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1. Introduction and Preliminaries

We consider the following generalization of the Lambert transform introduced by [1] as

(GLM[ f ])(x) =
∫ ∞

0
f (t)

xt
ext − a

dt, x > 0, a ∈ R, |a| ≤ 1, (1)

given that f ∈ Ω, where Ω represents the set of functions f that are continuous on (0, ∞)
and meet the order estimates outlined in [1]:

f (t) =

{
O(tξ), as t → 0+,
O(tδ), as t → +∞,

where ℜ(ξ) > −2. The parameter δ appearing in the order estimates has no restrictions.
For |a| ≤ 1, x ∈ (0, ∞), t ∈ (0, ∞) one has

xt
ext − a

≤ xt
ext − 1

≤ 1.

Moreover, for a ̸= 1 one has

lim
x→0+

xt
ext − a

= 0,

and

lim
x→+∞

xt
ext − a

= lim
x→+∞

t
text = 0.

Notice that the kernel of transform (1) adheres to the relation

xt
ext − a

= xt
∞

∑
k=1

ak−1e−kxt, |a| ≤ 1, x ∈ (0, ∞), t ∈ (0, ∞),
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as a sum of a geometric series.
Widder [2] introduced the Lambert transform of a suitable function f as

F(x) =
∫ ∞

0
f (t)

1
ext − 1

dt, x > 0.

Widder examined the convergence characteristics and derived an inversion formula for this
transform. Subsequently, Goldberg [3] investigated transforms featuring kernels expressed
as ∑∞

k=1 ake−kxt, exploring a broad range of sequences of real numbers {ak}. An L-transform
is an integral transform of the form

(L[ f ])(x) =
∫ ∞

0
f (t)

∞

∑
k=1

ake−kxtdt, x > 0. (2)

Negrín [4] obtained an inversion formula for this transform over distributions of compact
support on (0, ∞), which is connected with the Post–Widder inversion formula for the
distributional Laplace transform [5] (p. 243).

Various authors have investigated different aspects of the Lambert transform and
inversion formulae. Among the notable findings, Miller [6] examined the convergence prop-
erties of the Lambert transform, crucial for developing inversion formulae, and introduced
summability techniques for power series utilizing the Lambert transform [7]. Widder [2]
derived an inversion formula in terms of a limit of derivatives involving the Möbius func-
tion. Several inversion formulae related to Widder’s formula were explored in [8,9]. Raina
and Srivastava [1] introduced a generalized Lambert transform linked with the generalized
Riemann zeta function, with its inversion formula detailed in [10]. Goldberg [3] introduced
a more general kernel for the Lambert transform, employing it to derive inversion formulae
for transforms as Stieltjes [11] and Fourier cosine [12]. Raina and Nahar [13] proposed a
Lambert transform generalization associated with a class of functions related to the Hur-
witz zeta function. Ferreira and López [14] derived asymptotic expansions of the Lambert
transform for both large and small values of the variable. Maan et al. [15] explored the
generalized Lambert transform over Lebesgue spaces and extended their work to Boehmian
spaces. Recently, González and Negrín [16] derived a Post–Widder-type inversion formula
applicable to a Widder–Lambert-type integral transform. Additionally, we establish an Lp

inversion formula, where 1 < p ≤ 2, for this transform, utilizing the Mellin transform. The
inversion formulae obtained by the authors are used to obtain an interesting approach to
the famous Riemann hypothesis by means of the Salem equivalence.

For f ∈ L1((0, ∞), t−ρdt), ρ > 0, the generalized Stieltjes transform of f is defined by

(GST[ f ])(x) =
∫ ∞

0

f (t)
(x + t)ρ dt, x > 0, ρ > 0. (3)

T. S. Stieltjes introduced the Stieltjes transform in connection with the semi-infinite
interval moment problem [17]. Since then, it has become a valuable tool in various fields
such as continuous fractions, probability, and signal processing. While the classical Stielt-
jes transform has been extended to spaces of generalized functions by multiple authors
(referenced in [18]), the exploration of the generalized Stieltjes transform’s characteristics
has been undertaken in works by different authors [19,20]. Its application is not confined
to classical functions; it has also been applied to transforms of distributions [21]. The
expansion of the Fourier transform to generalized functions has proven instrumental in
studying partial differential equations. The theory and applications of integral transforms
of generalized functions have witnessed active research over the last two decades. Despite
numerous advancements, it is challenging to encompass all types of such transforms in one
survey article. This study aims to analyse recent developments in the generalized Stieltjes
transform. Recent studies have extensively explored its properties over weighted Lebesgue
spaces and distributions of compact support [22].
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Let α, β ∈ R, α ̸= 0. For f ∈ L1((0, ∞), tβ−αdt), the Stieltjes–Poisson transform of f is
defined by

(SPT[ f ])(x) =
∫ ∞

0
f (t)

tβ

xα + tα
dt, x > 0. (4)

For the case when α = 1 and β = 0, the resulting transformation is the Stieltjes transform
explored by Widder [23] and Goldberg [11], among other researchers. Also, for the case
when α = 2 and β = 1, the resulting transformation is known as the Poisson transform,
studied in [11,24–26] (among others).

For γ ∈ R consider the vector space Bγ consisting of all complex-valued measurable
functions f on (0, ∞) such that tγ f (t) ∈ L∞((0, ∞)).

A norm ∥ · ∥γ on Bγ is given by

∥ f ∥γ = ∥tγ f (t)∥L∞((0,∞)).

With this norm, the map

Tγ : Bγ → L∞((0, ∞))

where for any f ∈ Bγ,

(Tγ f )(t) = tγ f (t), t ∈ (0, ∞)

is an isometric isomorphism from Bγ to L∞((0, ∞)). Thus, since L∞((0, ∞)) is complete,
then the space Bγ becomes a Banach space. Observe that B0 = L∞((0, ∞)).

Integral transforms are useful tools because they can convert difficult problems in one
domain into simpler problems in another domain, often leading to easier mathematical
manipulation and solution. They can be used to solve differential equations, integral
equations, signal processing problems, image processing problems, and many other mathe-
matical and physical problems [1,2,5,8,9,13,14,17–22]. The selection of the suitable integral
transform hinges on the characteristics of the problem and the desired properties of the
transformed function. Each transform offers distinct advantages and drawbacks, and the
choice thereof depends on the specific requirements of the problem and the properties of
the original function.

Studying integral transforms from a mathematical analysis perspective offers in-
sight into their fundamental properties and theoretical foundations, essential for rigorous
mathematical understanding. This approach provides a deeper comprehension beyond
mere application, fostering innovation and advancement in mathematical theory. In this
self-contained work, a comprehensive study of the generalized Lambert transform, the
L-transform, the generalized Stieltjes transform, and the Stieltjes–Poisson transform are pre-
sented from a functional analytic point of view, emphasizing their mathematical properties.

The paper is structured into six sections. Section 2 analyses the generalized Lambert
transform (1) and the L-transform (2), Section 3 analyses the generalized Stieltjes trans-
form (3), and Section 4 analyses the Stieltjes–Poisson transform (4). Section 2 analyses
the generalized Lambert transform (1) and the L-transform (2) across spaces Bγ, resulting
in a Parseval-type relation. Section 3 conducts an analysis of the generalized Stieltjes
transform (3) across spaces Bγ, also yielding a Parseval-type relation. Section 4 presents
a systematic analysis of the Stieltjes–Poisson transform (4). Section 5 focuses on deriving
asymptotic behaviours of the generalized Lambert transform, the L-transform, the gen-
eralized Stieltjes transform, and the Stieltjes–Poisson transform. Finally, Section 6 gives
concluding notes.
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2. The Generalized Lambert Transform and the L-Transform over Bγ

In this section, we investigate the generalized Lambert transform (1) and the L-
transform (2) over the spaces Bγ. This exploration yields a Parseval-type relation as a
significant outcome.

2.1. The Generalized Lambert Transform over Bγ

From (1),

(GLM[ f ])(x) =
∫ ∞

0
f (t)

xt
ext − a

dt, x > 0, a ∈ R, |a| ≤ 1 (5)

for a suitable complex-valued function f on (0, ∞).
Note that

xt1−γ

ext − a
= xt1−γ

∞

∑
k=1

ak−1e−kxt, x > 0, t > 0, |a| ≤ 1.

Also, for n ∈ N,

n

∑
k=1

xt1−γ|a|k−1e−kxt ≤
∞

∑
k=1

xt1−γ|a|k−1e−kxt =
xt1−γ

ext − |a| ,

which is integrable on (0, ∞) for γ < 1.
Then, by using the dominated convergence theorem one has

∫ ∞

0

xt1−γ

ext − a
dt =

∫ ∞

0
lim

n→∞

n

∑
k=1

xt1−γak−1e−kxtdt

= lim
n→∞

n

∑
k=1

∫ ∞

0
xt1−γak−1e−kxtdt

=
∞

∑
k=1

∫ ∞

0
xt1−γak−1e−kxtdt. (6)

Observe that∫ ∞

0
xt1−γe−kxtdt =

∫ ∞

0
x
( u

kx

)1−γ
e−u 1

kx
du, (putting u = kxt)

=
1

x1−γk2−γ

∫ ∞

0
u1−γe−udu

=
Γ(2 − γ)

x1−γk2−γ
, γ < 1. (7)

Inserting (7) into (6) one obtains

∫ ∞

0

xt1−γ

ext − a
dt =

Γ(2 − γ)

x1−γ

∞

∑
k=1

ak−1

k2−γ
, |a| ≤ 1, γ < 1.

Clearly, ∑∞
k=1

ak−1

k2−γ converges for |a| ≤ 1 since
∣∣∣ ak−1

k2−γ

∣∣∣ ≤ 1
k2−γ and ∑∞

k=1
1

k2−γ = ζ(2 − γ),
which converges for γ < 1, with ζ(·) being the Riemann zeta function.
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Thus, for f ∈ Bγ, |a| ≤ 1, γ < 1, x > 0, one has

|(GLM[ f ])(x)| ≤
∫ ∞

0
| f (t)| xt

ext − a
dt

=
∫ ∞

0
tγ| f (t)| xt1−γ

ext − a
dt

≤ ess sup
t∈(0,∞)

{tγ| f (t)|}
∫ ∞

0

xt1−γ

ext − a
dt

= ∥ f ∥γ
Γ(2 − γ)

x1−γ

∞

∑
k=1

ak−1

k2−γ

≤ ∥ f ∥γ
Γ(2 − γ)

x1−γ
ζ(2 − γ). (8)

From this estimate one obtains, for 0 < q < ∞, |a| ≤ 1, γ < 1, and for w being a measurable
function on (0, ∞) such that w > 0 almost everywhere on (0, ∞), f ∈ Bγ∫ ∞

0
|(GLM[ f ])(x)|qw(x)dx ≤ ∥ f ∥q

γΓ(2 − γ)qζ(2 − γ)q
∫ ∞

0
x−q(1−γ)w(x)dx.

These results are summarized in the next proposition.

Proposition 1. Assume w is a measurable function on (0, ∞) such that w > 0 almost everywhere
on (0, ∞) and 0 < q < ∞, |a| ≤ 1, γ < 1. If

∫ ∞
0 x−q(1−γ)w(x)dx < ∞, then the generalized

Lambert transform (GLM) given by (5) satisfying

GLM : Bγ → Lq((0, ∞), w(x)dx)

is a bounded linear operator.

Example 1. Examples of weights w being γ < 1 are

(i) w(x) = erx, x ∈ (0, ∞), valid for r < 0 and 0 < q < 1
1−γ .

(ii) w(x) = (1 + x)r, x ∈ (0, ∞), valid for r < q(1 − γ)− 1 and 0 < q < 1
1−γ .

Remark 1. For the case γ = 0 this proposition agrees with Proposition 3.1 in [15].

The next result exhibits a Parseval relation for the generalized Lambert transform
given by (5).

Theorem 1. If f ∈ Bγ, g ∈ L1((0, ∞), dx
x1−γ ), where γ < 1, then the following Parseval rela-

tion holds: ∫ ∞

0
(GLM[ f ])(x)g(x)dx =

∫ ∞

0
f (x)(GLM[g])(x)dx.

Proof. Applying Fubini’s theorem in the following, we obtain∫ ∞

0
(GLM[ f ])(x)g(x)dx =

∫ ∞

0

∫ ∞

0
f (t)

xt
ext − a

dtg(x)dx

=
∫ ∞

0

∫ ∞

0
g(x)

xt
ext − a

dx f (t)dt

=
∫ ∞

0
f (t)(GLM[g])(t)dt.
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The Fubini theorem holds here because from (8) one has∫ ∞

0
|(GLM[ f ])(x)||g(x)|dx ≤ ∥ f ∥γΓ(2 − γ)ζ(2 − γ)

∫ ∞

0

|g(x)|
x1−γ

dx < ∞.

Observe that GLM[g] exists for g ∈ L1((0, ∞), dx
x1−γ ).

In fact, ∫ ∞

0
g(x)

xt
ext − a

dx =
∫ ∞

0

g(x)
x1−γ

x2−γt
ext − a

dx.

Now, for γ < 1,

x2−γt
ext − a

→ 0, as x → 0+,

and
x2−γt
ext − a

→ 0, as x → +∞.

Then, for each t ∈ (0, ∞),

∫ ∞

0
|g(x)| xt

ext − a
dx =

∫ ∞

0

|g(x)|
x1−γ

x2−γt
ext − a

dx

≤ Nt

∫ ∞

0

|g(x)|
x1−γ

dx < ∞,

where Nt > 0 satisfies x2−γt
ext−a ≤ Nt for all x ∈ (0, ∞).

Remark 2. For the case γ = 0 this theorem agrees with Theorem 3.3 in [15].

Observe that for γ < 1, f ∈ Bγ, x ∈ (0, ∞),∣∣∣x1−γ(GLM[ f ])(x)
∣∣∣ ≤ ∥ f ∥γΓ(2 − γ)ζ(2 − γ),

and so

∥GLM[ f ]∥1−γ ≤ ∥ f ∥γΓ(2 − γ)ζ(2 − γ).

Therefore, one has the next result.

Proposition 2. For γ < 1, and with Bγ being defined as in Section 1, the generalized Lambert
transform (GLM) given by (5) satisfying

GLM : Bγ → B1−γ

is a bounded linear operator.

2.2. The L-Transform over Bγ

From (2),

(L[ f ])(x) =
∫ ∞

0
f (t)

∞

∑
k=1

ake−kxtdt, x > 0, for some ak, k ∈ N, (9)

and for a suitable complex-valued function f on (0, ∞), we obtain formula (3) of [3].
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For this case, when the sequence {ak}∞
k=1 is bounded consisting of non-negative

numbers with a1 > 0 and {bn}∞
n=1 being the (unique) sequence such that

∑
d|m

adbm|d =

{
1, m = 1,
0, m = 2, 3, · · · ,

(10)

with the summation running over all the divisors d of m and {bn}∞
n=1 also being bounded,

then an inversion formula via Post–Widder for (2) is obtained for some class of functions f
(Theorem 1 of [11]).

One observes that for the class of functions Bγ, γ < 0, Theorem 1 of [11] holds, and
thus, for these {ak}∞

k=1 and {bn}∞
n=1 we obtain an inversion formula for (2) over Bγ, γ < 0.

The result is summarized as follows:

Theorem 2 (Inversion Formula). Let {ak} be a bounded sequence of non-negative numbers with
a1 > 0. Let {bn}∞

n=1 be the (unique) sequence such that

∑
d|m

adbm|d =

{
1, m = 1,
0, m = 2, 3, · · · ,

the summation running over all the divisors d of m. If the sequence {bn}∞
n=1 is also bounded and

with f ∈ Bγ, γ < 0, then

lim
p→∞

(−1)p

p!

( p
t

)p+1 ∞

∑
n=1

bnnp(L[ f ])(p)
(np

t

)
= f (t)

almost everywhere on (0, ∞), where L[ f ] denotes the L-transform (2) of f and H(p)(z) denotes the
conventional p-th derivative of H with respect to its argument z.

As a consequence of this inversion formula one obtains the next result.

Corollary 1 (Injectivity). Assuming the hypothesis of Theorem 2 and supposing that f ,
g ∈ Bγ, γ < 0, with L[ f ] = L[g], then f = g almost everywhere on (0, ∞).

For f ∈ Bγ, γ < 0, one has some interesting relations between the L-transform (2) and
the real Laplace transform L of f given by

(L[ f ])(x) =
∫ ∞

0
f (t)e−xtdt, x > 0.

In fact, by means of Theorem 6.1 for the case r = 1 in [3], and since the corresponding
α(t) =

∫ t
0 f (u)du, t > 0, satisfies

|α(t)| ≤
∫ t

0
| f (u)|du ≤ N ·

∫ t

0
u−γdu

=
N

1 − γ
· t1−γ, t > 0, since γ < 0,

where N > 0 satisfies | f (t)| ≤ N
tγ almost everywhere on (0, ∞), with f ∈ Bγ, one obtains

∫ 1

0

|α(t)|
t2 dt ≤ N

1 − γ

∫ 1

0

t1−γ

t2 dt < ∞, for γ < 0.
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So condition 5 of Theorem 6.1 of [3] for the case r = 1 is fulfilled, and then,

(L[ f ])(x) =
∞

∑
k=1

ak(L[ f ])(kx), x > 0, f ∈ Bγ, γ < 0. (11)

Also, from Theorem 6.4 of [3] for the case r = 1, and since∫ 1

0

|α(t) log t|
t2 dt ≤ N

1 − γ

∫ 1

0

t1−γ| log t|
t2 dt = − N

1 − γ

∫ 1

0
t−1−γ log t dt < ∞, for γ < 0.

So, condition 5 of Theorem 6.4 of [3] for the case r = 1 is fulfilled, and then,

(L[ f ])(x) =
∞

∑
n=1

bn(L[ f ])(nx), x > 0, f ∈ Bγ, γ < 0. (12)

Also, for the case a = 0 of the generalized Lambert transform (1), one has

(L[ f ])(x) =
1
x
·
(

GLM
[

f (t)
t

])
(x), x > 0, f ∈ Bγ, γ < 1, (13)

and

(GLM[ f ])(x) = x · (L[t f (t)])(x), x > 0, f ∈ Bγ, γ < 0. (14)

Then, using Formulae (11) and (13) the following relation is obtained:

(L[ f ])(x) =
1
x
·

∞

∑
k=1

ak
k

(
GLM

[
f (t)

t

])
(kx), x > 0, f ∈ Bγ, γ < 0.

Also, using Formulae (12) and (14) the following relation is obtained:

(GLM[ f ])(x) = x ·
∞

∑
n=1

bn(L[t f (t)])(nx), x > 0, f ∈ Bγ, γ < −1.

There follows two examples of pairs of sequences satisfying (10).

Example 2. If ak = 1, k = 1, 2, · · · , it is well known that bn = µn, where {µn}∞
n=1 are the

Möbius numbers, defined as µ = 1, µn = (−1)s if n is the product of s distinct primes, µn = 0 if
n is divisible by a square. For this example, (10) reads

∑
d|m

µm|d =

{
1, m = 1,
0, m = 2, 3, · · · .

Note that for this example the L-transform (2) becomes

(L[ f ])(x) =
∫ ∞

0
f (t)

∞

∑
k=1

e−kxtdt

=
∫ ∞

0
f (t)

1
ext − 1

dt, x > 0.

Example 3. If a2k−1 = 1, k = 1, 2, · · · , a2k = 0, k = 1, 2, · · · , then b2k−1 = µ2k−1,
n = 1, 2, · · · , b2n = 0, n = 1, 2, · · · , [3] (p. 556, Example 2).
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Note that for this example the L-transform (2) becomes

(L[ f ])(x) =
∫ ∞

0
f (t)

∞

∑
k=1

e−(2k−1)xtdt

=
∫ ∞

0
f (t)

1
ext − e−xt dt

=
∫ ∞

0
f (t)

cosech(xt)
2

dt, x > 0.

Arguing as the preceding subsection, with ak ≤ M, for some M > 0, for all k ∈ N and
using the dominated convergence theorem one arrives at the estimate

|(L[ f ])(x)| ≤ ∥ f ∥γ · M · Γ(1 − γ)

x1−γ
ζ(1 − γ), x > 0, f ∈ Bγ, γ < 0. (15)

In fact, for γ < 0, and using the dominated convergence theorem, one has that

∫ ∞

0

t−γ

ext − 1
dt =

Γ(1 − γ)

x1−γ

∞

∑
k=1

1
k1−γ

=
Γ(1 − γ)

x1−γ
ζ(1 − γ). (16)

Thus, for f ∈ Bγ, γ < 0, x > 0 one obtains

|(L[ f ])(x)| ≤
∫ ∞

0
| f (t)|

∞

∑
k=1

ake−kxtdt

≤ M ·
∫ ∞

0
tγ| f (t)|t−γ

∞

∑
k=1

e−kxtdt

≤ M · ess sup
t∈(0,∞)

{tγ| f (t)|}
∫ ∞

0

t−γ

ext − 1
dt

= M · ∥ f ∥γ · Γ(1 − γ)

x1−γ
ζ(1 − γ) (by means of (16)),

where ak ≤ M, for all k ∈ N.
From the estimate (15) one obtains for 0 < q < ∞, γ < 0 and for w being a measurable

function on (0, ∞) such that w > 0 almost everywhere on (0, ∞), f ∈ Bγ∫ ∞

0
|(L[ f ])(x)|qw(x)dx ≤ ∥ f ∥q

γΓ(1 − γ)qζ(1 − γ)q
∫ ∞

0
x−q(1−γ)w(x)dx.

These results are summarized in the next proposition.

Proposition 3. Assume w is a measurable function on (0, ∞) such that w > 0 almost everywhere
on (0, ∞) and 0 < q < ∞, γ < 0. If

∫ ∞
0 x−q(1−γ)w(x)dx < ∞, then for the L-transform (2) one

has that

L : Bγ → Lq((0, ∞), w(x)dx)

is a bounded linear operator.

Example 4. Examples of weights w are the same as those considered in Example 1 of the previous
subsection, replacing γ < 1 by γ < 0.

The next result exhibits a Parseval relation for the L-transform.
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Theorem 3. If f ∈ Bγ, g ∈ L1((0, ∞), dx
x1−γ ), where γ < 0, then the following Parseval rela-

tion holds: ∫ ∞

0
(L[ f ])(x)g(x)dx =

∫ ∞

0
f (x)(L[g])(x)dx.

Proof. The proof is similar to that given in Theorem 2.4 using estimate (15) instead
of (8).

Observe that for γ < 0, f ∈ Bγ, x ∈ (0, ∞),∣∣∣x1−γ(L[ f ])(x)
∣∣∣ ≤ ∥ f ∥γ · M · Γ(1 − γ)ζ(1 − γ),

and so

∥L[ f ]∥1−γ ≤ ∥ f ∥γΓ(1 − γ)ζ(1 − γ).

Therefore, one has the next result.

Proposition 4. For γ < 0, and with Bγ being defined as in Section 1, the L-transform given
by (9) satisfying

L : Bγ → B1−γ

is a bounded linear operator.

3. The Generalized Stieltjes Transform over Bγ

From (3),

(GST[ f ])(x) =
∫ ∞

0

f (t)
(x + t)ρ dt, x > 0, ρ > 0 (17)

for a suitable complex-valued function f on (0, ∞).
For x > 0,

|(GST[ f ])(x)| ≤
∫ ∞

0
| f (t)|tγ t−γ

(x + t)ρ dt ≤ ∥ f ∥γ

∫ ∞

0

t−γ

(x + t)ρ dt,

where f ∈ Bγ and 1 − ρ < γ < 1.
Observe that for 1 − ρ < γ < 1,∫ ∞

0

t−γ

(x + t)ρ dt =
1
xρ

∫ ∞

0

t−γ

(1 + t
x )

ρ
dt

=
1
xρ

∫ ∞

0

v−γ

(1 + v)ρ xdv,
(

putting v =
t
x

)
=

1
xρ+γ−1 B(1 − γ, ρ + γ − 1),

where B(·, ·) denotes the beta function.
Thus, for f ∈ Bγ, 1 − ρ < γ < 1, x > 0,

|(GST[ f ])(x)| ≤ ∥ f ∥γ
1

xρ+γ−1 B(1 − γ, ρ + γ − 1). (18)

From this estimate one obtains for 0 < q < ∞, 1 − ρ < γ < 1 and for w being a measurable
function on (0, ∞) such that w > 0 almost everywhere on (0, ∞), f ∈ Bγ,∫ ∞

0
|(GST[ f ])(x)|qw(x)dx ≤ ∥ f ∥q

γ{B(1 − γ, ρ + γ − 1)}q
∫ ∞

0
x−q(ρ+γ−1)w(x)dx.
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These results are summarized in the next proposition.

Proposition 5. Assume w is a measurable function on (0, ∞) such that w > 0 almost everywhere
on (0, ∞) and 0 < q < ∞, 1 − ρ < γ < 1. If

∫ ∞
0 x−q(ρ+γ−1)w(x)dx < ∞, then for the

generalized Stieltjes transform GST one has that

GST : Bγ → Lq((0, ∞), w(x)dx)

is a bounded linear operator.

Example 5. Examples of weights w, with 1 − ρ < γ < 1, are:

(i) w(x) = erx, x ∈ (0, ∞), valid for r < 0 and 0 < q < 1
ρ+γ−1 .

(ii) w(x) = (1 + x)r, x ∈ (0, ∞), valid for r < q(ρ + γ − 1)− 1 and 0 < q < 1
ρ+γ−1 .

The next result exhibits a Parseval relation for the generalized Stieltjes transform.

Theorem 4. If f ∈ Bγ, g ∈ L1((0, ∞), dx
xρ+γ−1 ), where 1 − ρ < γ < 1, then the following

Parseval relation holds:∫ ∞

0
(GST[ f ])(x)g(x)dx =

∫ ∞

0
f (x)(GST[g])(x)dx.

Proof. The proof is similar to that given in Theorem 1 using estimate (18) instead of (8).

Now, for k ∈ N one has

Dk
t

{
1

(x + t)ρ

}
=

(−1)k(ρ)k

(x + t)ρ+k ,

where (ρ)k = ρ(ρ + 1) · · · (ρ + k − 1).
Thus, for f ∈ Ck

c ((0, ∞)), the space of compactly supported functions on (0, ∞) which
are k-times differentiable functions with continuity, one obtains(

GST[Dk f ]
)
(x) =

∫ ∞

0

(
Dk f

)
(t)

1
(x + t)ρ dt

= (−1)k
∫ ∞

0
f (t)Dk

t

{
1

(x + t)ρ

}
dt

= (ρ)k

∫ ∞

0
f (t)

1
(x + t)ρ+k dt, x > 0.

So, from Theorem 4, the next result follows.

Theorem 5. If f ∈ Ck
c ((0, ∞)), k ∈ N, 1 − ρ < γ < 1, and g ∈ L1((0, ∞), dx

xρ+γ−1 ), then

∫ ∞

0
(GSTk[ f ])(x)g(x)dx =

1
(ρ)k

∫ ∞

0

(
Dk f

)
(x)(GST[g])(x)dx,

where (GSTk[ f ])(x) =
∫ ∞

0
f (t)

(x+t)ρ+k dt, x > 0.

Observe that for 1 − ρ < γ < 1, f ∈ Bγ, x ∈ (0, ∞), and from estimate (18), one
obtains

xρ+γ−1|(GST[ f ])(x)| ≤ ∥ f ∥γB(1 − γ, ρ + γ − 1),
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and so,

∥GST[ f ]∥ρ+γ−1 ≤ ∥ f ∥γB(1 − γ, ρ + γ − 1).

Therefore, one has the next result.

Proposition 6. For 1 − ρ < γ < 1, and with Bγ being as defined in Section 1, the generalized
Stieltjes transform GST given by (17) satisfying

GST : Bγ → Bρ+γ−1

is a bounded linear operator.

4. The Stieltjes–Poisson Transform over Bγ

From (4),

(SPT[ f ])(x) =
∫ ∞

0
f (t)

tβ

xα + tα
dt, α, β ∈ R, α ̸= 0, x > 0, (19)

for a suitable complex-valued function f on (0, ∞).
Note that for x > 0,

|(SPT[ f ])(x)| ≤
∫ ∞

0
| f (t)|tγ tβ−γ

xα + tα
dt

≤ ∥ f ∥γ

∫ ∞

0

tβ−γ

xα + tα
dt,

where f ∈ Bγ, 0 < β−γ+1
α < 1.

Observe that∫ ∞

0

tβ−γ

xα + tα
dt =

1
xα−β+γ−1

1
|α|B

(
β − γ + 1

α
,

α − β + γ − 1
α

)
,

where B(·, ·) denotes the beta function and 0 < β−γ+1
α < 1.

In fact,∫ ∞

0

tβ−γ

xα + tα
dt =

1
xα

∫ ∞

0

tβ−γ

1 +
( t

x
)α dt

=
1

xα−β+γ−1

∫ ∞

0

vβ−γ

1 + vα
dv,

(
putting v =

t
x

)
=

1
xα−β+γ−1

1
|α|

∫ ∞

0
y

β−γ+1
α −1(1 + y)−1dy, (putting y = vα)

=
1

xα−β+γ−1
1
|α|B

(
β − γ + 1

α
,

α − β + γ − 1
α

)
,

valid for 0 < β−γ+1
α < 1.

Thus, for f ∈ Bγ, 0 < β−γ+1
α < 1, x > 0,

|(SPT[ f ])(x)| ≤ ∥ f ∥γ
1

xα−β+γ−1
1
|α|B

(
β − γ + 1

α
,

α − β + γ − 1
α

)
. (20)
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From this estimate one obtains for 0 < q < ∞, 0 < β−γ+1
α < 1 and for w being a measurable

function on (0, ∞) such that w > 0 almost everywhere on (0, ∞), f ∈ Bγ∫ ∞

0
|(SPT[ f ])(x)|qw(x)dx ≤ ∥ f ∥q

γ
1

|α|q
{

B
(

β − γ + 1
α

,
α − β + γ − 1

α

)}q

×
∫ ∞

0
x−q(α−β+γ−1)w(x)dx.

These results are summarized in the next proposition.

Proposition 7. Assume w is a measurable function on (0, ∞) such that w > 0 almost everywhere
on (0, ∞) and 0 < q < ∞, 0 < β−γ+1

α < 1. If
∫ ∞

0 x−q(α−β+γ−1)w(x)dx < ∞, then for the
Stieltjes–Poisson transform (SPT) one has that

SPT : Bγ → Lq((0, ∞), w(x)dx)

is a bounded linear operator.

Example 6. Examples of weights w, with 0 < β−γ+1
α < 1, are:

(i) w(x) = erx, x ∈ (0, ∞), valid for r < 0 and 0 < q < 1
α−β+γ−1 (when

α − β + γ − 1 > 0), or r < 0 and 0 < q < ∞ (when α − β + γ − 1 ≤ 0).
(ii) w(x) = (1+ x)r, x ∈ (0, ∞), valid for r < q(α− β+γ− 1)− 1 and 0 < q < 1

α−β+γ−1
(when α − β + γ − 1 > 0), or r < q(α − β + γ − 1) − 1 and 0 < q < ∞ (when
α − β + γ − 1 ≤ 0).

The next result exhibits a Parseval relation for the Stieltjes–Poisson transform.

Theorem 6. If f ∈ Bγ and g ∈ L1((0, ∞), dx
xα−β+γ−1 ), where α > 0 and β + 1 − α < γ < β + 1,

then the following Parseval relation holds:∫ ∞

0
(SPT[ f ])(x)g(x)dx =

∫ ∞

0
f (x)(SPT∗[g])(x)dx,

where (SPT∗[g])(x) =
∫ ∞

0 g(t) xβ

xα+tα dt, x > 0.

Proof. Applying Fubini’s theorem in the following, we obtain

∫ ∞

0
(SPT[ f ])(x)g(x)dx =

∫ ∞

0

∫ ∞

0
f (t)

tβ

xα + tα
dtg(x)dx

=
∫ ∞

0

∫ ∞

0
g(x)

tβ

xα + tα
dx f (t)dt

=
∫ ∞

0
f (t)(SPT∗[g])(t)dt.

The Fubini theorem holds here because from (20) one has∫ ∞

0
|(SPT[ f ])(x)||g(x)|dx ≤ ∥ f ∥γ

1
|α|B

(
β − γ + 1

α
,

α − β + γ − 1
α

)
×

∫ ∞

0

|g(x)|
xα−β+γ−1 dx < ∞.

Observe that SPT∗[g] exists for g ∈ L1((0, ∞), dx
xα−β+γ−1 ) with α > 0 and β + 1 − α < γ <

β + 1.
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In fact, ∫ ∞

0
g(x)

tβ

tα + xα
dx = tβ

∫ ∞

0

g(x)
xα−β+γ−1

xα−β+γ−1

tα + xα
dx.

Now, with α > 0 and β + 1 − α < γ < β + 1,

xα−β+γ−1

tα + xα
→ 0, as x → 0+,

and
xα−β+γ−1

tα + xα
→ 0, as x → +∞.

Then, for each t ∈ (0, ∞),

∫ ∞

0
|g(x)| tβ

tα + xα
dx ≤ Nt

∫ ∞

0

|g(x)|
xα−β+γ−1 dx < ∞,

where Nt > 0 satisfies tβ · xα−β+γ−1

tα+xα ≤ Nt for all x ∈ (0, ∞).

Observe that for 0 < β−γ+1
α < 1, f ∈ Bγ, x ∈ (0, ∞), and from estimate (20), one obtains

xα−β+γ−1|(SPT[ f ])(x)| ≤ ∥ f ∥γ
1
|α|B

(
β − γ + 1

α
,

α − β + γ − 1
α

)
,

and so,

∥SPT[ f ]∥α−β+γ−1 ≤ ∥ f ∥γ
1
|α|B

(
β − γ + 1

α
,

α − β + γ − 1
α

)
.

Therefore, one has the next result.

Proposition 8. For 0 < β−γ+1
α < 1, and with Bγ being defined as in Section 1, the Stieltjes–

Poisson transform (SPT) given by (19) satisfying

SPT : Bγ → Bα−β+γ−1

is a bounded linear operator.

5. Asymptotic Behaviours over Bγ

When considering the generalized Lambert transform and using estimate (8) one has
the following.

Proposition 9. For f ∈ Bγ, γ < 1, then

lim
x→∞

{xr(GLM[ f ])(x)} = 0, for any r < 1 − γ.

In particular, for f ∈ Bγ, γ < 1,

lim
x→∞

(GLM[ f ])(x) = 0.

Also, for f ∈ B0 = L∞((0, ∞)) it follows that

lim
x→∞

{xr(GLM[ f ])(x)} = 0, for any r < 1.
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In particular, for f ∈ B0 = L∞((0, ∞)),

lim
x→∞

(GLM[ f ])(x) = 0.

When considering the L-transform and using estimate (15) one has

Proposition 10. For f ∈ Bγ, γ < 0, then

lim
x→∞

{xr(L[ f ])(x)} = 0, for any r < 1 − γ.

In particular, for f ∈ Bγ, γ < 0,

lim
x→∞

(L[ f ])(x) = 0.

Remark 3. The case when f ∈ B0 = L∞((0, ∞)) is not included in Proposition 10 because γ < 0.

When considering the generalized Stieltjes transform and using estimate (18), one has

Proposition 11. For f ∈ Bγ, 1 − ρ < γ < 1, then

lim
x→∞

{xr(GST[ f ])(x)} = 0, for any r < ρ + γ − 1.

In particular, for f ∈ Bγ, 1 − ρ < γ < 1,

lim
x→∞

(GST[ f ])(x) = 0.

Also, for f ∈ B0 = L∞((0, ∞)) it follows that

lim
x→∞

{xr(GST[ f ])(x)} = 0, for any r < ρ − 1.

In particular, for f ∈ L∞((0, ∞)) and ρ > 1,

lim
x→∞

(GST[ f ])(x) = 0. (21)

Remark 4. Note that the asymptotic behaviour (21) does not include the Stieltjes transform
(ρ = 1).

When considering the Stieltjes–Poisson transform and using estimate (20), one has

Proposition 12. For f ∈ Bγ, 0 < β−γ+1
α < 1, then

lim
x→∞

{xr(SPT[ f ])(x)} = 0, for any r < α − β + γ − 1. (22)

In particular, for f ∈ Bγ, α > 0 and β + 1 − α < γ < β + 1,

lim
x→∞

(SPT[ f ])(x) = 0. (23)

Also, for f ∈ B0 = L∞((0, ∞)), 0 < β−γ+1
α < 1, it follows that

lim
x→∞

{xr(SPT[ f ])(x)} = 0, for any r < α − β − 1. (24)

In particular, for f ∈ B0 = L∞((0, ∞)), α > 0 and −1 < β < α − 1,

lim
x→∞

(SPT[ f ])(x) = 0. (25)
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Remark 5. The asymptotic behaviours (22) and (23) hold for the Stieltjes transform (α = 1, β = 0)
when f ∈ Bγ, 0 < γ < 1, and for the Poisson transform (α = 2, β = 1) when f ∈ Bγ, 0 < γ < 2.
Note that the asymptotic behaviours (24) and (25) do not include either the Stieltjes transform or
the Poisson transform.

6. Conclusions

In conclusion, this research paper investigates the properties of the generalized Lam-
bert transform, the L-transform, the generalized Stieltjes, and the Stieltjes–Poisson trans-
form within the context of Lebesgue spaces, specifically focusing on the space Bγ. Through
our exploration we have successfully established Parseval-type relations and examined
the asymptotic behaviour of each transform. The findings not only contribute valuable
insights into the characteristics of these transforms but also provide a foundation for further
exploration of similar properties for various integral transforms over the space Bγ. Our
findings lay a foundation for further exploration of similar properties in diverse integral
transforms within the space Bγ.
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