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Abstract: This study addresses the problem of parameter estimation in spatial autoregressive models
with missing data and measurement errors in covariates. Specifically, a corrected likelihood estima-
tion approach is employed to rectify the bias in the log-maximum likelihood function induced by
measurement errors. Additionally, a combination of inverse probability weighting (IPW) and mean
imputation is utilized to mitigate the bias caused by missing data. Under several mild conditions,
it is demonstrated that the proposed estimators are consistent and possess oracle properties. The
efficacy of the proposed parameter estimation process is assessed through Monte Carlo simulation
studies. Finally, the applicability of the proposed method is further substantiated using the Boston
Housing Dataset.
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1. Introduction

Both classic linear regression models and spatial autoregressive models are used
to study the linear relationship between a response variable and multiple explanatory
variables. The former usually assumes that the observed values of the explained variable are
independent of each other. However, in fields such as economics, biology, and meteorology,
the collected data often exhibit certain spatial dependencies. Ignoring these dependencies
in statistical inference can lead to significantly biased results (see Luo [1]). The latter model,
in contrast, considers spatial dependencies, positing that a region’s response variable is
not only related to its explanatory variables but also associated with those of neighboring
regions (see Chen [2]).

Both classic linear regression models and spatial autoregressive models typically
assume that (i) the values of explanatory variables are always observable or measurable
(assuming no incomplete observation), and (ii) the observations or measurements are error-
free (assuming no measurement errors in explanatory variables) (see Bai et al. [3]). However,
these assumptions may be violated in many scientific studies and practical applications.
It is well known in statistical analysis that ignoring measurement errors and missing
observations in explanatory variables can lead to serious biases in estimation and large
standard errors, resulting in incorrect inference on the estimated regression coefficients.
Therefore, studying parameter estimation methods for spatial autoregressive models with
measurement errors and missing data in explanatory variables is of great importance.

This paper mainly studies the parameter estimation issues in spatial autoregressive
models with measurement errors and missing data in explanatory variables.

Many economic datasets are related to spatial locations, such as studies on Gross
Domestic Product, tourism, and research and development across various provinces nation-
wide (see Li [4]). Spatial data introduce spatial location information (or mutual distances)
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to cross-sectional or panel data. Spatial data are generally recognized to have locational
attributes (see Anselin [5]), assuming that variables with closer distances are more closely
related. Tobler’s First Law of Geography states that everything is related to everything else,
but nearby things are more related than distant things (see Tobler [6]).

Spatial econometrics was first proposed by Jean Paelinck in May 1974 at the Nether-
lands Statistical Conference, aiming to provide methodological foundations for econo-
metric models of urban and regional economics. Spatial econometrics primarily deals
with addressing spatial interactions (spatial autocorrelation) and spatial structures (spatial
heterogeneity) in cross-sectional and panel data regression models (see Anselin [7]). The
issues studied in spatial econometrics include (1) model setting; (2) parameter estimation;
(3) model setting testing; and (4) spatial prediction (see Anselin [8]). Spatial autoregressive
models, which incorporate spatial effects into classic regression models, are important for
studying spatial autocorrelation in data.

Research on spatial autoregressive models began early. In the 1970s, Cliff and Ord [9]
introduced spatial effects into traditional linear regression models, constructing spatial
autoregressive models. However, due to the endogeneity caused by spatial dependence,
ordinary least-squares parameter estimates are biased and inconsistent. To address this,
researchers have proposed other estimation methods to reduce or eliminate bias caused
by spatial effects, obtaining consistent parameter estimates. Anselin [5] first applied the
concentrated likelihood function method to provide the maximum likelihood estimation
(MLE) of the model. However, MLE requires solving complex likelihood functions and is
computationally expensive. Kelejian and Prucha [10] proposed the Generalized Method
of Moments for spatial autoregressive models, which is relatively simpler than MLE re-
gardless of sample size, and also provided the asymptotic properties of this estimator for
large and small samples. Lesage [11] used Bayesian methods based on Gibbs sampling to
address the parameter estimation issue in spatial autoregressive models with heteroskedas-
ticity. Lee [12] employed the GMM and 2SLS for spatial autoregressive models, deriving
the optimal GMM and proving its consistency and asymptotic normality. In a normal
distribution, the optimal GMM and ML estimates have the same limiting distribution.
The fundamental idea behind the Generalized Method of Moments (GMM) is to estimate
model parameters using the moment conditions within the model. Meanwhile, Two-Stage
Least Squares (2SLS) is a commonly employed method to address issues of endogeneity,
particularly when instrumental variables are encountered in regression analysis. Lee and
Liu [13] extended the GMM in mixed spatial autoregressive models to higher-order mixed
spatial autoregressive models. Their research showed that the GMM has computational
advantages over the usual ML, and the proposed GMM estimates were proven to be con-
sistent and asymptotically normal. Wei et al. [14] proposed a semi-parametric partially
linear varying coefficient spatial autoregressive model and introduced a quasi-maximum
likelihood method based on local linear methods to estimate model parameters.

The development of spatial econometrics in China started late, focusing primarily on
empirical studies. For example, Ma and Zhang [15] used provincial panel data in China
to analyze the impact of economic development and energy structure on haze pollution,
finding a positive spatial correlation in inter-provincial haze pollution, with provinces
having a higher proportion of coal consumption in their energy structure experiencing
more severe haze pollution. Wang et al. [16] used Chinese city panel data to analyze the
impact of high-speed rail on economic growth, finding that the opening of high-speed
rail strengthens the positive spatial dependence among Chinese cities’ GDPs and has a
positive spatial spillover effect on economic growth. Cheng and Dong [17] used panel
data from countries along the “Belt and Road” to construct a spatial econometric model to
analyze the spatial effects of trade facilitation on China’s industrial goods exports, finding a
positive spatial spillover effect. In 2010, China saw its first textbook on spatial econometrics,
authored by Shen [18], but this book focused more on modeling and simulation, with
less emphasis on theoretical derivation and proof. Overall, domestic research on spatial



Axioms 2024, 13, 315 3 of 20

autoregressive models has achieved certain results but generally exhibits a situation with
more empirical studies and fewer theoretical methods.

Spatial data with measurement errors and missing data are commonly found in
scientific research and practical applications. Although various techniques can reduce
errors and missing data, the measurement errors and missing data sometimes reach a
level that cannot be ignored. Therefore, studying spatial autoregressive models with
measurement errors and missing data in explanatory variables becomes very important.

Due to spatial dependencies, the assumption of independence among explanatory
variables in spatial data no longer holds. Under such circumstances, if one ignores the mea-
surement errors and spatial dependencies present in the data and still employs traditional
estimation methods (such as the least-squares method), this can lead to significant biases
in the estimation results (see Li [4]). In their study of spatial data linear mixed models
with measurement errors, Yi et al. [19] found that ignoring measurement errors leads to
reduced regression coefficients and increased variance. To address this issue, they proposed
a structural modeling method that obtains model parameters through maximum likelihood
estimation while considering measurement errors and uses the EM algorithm for iterative
optimization of parameters. They proved that the proposed method’s parameter estimates
have good asymptotic properties, i.e., the maximum likelihood estimates are consistent
and satisfy asymptotic normality. Huque et al. [20] explored the sensitivity of parameter
estimation in spatial regression models when explanatory variables have measurement
errors. When errors exist, parameter estimates of the model exhibit attenuation bias. They
proved the bias expression of the estimator when ignoring measurement errors, showing
that the bias is related to the degree of spatial correlation between explanatory variables and
residuals. They also proposed two strategies for obtaining consistent parameter estimates:
(1) using an estimated attenuation factor for subsequent correction and (2) linearly trans-
forming the error-prone explanatory variables. Through simulation studies, they assessed
the finite sample performance of these two methods. The results showed that both methods
can provide consistent parameter estimates, but the transformation method performs better.
They also illustrated this method using ischemic heart disease data. Zhang and Zhu [21]
proved that for spatial autoregressive models, when the explained variables have measure-
ment errors, whether or not these errors are related to the model’s disturbance terms, the
commonly used maximum likelihood estimation is inconsistent. When the null hypothesis
is rejected, using 2SLS can yield consistent parameter estimates. He and Hu [22] introduced
measurement errors of independent variables into the classic spatial autoregressive model,
establishing a univariate spatial autoregressive measurement error (USARME) model, and
proposed a parameter estimation method for this model. Their research showed that if one
does not consider the measurement errors of independent variables and directly uses the
ordinary spatial autoregressive model, the estimated parameters exhibit significant bias. As
measurement errors increase, the parameter estimation performance of the ordinary spatial
autoregressive model becomes very poor, while the USARME model still achieves good
estimation results. The feasibility and reliability of the proposed parameter estimation
method were verified through numerical simulations. Luo [1] proposed a three-stage least-
squares (3SLS) estimation method that simultaneously uses Berkson and classical types of
instrumental variables. Under mild conditions, they derived the asymptotic normality of
the estimators proposed for each type of instrumental variable.

In practical applications, for various reasons, some observations in datasets may be
missing. For example, in pharmacological studies, due to the side effects of some drugs,
some patients are unable to continue treatment and drop out mid-course, leading to missing
data. Simply ignoring these missing values not only reduces the efficiency of the study but
may also introduce systematic bias (see You [23]).

Types of missing data, classified according to the missing mechanism, can roughly
be divided into three categories: Missing Completely at Random (MCAR), Missing at
Random (MAR), and Missing Not at Random (MNAR). Among these, randomly missing
data are characterized by the distribution of missing data not depending on unobserved
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data but only on observed data (see Cheng [24]). This article mainly studies this type of
missing data, that is, whether the missing data depend only on observable (exogenous)
explanatory variables.

Typical methods for dealing with missing data include imputation and inverse prob-
ability weighting. Yang et al. [25] proposed a missing data imputation method based on
spatial clustering and spatial autoregressive models. This method first uses the DBSCAN
algorithm to cluster the dataset, then establishes a spatial autoregressive model within each
cluster to impute missing data. DBSCAN (Density-Based Spatial Clustering of Applications
with Noise) is a density-based spatial clustering algorithm designed to organize points
in a dataset into clusters separated by areas of varying density, with the capability to
identify outliers or noise points. Experimental results with meteorological data showed
that compared to cluster kernel function-based imputation and K-nearest neighbors (KNN)
imputation, this method achieves more accurate imputation results. Wang and Lee [26] con-
sidered the situation of randomly missing explanatory variables in spatial autoregressive
models. They proposed nonlinear least-squares estimation and the Generalized Method of
Moments for the model. Additionally, they proposed an inferential two-stage least-squares
estimation method. These estimation methods were analyzed and compared, revealing
that the generalized nonlinear least-squares, best-generalized two-stage least-squares, and
optimal moment estimation methods have the same asymptotic variance. Monte Carlo
simulations showed that these methods provide consistent estimates even in the presence of
unknown heteroskedastic disturbances and are more robust compared to the EM algorithm.
Luo [1] studied the situation of missing response variable data in spatial autoregressive
models. They proposed a two-stage least-squares estimation method based on IPW and
missing data imputation (2II-2SLS). They proved the consistency and asymptotic normality
of this estimator and studied its finite sample performance through simulations. The results
showed that the performance of this estimator is superior to that of the EM estimator and
the maximum likelihood estimator and that the choice of initial values has little impact on
its performance.

The above-mentioned papers have greatly enhanced our understanding of parameter
estimation in spatial autoregressive models with missing data and measurement errors.
However, current research mainly focuses on dealing with single types of data issues in
spatial autoregressive models, such as considering only missing data or only measurement
errors. In contrast, there is a relative lack of research on the more complex situation where
both measurement errors and missing data occur simultaneously in spatial autoregressive
models. This paper investigates the parameter estimation problem in spatial autoregressive
models with both measurement errors and missing data, proposing a method for parameter
estimation. The main contributions of this article are as follows:

(1) We establish a parameter estimation method for spatial autoregressive models with
missing data and measurement errors, which uses a combination of corrected likeli-
hood estimation and IPW with mean imputation to eliminate biases caused by missing
data and measurement errors.

(2) We apply the proposed method to revise and optimize traditional spatial autoregres-
sive models. Based on this, the log-likelihood function of the modified model is
presented, and explicit mathematical expressions and analyses are provided for some
key parameters, offering deeper insights into the theoretical foundation and practical
application of the model.

(3) Under some mild conditions, we prove that the proposed estimates have consistency
and oracle properties. Additionally, we conduct extensive numerical studies, proving
that our method is superior to others in terms of parameter estimation.

The rest of this paper is organized as follows. In Section 2, the parameter estimation of
spatial autoregression with missing data and measurement errors is considered, presenting
the theoretical properties of the oracle estimator and proving its consistency and asymptotic
normality. Section 3 conducts numerical comparisons and simulation studies. Section 4
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illustrates the application of the proposed method through real data analysis. The proof of
the technical results is provided in Appendix A.

2. Parameter Estimation in Spatial Autoregressive Models with Measurement Errors and
Missing Data
2.1. Spatial Autoregressive Models

We consider the following spatial autoregressive model:

Yn = Xnβ + λWnYn + εn (1)

where Yn is an n × 1 vector of the observed values of the dependent variable; Xn is an n × k
matrix of the observed values of k exogenous covariates; λ is a scalar spatial autoregressive
coefficient with |λ| < 1; Wn is a known n × n spatial weight matrix; εn is an n-dimensional
vector of regression disturbances, independently and identically distributed with mean 0
and finite variance σ2; and β is a k-dimensional vector of the regression coefficients. Let θ0 =(
σ2

0 , λ0, βT
0
)T

= (θ1,0, θ2,0, . . . , θk+2,0)
T be the true parameter point. Let Sn(λ) = In − λWn

and εn(δ) = Yn − Xnβ − λWnYn, where δ =
(
λ, βT)T . Then, following the approach of

Lee [27], the log-likelihood function of the model is given by:

ln Ln(θ) = −n
2

ln(2π)− n
2

ln σ2 + ln|Sn(λ)| −
1

2σ2 εT
n(δ)εn(δ)

= −n
2

ln(2π)− n
2

ln σ2 + ln|Sn(λ)| −
1

2σ2

[
(Sn(λ)Yn − Xnβ)T(Sn(λ)Yn − Xnβ)

]
(2)

where θ =
(
σ2, λ, βT)T

= (θ1, θ2, . . . , θk+2)
T and ln Ln(θ) is the log-likelihood function

of model (1). Let εn = (e1, e2, . . . , en)
T , Sn = Sn(λ0), and Gn = WnS−1

n . Additionally, to
ensure the large-sample properties of QMLE, some basic assumptions are listed as follows:

Assumption 1. In εn, ei, i = 1, . . . , n are independently and identically distributed, with mean
E(ei) = 0 and variance Var(ei) = σ2. For γ > 0, the moment E

(
|ei|4+γ

)
exists.

Assumption 2. For all i, j, the elements wn,ij of Wn are at most of the order of h−1
n , denoted as

O(1/hn), where the rate sequence hn can be bounded or divergent. As a normalization, wn,ii = 0
for all i.

Assumption 3. As n → ∞, n−1hn → 0.

Assumption 4. The matrix Sn is non-singular.

Assumption 5. The matrix sequences Wn and S−1
n are uniformly bounded in terms of row and

column sums.

Assumption 6. For all n, elements Xn are uniformly bounded constants. When limn→∞, n−1XT
n Xn

exists and is non-singular.

Assumption 7. For all λ in the compact parameter space Λ, which is a compact set of the parameter
space Λ, S−1

n (λ) is uniformly bounded in terms of row and column sums. The true λ0 is inside Λ.

Assumption 8. limn→∞ n−1(Xn, GnXnβ0)
T(Xn, GnXnβ0) exists and is a non-singular matrix.

Assumption 9. limn→∞ E
(

n−1 ∂2 ln Ln(θ0)
∂θ∂θT

)
exists.
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Assumption 10. For all θ in the open set H containing the true parameter point θ0, the third-order

derivative ∂3 ln Ln(θ)
∂θj∂θl ∂θm

exists. Additionally, there exists a function Mjlm such that for all θ ∈ H,∣∣∣n−1 ∂3 ln Ln(θ)
∂θj∂θl ∂θm

∣∣∣ ≤ Mjlm, where E(Mjlm) < ∞ for all j, l, m.

Assumptions 1–9 are similar to those provided by Lee [27], which are sufficient
conditions for the correctness of the global identification and the consistency and asymptotic
normality of QMLE for model (1). Assumption 1 is needed to apply the central limit theorem
by Kelejian and Prucha [28]. Assumptions 2 and 3 characterize the weight matrix for sample
size n. If hn is a bounded sequence, then Assumptions 2 and 3 are satisfied. In Case’s model,
Assumptions 2 and 3 still hold, although hn may diverge (see Case [29]). Assumption 4
is used to ensure the existence of the means and variances of the independent variables.
Assumption 5 implies that when n tends to infinity, the variance of Yn is bounded (refer to
Kelejian, Prucha [28], and Lee [27]). Assumption 6 excludes multicollinearity among the
regressors in Xn. For convenience, we assume the regressors are uniformly bounded. If not,
they can be replaced with random regressors under certain finite moment conditions (see
Lee [27]). Assumption 7 is meaningful for handling the nonlinearity of the log-likelihood
function ln|Sn(λ)|. Assumptions 8 and 9 are applicable to the asymptotic normality of
QMLE. Assumption 10 is similar to condition (C) in Fan and Li [30] and plays an important
role in the Taylor expansion of related functions.

2.2. Spatial Autoregressive Model with Missing Data and Measurement Errors

When a subset of covariates has missing values, we consider model (3). Let X(o)
i ∈ Rs

be the vector of covariates that are always observed and X(m)
i ∈ Rk be the vector of

covariates that may contain some missing components. For each observation, the indicator
Qi denotes whether X(m)

i is fully observed, i.e., if X(m)
i is fully observed, then Qi = 1;

otherwise, Qi = 0. Let vi =
(

X(o)
i

)T
∈ Rs, and as mentioned earlier, the data in this study

are randomly missing but not endogenous. This means that the probability of missing
observations may depend on variables that are always observed rather than on variables
that may have missing data. Formally:

πi0 = Pr(Qi = 1 | Xi) = Pr(Qi = 1 | X(o)
i ) = Pr(Qi = 1 | vi) (3)

In the covariate data, we assume that the dimension of the covariates X(m)
i ∈ Rk with

missing data and the dimension of the covariates involved in the missing model X(o)
i ∈ Rs

are fixed.
For the issue of missing data in covariates, the IPW method can be used to address

this. The idea of IPW is to offset potential biases due to missing data by assigning different
weights to complete observations. This approach helps mitigate biases in results estimation
due to missing covariate data, thereby achieving more accurate statistical inferences. The
probability πi0 is usually parameterized and modeled through logistic or probit regression.
Here, we assume it is generated by the following logistic regression model:

π̃i =
exp

(
ξ0 + vT

i ξ1
)

1 + exp
(
ξ0 + vT

i ξ1
) (4)

For simplicity, πi0 denotes the true probability of observation i having complete data, and
π̃i is the probability calculated based on the logistic function. Let Q = diag

(
Q1
π̃1

, Q2
π̃2

, . . . , Qn
π̃n

)
.

The weighted spatial autoregressive log-likelihood function is defined as:

ln L̃n(θ) = −n
2

ln(2π)− n
2

ln σ2 + ln|Sn(λ)| −
1

2σ2

[
(Sn(λ)Yn − Xnβ)TQ(Sn(λ)Yn − Xnβ)

]
(5)
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When Xn has measurement errors, consider the classic additive measurement er-
ror model:

Zn = Xn + Un (6)

In Equation (6), Xn cannot be directly observed, but Zn can be, where Zn is an n × k
matrix, Un is the error term with Un ∼ N(0, Σ), and εn is independent of Un. Additionally,
we assume that Un is independent of the covariate Xn.

Li [4] proposed a corrected likelihood estimation to solve the spatial autoregressive
model with measurement errors. In this case, IPW and corrected likelihood estimation are
applied to spatial autoregressive models with measurement errors and missing data.

The corrected likelihood method was initially proposed by Nakamura [31] to address
the impact of measurement errors on parameter estimation, enabling parameter estimation
without additional assumptions. The specific method is as follows:

For the classic linear regression model with measurement errors:{
Y = Xβ + ε,

Z = X + U
(7)

where Y is the dependent variable, X is the unobservable value of the explanatory variable,
β is the parameter vector, ε is the residual vector, Z is the observable vector, and U is the
measurement error.

Let L(β, X, Y), U(β, X, Y), J(β, X, Y), and I(β, X, Y) denote, respectively, the log-
likelihood function, score function, observed information, and Fisher information of model
(7) given Z and Y, with E+ being the mathematical expectation regarding the respective
variable Y. Without measurement errors in variables, the following equations hold:

E+U(β, X, Y) = 0 (8)

E+ J(β, X, Y) = I(β, X, Y) (9)

With measurement errors, if Z values are simply substituted for X, Equations (8) and (9)
do not always hold.

Thus, Nakamura’s corrected likelihood method is used to handle this model, setting
the corrected log-likelihood function L∗(β, Z, Y) to satisfy:

E∗{L∗(β, Z, Y)} = L(β, X, Y) (10)

where E∗ is the conditional expectation of Z given Y, X. Let U∗(β, Z, Y) = ∂L∗(β,Z,Y)
∂β and

J∗(β, Z, Y) = − ∂U∗(β,Z,Y)
∂β represent the corrected score function and corrected observed

information, respectively. If E∗ and ∂β are interchangeable, then:

E∗{U∗(β, Z, Y)} = U(β, X, Y) (11)

E∗{J∗(β, Z, Y)} = I(β, X, Y) (12)

If the estimation of β satisfies U∗(β∗, Z, Y) = 0, then β∗ is called a corrected likelihood
estimate. Let E = E+E∗. Then,

E{U∗(β, Z, Y)} = E+E∗{U∗(β, Z, Y)} = E+{U(β, X, Y)} = 0 (13)

This shows that the corrected score function is unbiased.

Property 1. Let F be an open convex subset of the parameter space containing β. If L∗(β, Z, Y) and
L(β, X, Y) are differentiable on F, ∑ k−2var{L∗(β, Zk, Yk)} < ∞, β is identifiable, Y is mutually
identifiable, and then U∗(β, X, Y) = 0 has a root that is consistent with probability one as n → ∞
converges in probability to 0.
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Property 2. If β∗ and βX are consistent roots of U∗(β, X, Y) = 0 and U(β, Z, Y) = 0, and if
U∗(β, X, Y) and U(β, Z, Y) meet some regularity conditions, then under the given conditions
of X and Y, (β∗ − βX) follows an asymptotic normal distribution with mean 0 and variance
I+(β, X)−1E+[var{U∗(β, Z, Y)}]I+(β, X)−1, as (n → ∞).

For model (7), the log-likelihood function is

L(β, X, Y) = −1
2

ln(2π)− 1
2

ln σ2 − 1
2σ2 (Yn − Xnβ)T(Yn − Xnβ) (14)

Define

L∗(β, Z, Y) = −1
2

ln(2π)− 1
2

ln σ2 − 1
2σ2

[
(Yn − Xnβ)T(Yn − Xnβ)− βTΣβ

]
(15)

Then,
E∗{L∗(β, Z, Y)} = L(β, X, Y) (16)

Thus, L∗(β, Z, Y) is the corrected likelihood function for model (7).
By applying Nakamura’s corrected likelihood method, the corrected likelihood func-

tion for the spatial autoregressive model with missing data and measurement errors can be
obtained (here, denote ln L̂n(θ) = L∗(λ, β, Z, Y)):

ln L̂n(θ) = −n
2

ln(2π)− n
2

ln σ2 + ln |Sn(λ)| −
1

2σ2 {
[
(Sn(λ)Yn − Znβ)TQ(Sn(λ)Yn − Znβ)

]
− βTΣβ} (17)

Next, we solve for the parameters. Differentiating both sides of the previous equation
with respect to β and σ2, we obtain the following set of equations:

∂ ln L̂n(θ)

∂β
= 0

∂ ln L̂n(θ)

∂σ2 = 0

(18)

That is,
− 1

2σ2

[
−2ZT

n Q(Sn(λ)Yn − Znβ)− 2Σβ
]
= 0

− n
2σ2 +

1
2σ4

[
(Sn(λ)Yn − Xnβ)TQ(Sn(λ)Yn − Xnβ)− βTΣβ

]
= 0

(19)

Given λ, the corrected likelihood estimate for β is:

β̂(λ) =
(

ZT
n QZn − Σ

)−1
ZT

n QSn(λ)Yn (20)

Similarly, the corrected likelihood estimate for σ2 is:

σ̂2(λ) =
1
n
{[(Sn(λ)Yn − Znβ)TQ(Sn(λ)Yn − Znβ)]− βTΣβ} =

1
n

YT
n ST

n (λ)MnSn(λ)Yn (21)

where Mn = Pz −QZn

((
ZT

n QZn − Σ
)−1
)T

Σ
(
ZT

n QZn − Σ
)−1ZT

n Q, Pz = Q−QZn
(
ZT

n QZn

−Σ)−1ZT
n Q. Substituting Equations (20) and (21) into Equation (17), the concentrated

likelihood function for λ is:

ln L̂n(λ) = −n
2
(ln(2π) + 1)− n

2
ln σ̂2(λ) + ln |Sn(λ)| (22)

The corrected likelihood estimate of λ is then found by maximizing Equation (22).
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Theorem 1 (Oracle Properties). Suppose the regularity conditions in Assumptions A1–A5 in
Appendix A hold. It is apparent that Assumptions A1–A5 are largely consistent with the earlier
Assumptions 1–8. If Assumptions A1–A5 hold, then θ̂n is globally identified, a consistent estimator,
and has an asymptotic distribution.

1. θ0 is globally identifiable, and θ̂n is a consistent estimate of θ0.

2.
√

n(θ̂ − θ0)
D→ N(0, Σ−1

θ ), where Σ−1
θ = − limn→∞ E

(
1
n

∂2 ln L̂n(θ)
∂θ∂θT

)
.

3. Simulation

Through Monte Carlo simulation, the performance and efficiency of the proposed
method were compared. We simulated 500 datasets.

The sample sizes n for each dataset were set to 100, 150, 200, and 250, respectively.
The threshold m of the weight matrix represents the number of non-zero elements in each
row of the matrix. The threshold m for the weight matrix was set to 10, 15, 20, and 25,
respectively. The spatial autoregressive coefficients λ were set to 0.5 and −0.5. Covariates
and random errors were generated as follows: Covariates Xn = (X1, X2, . . . , Xp) were
generated from a p-dimensional normal distribution with mean 0 and variance 1. In the
simulation, we set β = (1, 0, 5, 0, 3). The generation mechanism for Yn is

Yn = (In − λWn)
−1(Xnβ + εi) (23)

We assumed that the error ε in the spatial autoregressive model followed a normal
distribution with variances e2 of 0.52, 12, and 1.52. In the simulation, we assumed that X2
and X4 might have missing values. The missingness model considered is

Logit{Pr(Ri = 1)} = 0.5 + 0.5Xi1 − 1.5Xi3 + 0.5Xi5 (24)

The measurement error model was set as Z = X + U, where the measurement error U
follows a multivariate normal distribution ∑ with mean 0 and variance 12.

(I) Both measurement errors and missing data are considered;
(II) Measurement errors are ignored;
(III) Missing data are ignored (By dropping observations with missing covariates.);
(IV) Both measurement errors and missing data are ignored.

Tables 1–3 present the median square errors (MeSE) of the estimates for λ, β, and
σ2 as

(
λ̂ − λ

)2
,
(

β̂ − β
)2

, and
(
σ̂2 − σ2)2, respectively. As observed from Tables 1–3, the

estimates provided by the proposed method are overall significantly superior to those
obtained by directly ignoring missing data or both missing data and measurement errors,
with smaller squared errors. Compared to ignoring missing data, the proposed method’s
correction effect on estimating β and λ is not very pronounced, but the correction for
σ2 is relatively significant. Overall, the proposed method more significantly corrects the
biases caused by missing data. However, when the values of n and e are relatively low, the
correction effect for measurement errors is not particularly satisfactory. Moreover, ignoring
both missing data and measurement errors leads to larger squared errors due to the severe
loss of information. In summary, correcting for missing data and measurement errors is
both necessary and effective.
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Table 1. MeSEs for λ.

n = 100 n = 150 n = 200 n = 250

e λ m = 10 m = 15 m = 20 m = 10 m = 15 m = 20 m = 15 m = 20 m = 25 m = 15 m = 20 m = 25

Incorporating measurement errors and missing data

0.5 0.5 1.627E+01 9.324E-01 5.839E+01 4.618E-02 4.189E-02 4.618E-02 3.850E-02 3.492E-02 3.850E-02 2.462E-02 3.809E-02 2.610E-02
−0.5 8.240E+00 2.289E+00 3.887E+00 4.440E-02 4.288E-02 4.440E-02 3.938E-02 2.922E-02 3.938E-02 2.435E-02 3.501E-02 2.692E-02

1 0.5 2.184E-01 2.354E-01 2.102E-01 1.552E-01 1.353E-01 1.555E-01 1.487E-01 1.248E-01 1.185E-01 1.078E-01 1.304E-01 1.073E-01
−0.5 2.081E-01 2.065E-01 2.159E-01 1.480E-01 1.437E-01 1.562E-01 1.524E-01 1.312E-01 1.207E-01 1.138E-01 1.281E-01 1.112E-01

1.5 0.5 4.731E-01 4.785E-01 4.959E-01 3.910E-01 3.290E-01 3.192E-01 3.803E-01 2.695E-01 2.539E-01 2.395E-01 2.561E-01 2.375E-01
−0.5 4.632E-01 5.174E-01 4.847E-01 3.844E-01 3.290E-01 3.267E-01 3.723E-01 2.694E-01 2.819E-01 2.261E-01 2.668E-01 2.542E-01

Ignoring missing data

0.5 0.5 1.320E+02 1.603E+02 1.368E+03 9.288E+02 2.599E+02 8.833E+01 8.905E+02 8.535E+01 9.025E+01 7.097E+01 6.560E+01 1.963E+02
−0.5 1.403E+02 1.288E+02 6.390E+02 1.014E+03 2.685E+02 8.620E+01 9.785E+02 1.797E+02 1.074E+02 7.247E+01 6.491E+01 1.774E+02

1 0.5 3.652E+03 6.698E+01 1.661E+03 7.315E+02 2.568E+02 9.291E+01 6.350E+02 1.839E+02 1.098E+02 7.515E+01 7.648E+01 1.835E+02
−0.5 3.840E+03 7.060E+01 1.649E+03 1.035E+03 3.026E+02 8.620E+01 5.711E+02 1.797E+02 1.081E+02 7.477E+01 7.326E+01 1.934E+02

1.5 0.5 3.776E+03 6.636E+01 2.115E+03 9.394E+02 2.887E+02 9.215E+01 7.766E+02 1.727E+02 1.091E+02 7.751E+01 7.263E+01 1.949E+02
−0.5 3.692E+03 6.373E+01 1.862E+03 8.851E+02 2.952E+02 8.631E+01 7.435E+02 1.987E+02 1.167E+02 7.406E+01 6.734E+01 1.884E+02

Ignoring measurement errors

0.5 0.5 5.054E-02 5.442E-02 5.727E-02 3.850E-02 3.523E-02 3.850E-02 3.140E-02 3.492E-02 2.867E-02 2.482E-02 3.501E-02 2.432E-02
−0.5 5.584E-02 4.883E-02 4.941E-02 3.938E-02 3.660E-02 3.938E-02 2.713E-02 2.922E-02 2.754E-02 2.403E-02 3.501E-02 2.692E-02

1 0.5 2.101E-01 2.141E-01 2.100E-01 1.334E-01 1.487E-01 1.332E-01 1.199E-01 1.248E-01 1.185E-01 1.074E-01 1.314E-01 1.095E-01
−0.5 2.021E-01 2.038E-01 2.149E-01 1.428E-01 1.524E-01 1.490E-01 1.064E-01 1.312E-01 1.207E-01 1.109E-01 1.254E-01 1.102E-01

1.5 0.5 4.449E-01 4.604E-01 4.668E-01 3.803E-01 3.180E-01 3.142E-01 2.530E-01 2.695E-01 2.539E-01 2.441E-01 2.509E-01 2.375E-01
−0.5 4.664E-01 4.983E-01 4.969E-01 3.723E-01 3.233E-01 3.121E-01 2.527E-01 2.694E-01 2.819E-01 2.309E-01 2.637E-01 2.568E-01

Ignoring measurement errors and missing data

0.5 0.5 1.227E+02 1.543E+02 1.312E+03 8.905E+02 2.516E+02 8.535E+01 6.129E+02 1.699E+02 9.582E+01 6.998E+01 6.491E+01 1.921E+02
−0.5 1.299E+02 1.220E+02 6.024E+02 9.785E+02 2.573E+02 8.620E+01 6.237E+02 1.942E+02 1.035E+02 7.140E+01 6.491E+01 1.746E+02

1 0.5 3.468E+03 6.335E+01 1.557E+03 7.074E+02 2.468E+02 8.876E+01 6.189E+02 1.827E+02 1.078E+02 7.358E+01 7.555E+01 1.799E+02
−0.5 3.493E+03 6.724E+01 1.557E+03 1.008E+03 2.891E+02 8.326E+01 5.566E+02 1.772E+02 1.062E+02 7.408E+01 7.166E+01 1.914E+02

1.5 0.5 3.524E+03 6.336E+01 2.019E+03 8.924E+02 2.822E+02 8.807E+01 7.539E+02 1.677E+02 1.078E+02 7.674E+01 7.112E+01 1.918E+02
−0.5 3.375E+03 6.215E+01 1.734E+03 8.151E+02 2.867E+02 8.371E+01 7.322E+02 1.935E+02 1.143E+02 7.346E+01 6.638E+01 1.847E+02
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Table 2. MeSEs for β.

n = 100 n = 150 n = 200 n = 250

e λ m = 10 m = 15 m = 20 m = 10 m = 15 m = 20 m = 15 m = 20 m = 25 m = 15 m = 20 m = 25

Incorporating measurement errors and missing data

0.5 0.5 1.801E-02 8.973E-04 6.942E-03 1.063E-07 2.664E-07 1.269E-06 5.714E-08 2.531E-07 6.536E-07 4.296E-07 2.436E-06 2.780E-07
−0.5 2.281E-02 2.045E-03 1.019E-03 1.119E-07 3.246E-07 1.563E-06 5.643E-08 1.796E-07 5.257E-07 4.646E-07 2.419E-06 2.300E-07

1 0.5 1.784E-07 1.216E-05 5.359E-07 2.187E-07 9.488E-07 3.077E-06 1.683E-07 7.737E-07 2.334E-06 1.877E-06 3.835E-06 9.066E-07
−0.5 1.822E-07 1.164E-05 4.690E-07 2.171E-07 9.527E-07 3.141E-06 1.917E-07 8.920E-07 1.713E-06 1.825E-06 4.568E-06 1.024E-06

1.5 0.5 4.202E-07 2.680E-05 1.040E-06 3.780E-07 1.599E-06 3.857E-06 4.070E-07 1.672E-06 4.307E-06 4.402E-06 5.968E-06 2.078E-06
−0.5 4.165E-07 2.693E-05 8.912E-07 3.953E-07 1.725E-06 6.557E-06 4.159E-07 1.475E-06 4.581E-06 4.567E-07 5.814E-06 2.216E-06

Ignoring missing data

0.5 0.5 1.027E-06 1.165E-06 1.946E-07 6.254E-08 1.896E-07 9.387E-07 5.386E-08 2.548E-07 6.431E-07 4.499E-07 2.257E-06 2.740E-07
−0.5 1.329E-06 1.328E-06 2.800E-07 6.503E-08 2.004E-07 9.951E-07 5.913E-08 1.693E-07 5.375E-07 4.490E-07 2.253E-06 2.388E-07

1 0.5 1.679E-07 1.181E-05 5.124E-07 2.171E-07 9.079E-07 3.141E-06 1.828E-07 7.743E-07 2.231E-06 2.041E-06 3.937E-06 9.629E-07
−0.5 1.866E-07 1.037E-05 4.678E-07 2.425E-07 9.527E-07 3.857E-06 1.939E-07 8.920E-07 1.685E-06 1.822E-06 3.700E-06 1.017E-06

1.5 0.5 4.402E-07 2.404E-05 1.753E-06 3.953E-07 1.725E-06 6.790E-06 4.070E-07 1.654E-06 3.690E-06 4.567E-07 5.917E-06 1.985E-06
−0.5 4.567E-07 2.572E-05 9.034E-07 4.730E-07 1.725E-06 6.706E-06 4.159E-07 1.475E-06 4.581E-06 4.402E-07 5.814E-06 2.232E-06

Ignoring measurement errors

0.5 0.5 1.801E-02 8.973E-04 6.942E-03 1.063E-07 2.664E-07 1.269E-06 5.714E-08 2.531E-07 6.536E-07 4.296E-07 2.436E-06 2.780E-07
−0.5 2.281E-02 2.045E-03 1.019E-03 1.119E-07 3.246E-07 1.563E-06 5.643E-08 1.796E-07 5.257E-07 4.646E-07 2.419E-06 2.300E-07

1 0.5 1.784E-07 1.216E-05 5.359E-07 2.187E-07 9.488E-07 3.077E-06 1.683E-07 7.737E-07 2.334E-06 1.877E-06 3.835E-06 9.066E-07
−0.5 1.822E-07 1.164E-05 4.690E-07 2.171E-07 9.527E-07 3.141E-06 1.917E-07 8.920E-07 1.713E-06 1.825E-06 4.568E-06 1.024E-06

1.5 0.5 4.202E-07 2.680E-05 1.040E-06 3.780E-07 1.599E-06 3.857E-06 4.070E-07 1.672E-06 4.307E-06 4.402E-06 5.968E-06 2.078E-06
−0.5 4.165E-07 2.693E-05 8.912E-07 3.953E-07 1.725E-06 6.557E-06 4.159E-07 1.475E-06 4.581E-06 4.567E-07 5.814E-06 2.216E-06

Ignoring measurement errors and missing data

0.5 0.5 1.801E-02 8.973E-04 6.942E-03 1.063E-07 2.664E-07 1.269E-06 5.714E-08 2.531E-07 6.536E-07 4.296E-07 2.436E-06 2.780E-07
−0.5 2.281E-02 2.045E-03 1.019E-03 1.119E-07 3.246E-07 1.563E-06 5.643E-08 1.796E-07 5.257E-07 4.646E-07 2.419E-06 2.300E-07

1 0.5 1.784E-07 1.216E-05 5.359E-07 2.187E-07 9.488E-07 3.077E-06 1.683E-07 7.737E-07 2.334E-06 1.877E-06 3.835E-06 9.066E-07
−0.5 1.822E-07 1.164E-05 4.690E-07 2.171E-07 9.527E-07 3.141E-06 1.917E-07 8.920E-07 1.713E-06 1.825E-06 4.568E-06 1.024E-06

1.5 0.5 4.202E-07 2.680E-05 1.040E-06 3.780E-07 1.599E-06 3.857E-06 4.070E-07 1.672E-06 4.307E-06 4.402E-06 5.968E-06 2.078E-06
−0.5 4.165E-07 2.693E-05 8.912E-07 3.953E-07 1.725E-06 6.557E-06 4.159E-07 1.475E-06 4.581E-06 4.567E-07 5.814E-06 2.216E-06
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Table 3. MeSEs for σ2.

n = 100 n = 150 n = 200 n = 250

e λ m = 10 m = 15 m = 20 m = 10 m = 15 m = 20 m = 15 m = 20 m = 25 m = 15 m = 20 m = 25

Incorporating measurement errors and missing data

0.5 0.5 8.838E+03 6.371E+00 1.498E+05 2.544E-02 2.725E-02 2.938E-02 1.402E-02 1.326E-02 1.413E-02 1.255E-02 5.831E-02 1.436E-02
−0.5 1.971E+03 3.881E+01 4.972E+02 2.515E-02 2.724E-02 2.161E-02 1.504E-02 1.285E-02 1.285E-02 1.087E-02 4.399E-02 1.340E-02

1 0.5 2.497E-01 2.111E-01 2.422E-01 2.286E-01 2.451E-01 2.327E-01 2.655E-01 3.116E-01 2.646E-01 5.731E-01 7.831E-01 5.634E-01
−0.5 2.428E-01 2.424E-01 2.191E-01 2.618E-01 2.378E-01 2.618E-01 2.571E-01 3.228E-01 2.817E-01 5.984E-01 1.015E+00 5.455E-01

1.5 0.5 1.039E+00 8.811E-01 8.929E-01 1.870E+00 1.237E+00 1.388E+00 1.751E+00 1.950E+00 1.752E+00 3.281E+00 4.377E+00 2.882E+00
−0.5 7.428E-01 1.214E+00 1.008E+00 2.276E+00 1.156E+00 1.197E+00 1.409E+00 2.525E+00 2.000E+00 3.183E+00 5.228E+00 3.731E+00

Ignoring missing data

0.5 0.5 6.195E+05 7.860E+05 9.643E+07 9.921E+07 1.059E+07 6.249E+05 1.097E+08 6.918E+06 1.673E+06 1.590E+06 1.887E+06 9.845E+06
−0.5 7.591E+05 6.743E+05 1.409E+07 1.534E+08 1.149E+07 8.153E+05 8.139E+06 1.796E+06 8.070E+06 1.241E+06 1.750E+06 8.070E+06

1 0.5 5.165E+08 8.849E+04 1.396E+08 8.536E+07 1.048E+07 8.269E+05 1.222E+08 7.143E+06 1.647E+06 1.489E+06 1.885E+06 8.864E+06
−0.5 8.202E+08 8.025E+04 1.175E+08 1.300E+08 9.951E+06 7.452E+05 1.033E+08 7.292E+06 1.689E+06 1.381E+06 1.962E+06 1.062E+07

1.5 0.5 5.896E+08 9.098E+04 1.807E+08 1.364E+08 1.323E+07 7.982E+05 1.827E+08 8.376E+06 1.992E+06 1.701E+06 2.093E+06 9.215E+06
−0.5 5.829E+08 8.085E+04 1.362E+08 1.450E+08 1.148E+07 7.943E+05 1.349E+08 8.539E+06 1.874E+06 1.478E+06 2.036E+06 1.101E+07

Ignoring measurement errors

0.5 0.5 1.552E-02 1.409E-02 1.635E-02 2.452E-02 1.870E-02 1.839E-02 3.074E-02 3.737E-02 3.452E-02 3.967E-02 1.438E-01 5.327E-02
−0.5 1.556E-02 1.611E-02 1.420E-02 1.966E-02 1.673E-02 1.157E-01 3.432E-02 3.214E-02 5.016E-02 4.095E-02 1.157E-01 5.016E-02

1 0.5 1.575E-01 1.784E-01 1.942E-01 3.701E-01 4.468E-01 3.903E-01 4.643E-01 5.033E-01 4.763E-01 7.663E-01 1.166E+00 7.863E-01
−0.5 2.203E-01 1.996E-01 2.201E-01 4.989E-01 3.800E-01 3.196E-01 4.460E-01 5.350E-01 5.115E-01 8.282E-01 1.174E+00 7.716E-01

1.5 0.5 1.071E+00 9.059E-01 1.040E+00 2.490E+00 1.723E+00 1.843E+00 2.196E+00 2.450E+00 2.661E+00 3.956E+00 4.853E+00 3.374E+00
−0.5 8.711E-01 1.130E+00 1.075E+00 2.974E+00 1.652E+00 1.563E+00 1.849E+00 3.028E+00 2.583E+00 3.761E+00 5.851E+00 4.455E+00

Ignoring measurement errors and missing data

0.5 0.5 6.249E+05 7.933E+05 9.505E+07 1.007E+08 1.088E+07 6.285E+05 1.143E+08 8.101E+06 1.670E+06 1.592E+06 1.891E+06 1.008E+07
−0.5 8.039E+05 6.779E+05 1.376E+07 1.524E+08 1.148E+07 8.325E+05 8.101E+06 1.797E+06 8.078E+06 1.262E+06 1.754E+06 8.078E+06

1 0.5 5.243E+08 8.745E+04 1.387E+08 8.553E+07 1.051E+07 8.309E+05 1.223E+08 7.152E+06 1.655E+06 1.490E+06 1.887E+06 8.866E+06
−0.5 8.338E+08 8.011E+04 1.187E+08 1.306E+08 1.015E+07 7.443E+05 1.036E+08 7.452E+06 1.691E+06 1.382E+06 1.965E+06 1.069E+07

1.5 0.5 5.856E+08 8.961E+04 1.826E+08 1.371E+08 1.389E+07 7.982E+05 1.828E+08 8.344E+06 1.997E+06 1.726E+06 2.096E+06 9.126E+06
−0.5 5.829E+08 8.209E+04 1.369E+08 1.456E+08 1.156E+07 7.943E+05 1.357E+08 8.559E+06 1.843E+06 1.474E+06 2.039E+06 1.089E+07
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4. Real Data Example

In this section, we present a real example to illustrate the performance of the parameter
estimation procedure for spatial autoregressive models with missing data and measurement
errors proposed in this paper.

We consider the famous 1970 Boston Housing Dataset, which contains information on
506 different houses in different locations in the Boston Standard Metropolitan Statistical
Area. This dataset has been used by many authors and can be found in the spdep library in
R. It was first analyzed by Harrison and Rubinfeld [32]. Sun et al. [33] and Du et al. [34]
explored the spatial dependence of these data through partially linear varying coefficient
autoregressive and partially linear additive autoregressive models, respectively. Liu [35]
used the Moran I statistic to test the spatial dependence of the dataset. Therefore, the data
serve our analysis purposes well. Table 4 provides specific descriptions of the variables in
the dataset.

Table 4. Descriptions of the variables in the Boston Housing Dataset.

Attribute Explanation Remarks

CRIM Per capita crime rate by town
ZN Proportion of residential land zoned for lots over 25,000 sq. ft. Residential land proportion
INDUS Proportion of non-retail business acres per town Non-retail business proportion
CHAS Charles River dummy variable Charles River variable for regression analysis
NOX Nitrogen oxide concentration (ppm) Environmental indicator
RM Average number of rooms per dwelling Number of rooms in residential units
AGE Proportion of owner-occupied units built prior to 1940 Pre-1940s-constructed units proportion
DIS Weighted distances to five Boston employment centers Distance to employment hubs
RAD Index of accessibility to radial highways Highway accessibility index
TAX Full-value property tax rate per 10,000 Property tax rate
PRATO Pupil–teacher ratio by town Pupil-teacher ratio
B 1000(Bk − 0.63)2, where Bk is the proportion of blacks by town Proportion of black population
LSTAT Percentage of the population classified as lower income Lower-income class proportion
MEDV Median value of owner-occupied homes Typically, the target variable in an analysis

In the actual data analysis, following the practice of Harrison and Rubinfeld [32], we
consider the logarithm of the median value of owner-occupied homes (MEDV) in census
tracts as the dependent variable and the other variables as the independent variables.
Among these, the weighted distance to five Boston employment centers (DIS), the index of
accessibility to radial highways (RAD), the percentage of the population classified as lower
income (LSTAT), and the average number of rooms per dwelling (RM) are log-transformed,
while the nitrogen oxide concentration (NOX) is squared. For ease of analysis, all variables
are mean-centered to have a sample mean of zero.

Spatial weight matrices generally consist of two types of information. One is deter-
mined using latitude and longitude coordinates, and the other is determined using the
relative locations of regions (see Liu [35]).

Our approach is similar to that of Pace and Gilley [36]. We first define an initial matrix
W and the weight between two houses i and j as:

Wij = max
(

1 −
dij

d0
, 0
)

(25)

where dij is the Euclidean distance calculated based on the latitude and longitude coordi-
nates of the two houses. We set the threshold distance d0 to 0.05. Additionally, in practice,
the spatial weight matrix is row-normalized.

For the above dataset, we consider the following model:

Y = λWY + X1β1 + X2β2 + X3β3 + X4β4 + X5β5 + εi (26)
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where the response variable Y is the median value of house prices (MEDV), X1 is the
weighted distance (DIS), X2 is the index of accessibility to radial highways (RAD), X3 is the
percentage of the population classified as lower income (LSTAT), X4 is the nitrogen oxide
concentration (NOX), and X5 is the average number of rooms per dwelling (RM).

In the simulation, we assume that X2 and X4 may have missing values. The missing-
ness model considered is:

Logit{Pr(Ri) = 1} = 1 + 2Xi1 − 3Xi3 + Xi5 (27)

The measurement error model is set as Z = X + U, where the measurement error U
follows a multivariate normal distribution ∑ with mean 0 and variance equal to the sample
variance σ2

i of each variable.
Table 5 displays the median squared errors (MeSEs) of the estimators λ, β, and σ2,

specifically
∣∣∣∣λ̂ − λ

∣∣∣∣2,
∣∣∣∣β̂i − βi

∣∣∣∣2, and
∣∣∣∣σ̂2 − σ2

∣∣∣∣2. It can be observed that the perfor-
mance of the proposed method for the Boston Housing Dataset is largely consistent with
the results of the numerical simulations. Although the correction effect for the partial β
is not particularly pronounced, the overall correction effect is still relatively ideal, and in
particular, the corrections for σ2 and λ are very effective.

Table 5. MeSEs for λ, β, and σ2.

λ β1 β2 β3 β4 β5 σ2

Real parameters 4.446E-01 −1.770E-01 −3.425E-02 −4.261E-01 −1.249E-01 4.102E-01 8.168E-03
Incorporating measurement errors and missing data 8.870E-03 1.878E-03 8.669E-04 9.953E-03 1.716E-03 2.848E-01 9.182E-07
Ignoring missing data 3.536E-02 2.045E-03 8.998E-04 9.691E-03 1.805E-03 1.746E-01 8.075E-06
Ignoring measurement errors 1.043E-02 1.919E-03 8.840E-04 6.065E-03 2.132E-03 2.457E-01 8.077E-07
Ignoring measurement errors and missing data 4.528E-02 2.094E-03 8.565E-04 3.985E-03 1.629E-03 1.208E-01 1.125E-05

5. Conclusions

We have developed a robust method for simultaneously handling missing data and
measurement errors in covariates of spatial autoregressive models. Clearly, traditional
statistical methods may lead to biased estimates when covariates have missing data and
measurement errors. Our method uses IPW and corrected likelihood methods to ad-
dress this issue. We have studied the theoretical properties of the proposed method and
investigated its performance in parameter estimation through Monte Carlo simulations,
comparing it to scenarios where measurement errors, missing data, or both are ignored. The
simulation studies demonstrate that our method outperforms traditional direct extensions
for parameter estimation in spatial autoregressive models.
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Appendix A

Using a combination of IPW and mean interpolation, consider an ideal “pseudo-
complete dataset” Z̃n for covariates, satisfying

(Sn(λ)Yn − Znβ)TQ(Sn(λ)Yn − Znβ) = (Sn(λ)Yn − Z̃nβ)T(Sn(λ)Yn − Z̃nβ) (A1)

From Equations (1), (4) and (A1), we obtain

Yn = λWnYn + Z̃nβ + εn − Unβ ≜ λWnYn + Z̃nβ + ε∗n (A2)

where ε∗n = εn − Unβ.
Thus, Equation (16) can be simplified as:

Yn = S−1
n (Z̃nβ0 + ε∗n) (A3)

where Sn = Sn(λ0).
Let Gn = WnS−1

n . Then, In + λ0Gn = S−1
n , and Equation (A1) can be expressed as:

Yn = λ0GnZ̃nβ0 + Z̃nβ0 + S−1
n ε∗n (A4)

To establish the asymptotic properties of the estimator, the following regularity condi-
tions are required:

Assumption A1. In εn = {ei} and Un = {ui}, elements ei, ui, i = 1, . . . , n are independently
and identically distributed with mean E(ei) = E(ui) = 0, variance Var(ei) = σ2, Var(ui) = Σ.
For γ > 0, moments E({|ei|4+γ}) and E({|ui|4+γ}) exist.

Assumption A2. For all i, j, elements wn,ij of Wn are at most of the order of h−1
n , denoted as

O(1/hn), where the rate sequence {hn} can be bounded or divergent. For normalization, all i have
wn,ii = 0.

Assumption A3. The matrix sequences {Wn} and {S−1
n } are uniformly bounded in terms of row

and column sums.

Assumption A4. For all n, elements Z̃n are uniformly bounded constants. When limn→∞,
n−1Z̃T

n Z̃n exists and is non-singular.

Assumption A5. For all λ in the compact parameter space Λ, {S−1
n (λ)} are uniformly bounded

in terms of row and column sums. The true λ0 is inside Λ.

Assumption A6. limn→∞ n−1(Z̃nGnZ̃nβ0)
T(Z̃nGnZ̃nβ0) exists and is a non-singular matrix.

Theorem A1. Under Assumptions 1–8, θ0 is globally identifiable, and θ̂0 is a consistent estimator
of θ0.

https://drive.google.com/drive/folders/1egSNneFuDZe-iUbn69OPkWlDAxEzpP6q


Axioms 2024, 13, 315 16 of 20

Define Pn(λ) = maxβ,σ2 E(ln L̂n(θ)). In this maximization problem, the optimal solu-
tions for β and σ2 are

β∗(λ) =
(

Z̃T
n Z̃n − Σ

)−1
Z̃T

n Sn(λ)Yn

σ∗2(λ) =
1
n

E
[
(Sn(λ)Yn − Z̃nβ)T(Sn(λ)Yn − Z̃nβ)− βTΣβ

]
=

1
n

[
(λ0 − λ)2(GnZ̃nβ0)

T Mn(GnZ̃nβ0) + σ2
0 tr
[
(ST

n )
−1ST

n (λ)Sn(λ)S−1
n

]]
Then,

Pn(λ) = −n
2
(ln(2π) + 1)− n

2
lnσ̂∗2(λ) + ln|Sn(λ)|

The value of λ0 can be obtained by maximizing { Pn(λ)
n }.

To prove that θ̂0 is a consistent estimator of θ0, it suffices to show the following:

1.
ˆln L(θ)−Pn(λ)

n converges uniformly to 0 in Λ;

2. For ∀ω > 0, limn→∞ maxλ∈Nω(λ0)
Pn(λ)−Pn(λ0)

n is a complement set of a neighborhood
with a diameter.

(a) Since
ln L̂(λ)− Pn(λ)

n
= −1

2

(
ln σ̂2(λ)− ln σ∗2(λ)

)
σ∗2(λ) and σ̂2(λ) can be written as

σ∗2(λ) =
(λ0 − λ)2(GnZ̃nβ0)

T Mn(GnZ̃nβ0)

n
+ σ2(λ),

σ̂2(λ) =
1
n

YT
n ST

n (λ)MnSn(λ)Yn

=
1
n
(λ0 − λ)2(GnZ̃nβ0)

T Mn(GnZ̃nβ0) + 2(λ0 − λ)H1n(λ) + H2n(λ).

where

σ2(λ) =
σ2

0
n

tr
[
(ST

n )
−1ST

n (λ)Sn(λ)S−1
n

]
,

H1n(λ) =
1
n
(GnZ̃nβ0)

T MnSn(λ)S−1
n ε∗n,

H2n(λ) =
1
n

ε∗T
n (S−1

n )TST
n (λ)MnSn(λ)S−1

n ε∗n.

It can be shown that on Λ,

H1n(λ) = Op(1),

H2n(λ)− σ2(λ) = Op(1).

Therefore,
σ̂2(λ)− σ∗2(λ) = Op(1).

Hence,

sup
λ∈Λ

∣∣∣∣ ln L̂n(θ)− Pn(λ)

n

∣∣∣∣ = Op(1).
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(b)

1
n
[Pn(λ)− Pn(λ0)] =

1
n
[
Pp,n(λ)− Pp,n(λ0)

]
=

1
2

[
ln σ∗2(λ)− ln σ2(λ)

]
,

where Pp,n(λ) = −n
2
(ln(2π) + 1)− n

2
ln σ2(λ) + ln |Sn(λ)|.

{ Pn(λ)
n } is uniformly continuous on Λ. By Jensen’s inequality, for all λ,

Pp,n(λ)− Pp,n(λ0)

n
≤ 0

and, therefore,
σ∗2(λ) ≥ σ2(λ)

If the assumption does not hold, then there exists a sequence {λn} ∈ Λ, limn→∞ λn =
λ+ ̸= λ0 such that

lim
n→∞

Pn(λn)− Pn(λ0)

n
= 0

This can only occur if

lim
n→∞

(
σ∗2(λ+)− σ2(λ+)

)
= 0

and

lim
n→∞

Pp,n(λ+)− Pp,n(λ0)

n
= 0

simultaneously hold, but the latter equation contradicts

lim
n→∞

(GnZ̃nβ0)
T Mn(GnZ̃nβ0)

n
̸= 0

Hence, consistency is proven.

Theorem A2. The asymptotic distribution of CMLE θ̂n can be derived from the Taylor expansion

of ∂ ln L̂n(θ̂n)
∂θ = 0 at θn, where the first-order derivative of the log-likelihood function at θ0 is

1√
n

∂ ln L̂n(θ0)

∂β
=

1√
nσ2

0

(
Z̃T

n Qε∗n + nΣβ0

)
1√
n

∂ ln L̂n(θ0)

∂σ2 =
1

2
√

nσ4
0

(
Qε∗T

n ε∗n − nβT
0 Σβ0 − nσ2

0

)
1√
n

∂ ln L̂n(θ0)

∂λ
=

1√
nσ2

0

(
GnZ̃nβ0

)T
ε∗n +

1√
nσ2

0

(
ε∗T

n Gnε∗n − σ2
0 tr(Gn)

)
The asymptotic distribution of these expressions can be obtained through the central

limit theorem. If {hn} is a bounded sequence, Kelejian and Prucha’s central limit theorem
can be used. If {hn} is unbounded, i.e., limn→∞ hn = ∞, then under Assumption A5,

1√
nσ2

0
(GnZ̃nβ0)

Tε∗n will significantly influence 1√
n

∂ ln L̂
(

θ0)∂λ. This is because

var
(

1√
n

ε∗T
n Gnε∗n

)
= O

(
1
hn

)
1√
n

(
ε∗T

n Gnε∗n − σ2
0 tr(Gn)

)
= Op(1)
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However,
1√
n
(GnZ̃nβ0)

Tε∗n = Op(1)

In this case, Kolmogorov’s central limit theorem can be used.

1√
n

∂ ln L̂n(θ0)
∂θ ’s variance matrix is E

(
1√
n

∂ ln L̂(θ0)
∂θ

1√
n

∂ ln L̂(θ0)
∂θ

)
= −E

(
1
n

∂2 ln L̂(θ0)
∂θ∂θT

)
where

−E
(

1
n

∂2 ln L̂(θ0)

∂θ∂θT

)
=


1

nσ2
0
(Z̃T

n Z̃n − 2nΣ) 1
nσ2

0
Z̃T

n (GnZ̃nβ0)
1

σ4
0

Σβ0
1

nσ2
0
(GnZ̃nβ0)

T Z̃n
1

nσ2
0
(GnZ̃nβ0)

T(GnZ̃nβ0) +
1
n tr(GT

n Gn)
1

nσ2
0

(Gn)
1

σ4
0

Σβ0
1

nσ2
0

tr(Gn)
1

2σ4
0


In ∂2 ln L̂(θ0)

∂θ∂θT , λ, β, and 1
σ2

0
appear either as linear or quadratic moments, and

∂2 ln L̂(θ)
∂λ2 = −tr

(
[WT

n S−1
n (λ)]2

)
− YT

n WT
n WnYn

σ2

Let Gn(λ) = WnS−1
n (λ), and by the mean value theorem,

tr(G2
n(λ̃n)) = tr(G2

n) + 2tr(G3
n(λ̃))(λ̃ − λ0)

Assumption A3 ensures that within a neighborhood of λ0, Gn(λ̃n)’s row and column
sums are uniformly bounded. Since tr(G3

n(λ̃n)) = O
(

n
hn

)
,

YT
n WT

n WnYn = Op(nhn)

and, therefore,

1
n

[
∂2 ln L̂(θ̃n)

∂λ2 − ∂2 ln L̂(θ0)

∂λ2

]
= −2

tr(G3
n(λ̃n))

n
(λ̃n − λ0) +

[
1
σ2

0
− 1

σ̃2

]
YT

n WT
n WnYn

n
= Op(1)

The second-order derivatives of other terms can be similarly deduced. Since both
Z̃T

n Gnε∗n
n and 1

n (ε
∗
n

TGnε∗n − (σ2
0 + βT

0 Σβ0)tr(Gn)) converge to Op(1), it follows that

1
n

[
∂2 ln L̂(θ̃n)

∂θ∂θT − ∂2 ln L̂(θ0)

∂θ∂θT

]
P−→ 0

Since ∂ ln Ln(θ0)
∂θ is either a linear or quadratic function of ε∗n, and the higher-order

moments of ε∗n exist according to Assumption A1, the central limit theorem by Kelejian and
Prucha implies

1√
n

∂ ln L̂(θ0)

∂θ

D−→ N(0, Σθ)

Assumption A5 ensures that Σθ is non-singular, and the asymptotic distribution of θ̂n
can be written as

√
n(θ̂n − θ0) = −

(
1
n

∂2lnL̂n(θ̃n)

∂θ∂θT

)−1
1√
n

∂lnL̂n(θ0)

∂θ

where θ̂n converges in probability to θ0.



Axioms 2024, 13, 315 19 of 20

References
1. Luo, G. Statistical Inference in Spatial Autoregressive Models with Complex Data; Beijing University of Technology: Beijing, China,

2023. [CrossRef]
2. Chen, Q. Advanced Econometrics and Stata Application; Higher Education Press: Beijing, China, 2010.
3. Bai, Y.; Tian, M.; Tang, M.-L.; Lee, W.-Y. Variable selection for ultra-high dimensional quantile regression with missing data and

measurement error. Stat. Methods Med. Res. 2021, 30, 129–150. [CrossRef] [PubMed]
4. Li, W. Parameter Estimation of Spatial Autoregressive Models with Measurement Error; Yunnan University: Kunming, China, 2020.
5. Anselin, L. SpaceStat Tutorial: A Workbook for Using SpaceStat in the Analysis of Spatial Data; West Virginia University: Urbana, IL,

USA, 1992.
6. Tobler, R.W. A Computer Movie Simulating Urban Growth in the Detroit Region. Econ. Geogr. 2016, 46, 234–240. [CrossRef]
7. Anselin, L. Spatial Econometrics: Methods and Models. J. Am. Stat. Assoc. 1990, 85, 160. [CrossRef]
8. Anselin, L. Thirty Years of Spatial Econometrics. Pap. Reg. Sci. 2010, 89, 3–25. [CrossRef]
9. Cox, T.F. Spatial Processes: Models and Applications. J. R. Stat. Soc. Ser. A 1984, 147, 515. [CrossRef]
10. Prucha, K.I.R. A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model. Int. Econ. Rev. 2010, 40,

509–533. [CrossRef]
11. Lesage, J.P. Bayesian Estimation of Spatial Autoregressive Models. Int. Reg. Sci. Rev. 1997, 20, 113–129. [CrossRef]
12. Lee, L.F. GMM and 2SLS estimation of mixed regressive, spatial autoregressive models. J. Econ. 2007, 137, 489–514. [CrossRef]
13. Lee, L.F.; Liu, X. Efficient GMM estimation of high order spatial autoregressive models. Econ. Theory 2010, 26, 187–230. [CrossRef]
14. Wei, C.; Guo, S.; Zhai, S. Statistical inference of partially linear varying coefficient spatial autoregressive models. Econ. Model.

2017, 64, 553–559. [CrossRef]
15. Ma, M.; Zhang, X. Spatial Effects of China’s Haze Pollution and the Impact of Economy and Energy Structure. China Ind. Econ.

2014, 19–31. [CrossRef]
16. Wang, Y.F.; Ni, P.F. Economic Growth Spillovers and Regional Spatial Optimization Under the Influence of High-Speed Rail.

China Ind. Econ. 2016, 21–36. [CrossRef]
17. Cheng, Y.; Dong, C. Study on the Spatial Effects of Trade Facilitation on China’s Industrial Manufactured Goods Export. Quant.

Econ. Tech. Econ. Res. 2021, 38, 98–115. [CrossRef]
18. Shen, T.; Feng, D.; Sun, T. Spatial Econometrics; Peking University Press: Beijing, China, 2010.
19. Yi, L.; Tang, H.; Lin, X. Spatial Linear Mixed Models with Covariate Measurement Errors. Stat. Sin. 2009, 19, 1077.
20. Huque, M.H.; Bondell, H.D.; Ryan, L. On the impact of covariate measurement error on spatial regression modelling. Environ-

metrics 2015, 25, 560–570. [CrossRef]
21. Zhang, Z.; Zhu, P. Estimation and Testing of Spatial Autoregressive Models with Measurement Error. Stat. Res. 2010, 27, 103–109.

[CrossRef]
22. He, X.; Hu, X. Parameter Estimation of Univariate Spatial Autoregressive Measurement Error Models. Sci. China Math. 2020, 50,

613–628. [CrossRef]
23. You, P. Estimation of Semiparametric Spatial Autoregressive Models with Random Missing; Yunnan University: Kunming, China, 2018.
24. Cheng, D. Modeling and Analysis of Residents’ Travel Behavior Based on Multiple Differences; Dalian Jiaotong University: Dalian,

China, 2019. [CrossRef]
25. Yang, Z.; Yu, J.; Chen, J. A Missing Data Imputation Method Based on Clustering and Spatial Autoregressive Model. Intelligent

Information Technology Application Association. In Proceedings of the 2011 International Conference on Ecological Protection
of Lakes-Wetlands-Watershed and Application of 3S Technology (EPLWW3S 2011 V2), Nanchang, China, 25–26 June 2011;
pp. 554–557.

26. Wang, W.; Lee, L. Estimation of spatial autoregressive models with randomly missing data in the dependent variable. Econ. J.
2013, 16, 73–102. [CrossRef]

27. Lee, L.F. Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Autoregressive Models. Econometrica
2004, 72, 1899–1925. [CrossRef]

28. Kelejian, H.H.; Prucha, I.R. On the Asymptotic Distribution of the Moran I Test Statistic with Applications. J. Econom. 2001.
[CrossRef]

29. Case, A.C. Spatial Patterns in Household Demand. Econometrica 1991, 59, 953–965. [CrossRef]
30. Li, F.R. Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties. Publ. Am. Stat. Assoc. 2001, 96,

1348–1360. [CrossRef]
31. Nakamura, T. Corrected Score Function for Errors-in-Variables Models: Methodology and Application to Generalized Linear

Models. Biometrika 1990, 77, 127–137. [CrossRef]
32. David, H., Jr. Hedonic housing prices and the demand for clean air. J. Environ. Econ. Manag. 1978. [CrossRef]
33. Sun, Y.; Yan, H.; Zhang, W. A semiparametric spatial dynamic model. Ann. Stats. 2014, 42, 700–727. [CrossRef]
34. Du, J.; Sun, X.; Cao, R. Statistical inference for partially linear additive spatial autoregressive models. Spat. Stat. 2018, 52–67.

[CrossRef]

http://doi.org/10.26935/d.cnki.gbjgu.2021.000036
http://dx.doi.org/10.1177/0962280220941533
http://www.ncbi.nlm.nih.gov/pubmed/32746735
http://dx.doi.org/10.2307/143141
http://dx.doi.org/10.2307/2290042
http://dx.doi.org/10.1111/j.1435-5957.2010.00279.x
http://dx.doi.org/10.2307/2981590
http://dx.doi.org/10.1111/1468-2354.00027
http://dx.doi.org/10.1177/016001769702000107
http://dx.doi.org/10.1016/j.jeconom.2005.10.004
http://dx.doi.org/10.1017/S0266466609090653
http://dx.doi.org/10.1016/j.econmod.2017.04.015
http://dx.doi.org/10.19581/j.cnki.ciejournal.2014.04.002
http://dx.doi.org/10.19581/j.cnki.ciejournal.2016.02.003
http://dx.doi.org/10.13653/j.cnki.jqte.2021.02.004
http://dx.doi.org/10.1002/env.2305
http://dx.doi.org/10.19343/j.cnki.11-1302/c.2010.04.01
http://dx.doi.org/10.1360/N012019-00116
http://dx.doi.org/10.26990/d.cnki.gsltc.2019.000256
http://dx.doi.org/10.1111/j.1368-423x.2012.00388.x
http://dx.doi.org/10.1111/j.1468-0262.2004.00558.x
http://dx.doi.org/10.1016/S0304-4076(01)00064-1
http://dx.doi.org/10.2307/2938168
http://dx.doi.org/10.1198/016214501753382273
http://dx.doi.org/10.1093/biomet/77.1.127
http://dx.doi.org/10.1016/0095-0696(78)90006-2
http://dx.doi.org/10.1214/13-AOS1201
http://dx.doi.org/10.1016/j.spasta.2018.04.008


Axioms 2024, 13, 315 20 of 20

35. Liu, X.; Chen, J.; Cheng, S. A Penalized Quasi-Maximum Likelihood Method for Variable Selection in the Spatial Autoregressive
Model. Spat. Stat. 2018, 25, 86–104. [CrossRef]

36. Pace, R.K.; Gilley, O.W. Using the Spatial Configuration of the Data to Improve Estimation. J. Real Estate Financ. Econ. 1997, 14,
333–340. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.spasta.2018.05.001
http://dx.doi.org/10.1023/a:1007762613901

	Introduction
	Parameter Estimation in Spatial Autoregressive Models with Measurement Errors and Missing Data
	Spatial Autoregressive Models
	Spatial Autoregressive Model with Missing Data and Measurement Errors

	Simulation
	Real Data Example
	Conclusions
	Appendix A
	References

