j+1

(αiXi > xi)



P

 j⋂
i=1

(
x′i < αiXi ≤ x′′i

)
,

n⋂
i=j+1

(
αiXi > x′i

) P

 j⋂
i=1

(
αiXi > x′′i

)
,

n⋂
i=j+1

(
αiXi > x′i

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

and now adding to the second row, the first row with a changed sign, we obtain

D =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P

 j⋂
i=1

(
x′i < αiXi ≤ x′′i

)
,

n⋂
i=j+1

(αiXi > xi)

 P

 j⋂
i=1

(
αiXi > x′′i

)
,

n⋂
i=j+1

(αiXi > xi)



P

 j⋂
i=1

(
x′i < αiXi ≤ x′′i

)
,

n⋂
i=j+1

(
x′i < αiXi ≤ xi

) P

 j⋂
i=1

(
αiXi > x′′i

)
,

n⋂
i=j+1

(
x′i < αiXi ≤ xi

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (7)

Since X is MTP2(α), from Ref. [17] (Propositions 2 and 4), we have

h(y)h
(
y′) ≥ h

(
y′j
)

h
(

yj
)

, (8)

for any pair of vectors y, y′ ∈ Rn
such that yi ≤ y′i for all i = 1, 2, . . . , n, and for any

1 ≤ j ≤ n− 1, where y′j =
(

y′1, . . . , y′j, yj+1, . . . , yn

)
and yj =

(
y1, . . . , yj, y′j+1, . . . , y′n

)
,

and h is the joint density function of the random vector (α1X1, α2X2, . . . , αnXn). By
integrating both sides of (8) in y, y′, with x′i < yi ≤ x′′i < y′i for i = 1, 2, . . . , j and
x′i < yi ≤ xi < y′i for i = j + 1, . . . , n, we obtain

∫ x′′1

x′1
· · ·

∫ x′′j

x′j

∫ xj+1

x′j+1

· · ·
∫ xn

x′n

∫ +∞

x′′1
· · ·

∫ +∞

x′′j

∫ +∞

xj+1

· · ·
∫ +∞

xn
h(y)h

(
y′)dydy′

≥
∫ x′′1

x′1
· · ·

∫ x′′j

x′j

∫ xj+1

x′j+1

· · ·
∫ xn

x′n

∫ +∞

x′′1
· · ·

∫ +∞

x′′j

∫ +∞

xj+1

· · ·
∫ +∞

xn
h
(

y′j
)

h
(

yj
)

dydy′.

It easily follows that the determinant D in (7) is non-positive.

In the three cases, we obtain that X is I(α), which completes the proof.

In order to conclude this subsection, we summarize the relationships among the
different dependence concepts outlined above in the following scheme:

MTP2(α) ⇒ I(α) ⇒ IS(α) ⇒ PD(α).
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3.3. Properties

The subsequent results presented herein encapsulate essential properties inherent
to the I(α) families. These properties span a diverse range of scenarios, encompassing
not only the behavior of independent random variables but also extending to subsets of
the newly introduced concept IS(α), as well as the concatenation of I(α) random vectors.
Furthermore, these results touch upon topics, such as weak convergence, thereby providing
a comprehensive framework for analyzing and understanding the dynamics of multivariate
dependence within the realm of I(α) families.

Proposition 3. Every set of independent random variables is I(α) for any α ∈ Rn.

Proof. If the random variables X1, X2, . . . , Xn are independent, then for any α ∈ Rn and
for all x, x′ ∈ Rn

, we have

P
[
αX > x|αX > x′

]
=

n

∏
i=1

P
[
αiXi > xi|αiXi > x′i

]
.

Given i ∈ {1, 2, . . . , n}, consider the probability P
[
αiXi > xi|αiXi > x′i

]
. We study

two cases:

1. If xi ≤ x′i , we have
P
[
αiXi > xi|αiXi > x′i

]
= 1.

2. If xi > x′i , we have

P
[
αiXi > xi|αiXi > x′i

]
=

P[αiXi > xi]

P
[
αiXi > x′i

] .

We consider two subcases:

(a) If x′i ≤ x′′i ≤ xi, then we have

P
[
αiXi > x′i

]
≥ P

[
αiXi > x′′i

]
,

and therefore

P
[
αiXi > xi|αiXi > x′i

]
≤ P

[
αiXi > xi|αiXi > x′′i

]
.

(b) If x′i ≤ xi ≤ x′′i , then we have

P
[
αiXi > xi|αiXi > x′i

]
≤ 1 = P

[
αiXi > xi|αiXi > x′′i

]
.

In any case, we obtain that the probability P
[
αiXi > xi|αiXi > x′i

]
is nondecreasing in

x′i for any xi ∈ R and for all i = 1, 2, . . . , n, whence the result follows.

Exploring the interplay of stochastic processes, we delve into the transformation of
subsets of I(α) random variables.

Proposition 4. Every subset of I(α) random variables is I(α∗), where α∗ is the vector attained by
excluding from α the components associated with the random variables not included in the subset.

Proof. Assume that X = (X1, X2, . . . , Xn) is I(α), and let Xk = (Xi1 , Xi2 , . . . , Xik ) be a
subvector of X. Let I = {1, 2, . . . , n}. For any xi1 , xi2 , . . . , xik , x′i1 , x′i2 , . . . , x′ik ∈ R, and by
considering xi = x′i = −∞ for every i ∈ I\{i1, i2, . . . , ik}, we have

P

 k⋂
j=1

(
αij Xij > xij

)
|

k⋂
j=1

(
αij Xij > x′ij

) = P
[

n⋂
i=1

(αiXi > xi)|
n⋂

i=1

(
αiXi > x′i

)]
.
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Thus, given x′′ij
∈ R, 1 ≤ j ≤ k, such that x′ij

≤ x′′ij
, and taking x′′i = −∞ for every

i ∈ I\{i1, i2, . . . , ik}, we obtain

P
[

n⋂
i=1

(αiXi > xi)|
n⋂

i=1

(
αiXi > x′′i

)]
= P

 k⋂
j=1

(
αij Xij > xij

)
|

k⋂
j=1

(
αij Xij > x′′ij

).

Since X is I(α), we conclude that Xk is I
(
αi1 , αi2 , . . . , αik

)
, completing the proof.

Within the domain of stochastic processes, we now show that when applying strictly in-
creasing functions to the components of an I(α) random vector, the I(α) property is retained.

Proposition 5. If the random vector X = (X1, X2, . . . , Xn) is I(α), and g1, g2, . . . , gn are n real-valued
and strictly increasing functions, then the random vector (g1(X1), g2(X2), . . . , gn(Xn)) is I(α).

Proof. Let y, y′, y′′ ∈ Rn
such that y′i ≤ y′′i for all i = 1, 2, . . . , n. Since X1, X2, . . . , Xn are

I(α) and αig−1
i (αiy′i) ≤ αig−1

i (αiy′′i ) for every i = 1, 2, . . . , n, we have

P
[

n⋂
i=1

(αigi(Xi) > yi)|
n⋂

i=1

(αigi(Xi) > y′i)

]
= P

[
n⋂

i=1

(αiXi > αig−1
i (αiyi))|

n⋂
i=1

(αiXi > αig−1
i (αiy′i))

]

≤ P
[

n⋂
i=1

(αiXi > αig−1
i (αiyi))|

n⋂
i=1

(αiXi > αig−1
i (αiy′′i ))

]

= P
[

n⋂
i=1

(αigi(Xi) > yi)|
n⋂

i=1

(αigi(Xi) > y′′i )

]
,

i.e., (g1(X1), g2(X2), . . . , gn(Xn)) is I(α), which completes the proof.

For the next result, we need some additional notations. Given α = (α1, α2, . . . , αn) ∈ Rn

and β = (β1, β2, . . . , βm) ∈ Rm, (α, β) will denote concatenation, that is,
(α, β) = (α1, . . . , αn, β1, . . . , βm) ∈ IRn+m. Similar notation will be used in the case of
random vectors.

Proposition 6. If X = (X1, X2, . . . , Xn) is I(α), Y = (Y1, Y2, . . . , Ym) is I(β), and X and Y are
independent, then (X, Y) is I(α, β).

Proof. Let x, x′, x′′ ∈ Rn
and y, y′, y′′ ∈ Rm

such that x′ ≤ x′′ and y′ ≤ y′′. Since X is I(α),
Y is I(β), and X and Y are independent, then we have

P

 n⋂
i=1

(αiXi > xi),
m⋂

j=1

(β jYj > yj)|
n⋂

i=1

(αiXi > x′i),
m⋂

j=1

(β jYj > y′j)


= P

[
n⋂

i=1

(αiXi > xi)|
n⋂

i=1

(αiXi > x′i)

]
· P

 m⋂
j=1

(β jYj > yj)|
m⋂

j=1

(β jYj > y′j)


≤ P

[
n⋂

i=1

(αiXi > xi)|
n⋂

i=1

(αiXi > x′′i )

]
· P

 m⋂
j=1

(β jYj > yj)|
m⋂

j=1

(β jYj > y′′j )


= P

 n⋂
i=1

(αiXi > xi),
m⋂

j=1

(β jYj > yj)|
n⋂

i=1

(αiXi > x′′i ),
m⋂

j=1

(β jYj > y′′j )

,

whence (X, Y) is I(α, β).

The following result pertains to a closure property of the I(α) family of multivariate
distributions and, similarly, of the D(α) family.
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Proposition 7. The family of I(α) distribution functions is closed under weak convergence.

Proof. Let {Xn}n∈N be a sequence of p-dimensional random vectors such that
Xn = (X1n, X2n, . . . , Xpn) is I(α) for all n ∈ N, and{Xn}n∈N converges weakly to X. If
x, x′, x′′ ∈ Rp

are such that x′i ≤ x′′i for all i = 1, 2, . . . , p, then we have

P
[ p⋂

i=1

(αiXi > xi)|
p⋂

i=1

(αiXi > x′i)

]
= lim

n→+∞
P
[ p⋂

i=1

(αiXin > xi)|
p⋂

i=1

(αiXin > x′i)

]

≤ lim
n→+∞

P
[ p⋂

i=1

(αiXin > xi)|
p⋂

i=1

(αiXin > x′′i )

]

= P
[ p⋂

i=1

(αiXi > xi)|
p⋂

i=1

(αiXi > x′′i )

]
;

therefore, X is I(α), whence the result follows.

3.4. Examples

In this section, we delve into examples that illustrate the I(α) concept of dependence.
Through the following three examples—involving both continuous and discrete cases—,
we aim to elucidate the behavior and implications of this type of dependence in various
contexts. These examples serve to elucidate the impact on statistical analysis, decision-
making processes, and other pertinent areas of study.

Example 1. Let X = (X1, X2, . . . , Xn) be a random vector with multivariate Normal distribution
N(µ, Σ), where µ = (µ1, µ2, . . . , µn) and Σ is the covariance matrix. Let

(
rij
)
= Σ−1 such that

rij < 0 for all (i, j) with 1 ≤ i < j ≤ n—a similar study can be conducted by considering rij > 0.
The probability density function of X is given by

f (x1, x2, . . . , xn) = (2π)−n/2|Σ|−1/2exp

(
−1

2

n

∑
i=1

n

∑
j=1

rij(xi − µi)(xj − µj)

)
.

Then, for every pair (i, j) with 1 ≤ i < j ≤ n, we can express the probability density function
as follows:

f (x1, x2, . . . , xn) = f1

(
x(i)
)

f2

(
x(j)
)

exp(−rijxixj),

where x(k) = (x1, . . . , xk−1, xk+1, . . . , xn) for k = i, j and appropriate functions f1, f2. Now, given
xi, xj, x′i , x′j such that xi ≤ x′i and xj ≤ x′j, and (αi, αj) such that |αk| = 1 for k = i, j, we have

f
(

x1, . . . , αixi, . . . , αjxj, . . . , xn
)

f
(

x1, . . . , αix′i , . . . , αjx′j, . . . , xn

)
− f
(

x1, . . . , αix′i , . . . , αjxj, . . . , xn
)

f
(

x1, . . . , αixi, . . . , αjx′j, . . . , xn

)
= f1

(
x(i)
)

f1

(
x(i

′)
)

f2

(
x(j)
)

f2

(
x(j′)

)
(9)

·
[
exp(−rijαiαj(xixj + x′i x

′
j))− exp(−rijαiαj(x′i xj + xix′j))

]
.

Since
αiαj(xixj + x′i x

′
j − x′i xj − xix′j) = αiαj[(x′i − xi)(x′j − xj)] ≥ 0,

as long as αiαj > 0, then (9) is non-negative if, and only if, αiαj > 0. Then we have that, for
any α = (α1, α2, . . . , αn) ∈ Rn such that |αi| = 1 for all i = 1, 2, . . . , n, the random vector
X is MTP2(α) if, and only if, αiαj > 0 for any election of (i, j)—see Theorem 3 of [17]. From
Proposition 2, we conclude that X is I(α) for α = 1 and α = −1.
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Example 2. Let X = (X1, X2, . . . , Xn) be a random vector with Dirichlet distribution Dir(γ),
with γ = (γ1, γ2, . . . , γn; γn+1), and such that γi > 0 for all i = 1, 2, . . . , n and γn+1 ≥ 1. The
probability density function is given by

f (x1, x2, . . . , xn) =
Γ
(

∑n+1
i=1 γi

)
∏n+1

i=1 Γ(γi)

n

∏
i=1

xγi−1
i

(
1 −

n

∑
i=1

xi

)γn+1−1

,

with xi ≥ 0 and ∑n
i=1 xi ≤ 1. Given any selection of (i, j), with 1 ≤ i < j ≤ n, and any real

numbers xi, xj, x′i , x′j such that xi ≤ x′i and xj ≤ x′j, we have

f
(

x1, . . . , xi, . . . , xj, . . . , xd
)

f
(

x1, . . . , x′i , . . . , x′j, . . . , xd

)
− f (x1, . . . , x′i , . . . , xj, . . . , xd) f (x1, . . . , xi, . . . , x′j, . . . , xd)

=

[Γ
(

∑n+1
i=1 γi

)
∏n+1

i=1 Γ(γi)

]2 n

∏
k=1
k ̸=i,j

x2(γk−1)
k xγi−1

i (x′i)
γi−1x

γj−1
j (x′j)

γj−1

·
{
1 −

n

∑
k=1
k ̸=i,j

xk − xi − xj


1 −

n

∑
k=1
k ̸=i,j

xk − x′i − x′j




γn+1−1

−


1 −

n

∑
k=1
k ̸=i,j

xk − x′i − xj


1 −

n

∑
k=1
k ̸=i,j

xk − xi − x′j




γn+1−1}
. (10)

Since 1 −
n

∑
k=1
k ̸=i,j

xk − xi − xj


1 −

n

∑
k=1
k ̸=i,j

xk − x′i − x′j



−

1 −
n

∑
k=1
k ̸=i,j

xk − x′i − xj


1 −

n

∑
k=1
k ̸=i,j

xk − xi − x′j


= xix′j + x′i xj − x′i x

′
j − xixj = −(x′i − xi)(x′j − xj) ≤ 0

and γn+1 ≥ 1, then (10) is non-positive; therefore, we have that X is MRR2(1), that is, X is
a multivariate reverse rule of order two—the corresponding negative analog to (4) by reversing
the inequality sign in (Ref. [17], Theorem 3)—according to the direction (1, 1, . . . , 1). Thus, by
applying the corresponding negative dependence concept, in a manner similar to that provided in
Proposition 2 for the corresponding positive dependence concept, we conclude that X is D(1).

Example 3. Let X = (X1, X2, . . . , Xn) be a random vector with a multinomial distribution with
parameters N (number of trials) and p = (p1, p2, . . . , pn) (event probabilities) such that pi ≥ 0 for
all i = 1, 2, . . . , n and 0 < ∑n

i=1 pi < 1. The joint probability mass function is given by

f (x1, x2, . . . , xn) =
N!

∏n
i=1 xi!(N − ∑n

i=1 xi)!

n

∏
i=1

pxi
i

(
1 −

n

∑
i=1

pi

)N−∑n
i=1 xi

,

where ∑n
i=1 xi ≤ N. The multinomial distribution function is the conditional distribution function of

independent Poisson random variables given their sum. As a consequence of (Ref. [5], Theorem 4.3)
and (Ref. [17], Theorem 3), we have that X is MRR2(1). Thus, we conclude that X is D(1).

Remark 1. We want to note that by considering a similar reasoning to that given in Example 3,
we have that any random vector with multivariate hypergeometric distribution—the conditional
distribution function of independent binomial random variables given their sum—is also D(1).
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Now we provide an illustrative example demonstrating the application of
Proposition 7 regarding weak convergence.

Example 4. Let X = (X1, X2, . . . , Xn) be a random vector with joint distribution function

Hθ(x) = exp

−( n

∑
i=1

e−θxi

)1/θ


for all x ∈ Rn
, and θ ≥ 1. This parametric family of distribution functions is a multivariate

generalization of the Type B bivariate extreme-value distributions (see [16,18]). By applying
(Ref. [19], Theorem 2.11)—which involves log-convex functions [20]—we have that the random
vector X is I(−1). Consider the sequence of distribution functions {Hθ}θ∈N. When θ goes to
∞, we get H∞(x) = min(F1(x1), F2(x2), . . . , Fn(xn)), where Fi, with i = 1, 2, . . . , n, are the
one-dimensional marginals of Hθ ; therefore, as a consequence of Proposition 7, we obtain that Hθ is
I(−1) as well.

4. Conclusions

In this paper, we have undertaken a significant endeavor by introducing a novel
concept of monotonicity, characterized by its directionality, for a set of random variables.
This extension of existing multivariate dependence concepts represents a substantial con-
tribution to the field, offering a more nuanced understanding of dependence structures.
Moreover, we have not only defined this directional monotonicity concept but also delved
into its implications by establishing relationships with other well-known multivariate
dependence concepts. These comparative analyses shed light on the interconnectedness
and compatibility between different analytical approaches, enriching our understanding of
multivariate dependence. The exploration of I(α) stochastic orders—closely resembling
those studied in [21]—is ongoing and represents a fertile ground for future research.
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