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Abstract: Most of the current studies on autonomous vehicle decision-making and control based
on reinforcement learning are conducted in simulated environments. The training and testing
of these studies are carried out under the condition of rule-based microscopic traffic flow, with
little consideration regarding migrating them to real or near-real environments. This may lead to
performance degradation when the trained model is tested in more realistic traffic scenes. In this study,
we propose a method to randomize the driving behavior of surrounding vehicles by randomizing
certain parameters of the car-following and lane-changing models of rule-based microscopic traffic
flow. We trained policies with deep reinforcement learning algorithms under the domain-randomized
rule-based microscopic traffic flow in freeway and merging scenes and then tested them separately in
rule-based and high-fidelity microscopic traffic flows. The results indicate that the policies trained
under domain-randomized traffic flow have significantly better success rates and episodic rewards
compared to those trained under non-randomized traffic flow.

Keywords: autonomous vehicle; reinforcement learning; decision and control; traffic flow; domain
randomization

1. Introduction

In recent years, autonomous vehicles have received increasing attention as they have
the potential to free drivers from the fatigue of driving and facilitate efficient road traf-
fic [1]. With the development of machine learning, rapid progress has been achieved in
the development of autonomous vehicles. In particular, reinforcement learning, which
enables vehicles to learn driving tasks through trial and error, continuously improves
the learned policies. Compared to supervised learning, reinforcement learning does not
require the manual labeling or supervision of sample data [2–5]. However, reinforcement
learning models require tens of thousands of trial-and-error iterations for policy learning,
and real vehicles on the road can hardly withstand so many trials. Therefore, the current
mainstream research on autonomous driving with reinforcement learning focuses on using
virtual driving simulators for training.

Lin et al. [6] utilized deep reinforcement learning within a driving simulator, Simu-
lation of Urban Mobility (SUMO), to train autonomous vehicles, enabling them to merge
safely and smoothly at on-ramps. Peng et al. [7] also employed deep reinforcement learning
algorithms within a SUMO to train a model for lane changing and car following. They
tested the model by reconstructing scenes using NGSIM data, and the results indicate
that the models based on reinforcement learning demonstrate higher efficacy than those
based on rule-based approaches. Mirchevska et al. [8] used fitted Q-learning for high-level
decisionmaking on a busy simulated highway. However, the microscopic traffic flows
of these studies are based on rule-based models, such as the Intelligent Driver Model
(IDM) [9–11] and the Minimize Overall Braking Induced by Lane Change (MOBIL) model.
These are mathematical models based on traffic flow theory [12]. They tend to simplify
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vehicle motion behavior and do not consider the interaction of multiple vehicles. Au-
tonomous vehicles trained with reinforcement learning in such microscopic traffic flows
may perform exceptionally well when tested in the same environments. However, when
the trained model is applied to more realistic or real-world traffic flows, their performance
may significantly deteriorate, and they could even cause traffic accidents. This is due to the
discrepancies between simulated and real-world traffic flows.

For research on sim-to-real transfer, numerous methods have been proposed to date.
For instance, robust reinforcement learning has been explored to develop strategies that
account for the mismatch between simulated and real-world scenes [13]. Meta-learning
is another approach that seeks to learn adaptability to potential test tasks from multiple
training tasks [14]. Additionally, the domain randomization method used in this article is
acknowledged as one of the most extensively used techniques to improve the adaptability
to real-world scenes [15]. Domain randomization relies on randomized parameters aimed
at encompassing the true distribution of real-world data. Sheckells et al. [16] applied
domain randomization to vehicle dynamics, using stochastic dynamic models to optimize
the control strategies for vehicles maneuvering on elliptical tracks. Real-world experiments
indicated that the strategy was able to maintain performance levels similar to those achieved
in simulations. However, few studies have applied domain randomization to microscopic
traffic flows and investigated its efficacy.

In recent years, many driving simulators have been moving towards more realistic
scenes. One type includes data-based driving simulators (InterSim [17] and TrafficGen [18]),
which train neural network models by extracting vehicle motion characteristics from real-
world traffic datasets, resulting in interactive microscopic traffic flows. However, the
simulation time is much longer than for most rule-based driving simulators due to the com-
plexity of the models. The other kind includes theory-based interactive traffic simulators,
which can generate long-term interactive high-fidelity traffic flows by combining multiple
modules (LimSim [19]). The traffic flow generated by LimSim closely resembles an actual
dataset with a normal distribution, sharing similar means and standard deviations [20].

This paper proposes a domain randomization method for rule-based microscopic
traffic flows for reinforcement learning-based decision and control. The parameters of
the car-following and lane-changing models are randomized with Gaussian distributions,
making the microscopic traffic flows more random and behaviorally uncertain, thus ex-
posing the agent to a more complex and variable driving environment during training. To
investigate the impact of domain randomization, this paper will train and test agents using
microscopic traffic flow without randomization, high-fidelity microscopic traffic flow, and
domain-randomized traffic flow for freeway and merging scenes.

The rest of this paper is structured as follows: Section 2 introduces the relevant
microscopic traffic flows. Section 3 describes the proposed domain randomization method.
Section 4 presents the simulation experiments and the analysis of the results for the freeway
and merging scenes. Finally, the conclusions are drawn in Section 5.

2. Microscopic Traffic Flow

Microscopic traffic flow models take individual vehicles as the research subject and
mathematically describe the driving behaviors of the vehicles, such as acceleration, over-
taking, and lane changing.

2.1. Rule-Based Microscopic Traffic Flow

This paper utilizes IDM and SL2015 as the default car-following and lane-changing
models, respectively. The following is a detailed introduction to them.

2.1.1. IDM Car-Following Model

IDM was originally proposed by Treiber in [9], capable of describing various traffic
states from free flow to complete congestion with a unified formulaic approach. The
model takes the preceding vehicle’s speed, the ego vehicle’s speed, and the distance to the
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preceding vehicle as inputs to output the ego vehicle’s safe acceleration. The acceleration
of the ego vehicle at each timestep is

v̇(t) = a

[
1 −

(
v(t)
v0

)δ

−
(

s∗(v(t), ∆v(t))
s

)2
]

, (1)

where a represents the maximum acceleration of the ego vehicle, v(t) is the current speed
of the ego vehicle, v0 is the desired speed of the ego vehicle, δ is the acceleration exponent,
∆v(t) is the speed difference between the ego vehicle and the preceding vehicle, s is the
current distance between the ego vehicle and the preceding vehicle, and s∗(v(t), ∆v(t)) is
the desired following distance. The desired distance is defined as follows:

s∗(v(t), ∆v(t)) = s0 + max
(

0, v(t) ∗ T +
v(t) ∗ ∆v(t)

2
√

ab

)
, (2)

where s0 is the minimum gap, T is the bumper-to-bumper time gap, and b represents the
maximum deceleration.

2.1.2. SL2015 Lane-Changing Model

The safety distance required for the lane-changing process is calculated as follows:

dlc,veh(t) =
{

v(t) ∗ a1 + 2lveh, if v(t) ≤ vc,
v(t) ∗ a2 + 2lveh, if v(t) > vc,

(3)

where dlc,veh(t) denotes the safety distance required for lane changing, v(t) represents the
velocity of the vehicle at time t, lveh is the length of the vehicle, a1 and a2 are safety factors,
and the threshold speed vc differentiates between urban roads and highways.

The profit bln(t) at time t for changing lanes is calculated as follows:

bln(t) =
v(t, ln)− v(t, lc)

vmax(lc)
, (4)

where v(t, ln) is the velocity of the vehicle in the target lane at the next timestep, v(t, lc) is
the safe velocity in the current lane, and vmax(lc) is the maximum velocity allowed in the
current lane. The goal here is to maximize the velocity difference, thereby increasing the
benefit of changing lanes.

If the profit bln(t) for the current timestep is greater than zero, then this profit will be
added to the cumulative profit. Conversely, if the profit for the current timestep is less than
zero, the cumulative profit will be halved to moderate the desire to change to the target
lane. If the cumulative profit is larger than a threshold, lane change can be initiated.

2.2. LimSim High-Fidelity Microscopic Traffic Flow

The study employs the LimSim driving simulation platform’s high-fidelity microscopic
traffic flow. The high-fidelity microscopic traffic flow in LimSim is based on optimal
trajectory in the Frenet frame [21]. Within the circular area around the ego vehicle, the
microscopic traffic flow is updated based on each optimal trajectory.

2.2.1. Trajectory Generation

In the Frenet coordinate system, the motion state of a vehicle can be described by the
tuple [s, ṡ, s̈, d, ḋ, d̈], where s represents the longitudinal displacement, ṡ the longitudinal
velocity, s̈ the lateral acceleration, d represents the lateral displacement, ḋ the lateral velocity,
and d̈ the latitudinal acceleration.
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Lateral Trajectory Generation

The lateral trajectory curve can be expressed by the following fifth-order polynomial:

d(t) = ad0 + ad1t + ad2t2 + ad3t3 + ad4t4 + ad5t5. (5)

The trajectory start point is known as D0 = [d0, ḋ0, d̈0], and a complete polynomial trajectory
can be determined once the end point D1 = [d1, ḋ1, d̈1] is specified. As vehicles travel on
the road, they use the road centerline as the reference line for navigation, and the optimal
state should be moving parallel to the centerline, which means the end point would be
D1 = [d1, 0, 0]. Equidistant sampling points are selected between the start point and
end point, and the multiple polynomial segments are connected to form many complete
lateral trajectories.

Longitudinal Trajectory Generation

Longitudinal trajectory curve can be expressed with a fourth-degree polynomial:

s(t) = as0 + as1t + as2t2 + as3t3 + as4t4. (6)

S0 = [s0, ṡ0, s̈0] is the start point and S1 = [ṡ1, s̈1] is the end point. Equidistant sampling
points are selected between the start point and end point, and the multiple polynomial
segments are connected to form many complete longitudinal trajectories.

2.2.2. Optimal Trajectory Selection

The trajectory selection process involves evaluating a cost function that includes key
components: trajectory smoothness, which is determined by the heading and curvature
differences between the actual and reference trajectories; vehicle stability, indicated by the
differences in acceleration and jerk between the actual and reference trajectories; collision
risk, assessed by the risk level of collision with surrounding vehicles; speed deviation,
gauged by the velocity difference between the actual trajectory and the reference speed;
and lateral trajectory deviation, measured by the lateral distance difference between the
actual trajectory and the reference trajectory.

The total cost function is utilized to evaluate the set of candidate trajectories in
Section 2.2.1, followed by an assessment of their compliance with vehicle dynamics
constraints, such as turning radius and speed/acceleration limits. The trajectory that
not only satisfies the vehicle dynamics constraints but also incurs the minimum cost is
selected as the final valid trajectory.

Vehicles within a 50 m perception range of the ego vehicle will be subject to the Frenet
optimal trajectory control, with a trajectory being planned every 0.5 s and having a duration
of 5 s.

3. Domain Randomization for Rule-Based Microscopic Traffic Flow

The domain randomization method is based on randomizing the model parameters
in the IDM car-following model and the SL2015 lane-changing model. The randomized
parameters are shown in Table 1 and are described below.

There are five randomized parameters in the IDM model. “δ” is the acceleration
exponent and “T” is the time gap in the IDM model, respectively. “amax”, “amin”, and
“vmax” are the upper and lower limits of vehicle acceleration and the upper limit of vehicle
speed, respectively.

There are two randomized parameters in the SL2015 model. “lcSpeedGain” indicates
the degree to which a vehicle is eager to change lanes to gain speed; the larger the value,
the more inclined the vehicle is to change lanes. “lcAssertive” is another parameter
that significantly influences the driver’s lane-changing model [22]; a lower “lcAssertive”
value makes the vehicle more inclined to accept smaller lane-changing gaps, leading to
more aggressive lane-changing behavior.
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Ref. [23] found that the parameters δ, T, amax, amin, and vmax are close to Gaussian dis-
tributions. Consequently, we adopt Gaussian distributions for all the domain-randomized
parameters. All the randomized parameters follow Gaussian distributions within the
interval [smin, smax], with distribution s (µ, σ2). Here, smax and smin are the upper and lower
bounds of the randomization interval. µ is set to be (smax + smin)/2, and σ is set to be
(smax − smin)/6. Thus, when a vehicle is generated, the probability that its randomized
parameter value will fall within [smin, smax] is 99.73%.

When each vehicle is initialized on the road for each episode, these randomized
parameters are generated and assigned to it.

Table 1. Domain randomization parameters.

Parameter Default Value Randomization Interval

δ 4 [3.5, 4.5]
T 1 s [0.5, 1.5] s

amax 2.6 m/s2 [1.8, 3.4] m/s2

amin −4.5 m/s2 [−5.5,−3.5] m/s2

vmax 8.33 m/s [7.33, 9.33] m/s
lcSpeedGain 1 [0, 100]
lcAssertive 1 [1, 5]

4. Simulation Experiment

In this section, we create freeway and merging environments in the open-source
SUMO driving simulator [24] and establish the communication between SUMO and the
reinforcement learning algorithm via TraCI [25]. The timestep for the agent to select actions
and observe environment state is set at 0.1 s. We create non-randomized microscopic traffic
flow, the high-fidelity microscopic traffic flow of LimSim, and the domain-randomized
microscopic traffic flows. We train the reinforcement learning-based autonomous vehicles
under different microscopic traffic flows in freeway and merging scenes, respectively.

4.1. Merging
4.1.1. Merging Environment

We establish the merging environment inspired by Lin et al. [6]. A control zone for
the merging vehicle is established, spanning 100 m to the rear of the on-ramp’s merging
point and 100 m to the front of the merging point, as depicted in Figure 1. The red vehicle,
operating under reinforcement learning control, is tasked with executing smooth and safe
merging within the designated control area.

100m

100m

Control Zone

Projected vehicle Merging vehicle

Merging point

Figure 1. Merging in SUMO.
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State

In defining the state of the reinforcement learning environment, the merging vehicle
is projected onto the main road to produce the projected vehicle, and then a total of five
vehicles are considered: two vehicles before the projected vehicle, two vehicles after the
projected vehicle, and the projected vehicle. In order to utilize the observable information
reasonably, the distance (dp2

t , dp1
t , d f 1

t , d f 2
t , dm

t ) of these five vehicles to the merging point, as
well as their velocities (vp2

t , vp1
t , v f 1

t , v f 2
t , vm

t ), are included in the state representation. These
parameters form a state representation with eleven variables, defined as

st = [dp2
t , vp2

t , dp1
t , vp1

t , dm
t , vm

t , am
t , d f 1

t , v f 1
t , d f 2

t , v f 2
t ] ∈ S. (7)

Action

The action space we have defined is a continuous variable: acceleration within
[−4.5, 2.5] m/s2. This range is consistent with the normal acceleration range of surround-
ing vehicles.

at = {accm
t } ∈ A. (8)

Reward

We aim for the merging vehicle to maintain a safe distance from the preceding and
following vehicles, ensure comfort, and avoid coming to a stop or making the following
vehicle brake sharply. Therefore, the reward function is expressed as follows:

Rtotal = Rm + Rb + Rj + Rstop + Rsuccess + Rcollision. (9)

After merging, the merging vehicle is safer when its position is in the middle between the
preceding and following vehicles. The corresponding penalizing reward is defined as

Rm = wm ∗

|w|+

∣∣∣∣∣ (vp1 + v f 1)

2
− vm

∣∣∣∣∣
∆vmax

, (10)

where wm represents the weight factor, and ∆vmax is the maximum allowable speed differ-
ence. The variable w is defined to measure the distance gap among the merging vehicle, its
first preceding vehicle, and its first following vehicle. The details are as follows:

w =

∣∣dp1 − dm − lp1
∣∣− ∣∣∣dm − d f 1 − lm

∣∣∣∣∣∣dp1 − d f 1 − lp1 − lm
∣∣∣ , (11)

where lp1 and lm represent the lengths of the first preceding vehicle and the merging vehicle,
both measuring at 5 m. When the first following vehicle performs braking in the control
zone, a penalizing reward is defined as

Rb = wb ∗

∣∣∣a f 1

∣∣∣
max(|amin|, amax)

, (12)

where wb is the weight and a f 1 is acceleration of the first following vehicle. In order to
improve the comfort level of the merging vehicle, we define a penalizing reward for jerk:

Rj = wj ∗
|jm|
jmax

= −wj ∗
|ȧm|
jmax

, (13)

where wj is the weight, jmax is maximum allowed jerk, and ȧm is jerk of the merging vehicle.
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In addition, if the merging vehicle comes to a stop, a penalty of Rstop = −0.5 is
imposed. When a merged vehicle collides with any vehicle, a penalty of Rcollision = −1 is
applied. Conversely, if the merging vehicle successfully reaches its destination, a reward of
Rsuccess = 1 is granted. Table 2 shows the values of the above-mentioned parameters of the
merging vehicle.

Table 2. Parameter values for the merging vehicle.

Parameter Value

Weight for merging midway wm −0.015
Weight for penalizing first following’s braking wb −0.015
Weight for penalizing jerk wj −0.015
Maximum allowed speed difference ∆vmax 5 m/s
Maximum allowed jerk value jmax 3 m/s3

4.1.2. Soft Actor–Critic

SAC is the reinforcement learning algorithm used for training in merging scenes [26].
The SAC algorithm uses the classical framework of reinforcement learning, actor–critic,
which helps to optimize the value function and the policy at the same time, and it consists
of a parameterized soft-Q function Qθ(st, at) and a tractable policy πϕ(at|st). The param-
eters of these networks are θ and ϕ. This approach considers a more general maximum
entropy objective that not only seeks to maximize rewards but also maintains a degree of
randomness in action selection, as follows:

J(π) =
T

∑
t=0

E(st ,at)∼ρπ
γt[r(st, at) + αH(π(·|st))], (14)

where ρπ denotes the state–action distribution under the policy π, while H(π(·|st)) signifies
the entropy of the policy at state st, thereby enhancing the unpredictability of the chosen
actions. The temperature parameter α plays a pivotal role as it calibrates the balance
between entropy and reward within the objective function, subsequently influencing the
formulation of the optimal policy. The hyperparameters of SAC are the same as in Ref. [6].

4.1.3. Results under Different Microscopic Traffic Flows
Training

In the merging environment, we trained 200,000 timesteps in each of three different
microscopic traffic flows. The training was carried out on an NVIDIA RTX 3060 graphics
card paired with an Intel i7-12700F processor. It required approximately 1 h to complete the
training using both SUMO’s default non-randomized and domain-randomized traffic flows.
In contrast, the training under the condition of high-fidelity traffic flow took 3.5 h. Vehicle
generation probability is 0.56, and the traffic density on the main road was approximately
16 vehicles per kilometer.

Testing

The trained policy was tested with 1000 episodes in the merging environment. We
evaluated the trained policy based on the merging vehicle’s success rate defined by the
completion of an episode without any collisions and the average reward value over the
entire testing period.

Comparison and Analysis

The training curves depicted in Figure 2 suggest that there is minimal visible difference
in the rate of convergence and the rewards achieved by strategies trained under different
microscopic traffic flows.

Table 3 shows that the policy trained under rule-based traffic flow without random-
ization and high-fidelity microscopic traffic flow yields poor results when adapted to



Machines 2024, 12, 264 8 of 15

domain-randomized rule-based traffic flow. Conversely, the policy trained under domain-
randomized rule-based traffic flows consistently achieves success rates above 90% when
tested across all three traffic flows.

0 500 1000 1500 2000 2500 3000

Episode

0

0.5

1

U
nd

is
co

un
te

d 
ep

is
od

e 
re

w
ar

d

Rule-based traffic flow, no randomization
High-fidelity traffic flow, no randomization
Rule-based traffic flow, randomization

Figure 2. Undiscounted episode reward during training under three traffic flows.

Table 3. The results of testing the trained policies regarding merging.

Traffic Flows for Training

Rule-Based,
No Randomization

High-Fidelity,
No Randomization

Rule-Based,
Randomization

Testing

rule-based,
no randomization

Average reward 0.0058 0.0002 −0.0018
Success rate 98.50% 76.40% 91.60%

high-fidelity,
no randomization

Average reward 0.0029 0.0055 −0.0069
Success rate 95.20% 97.50% 98.20%

rule-based,
randomization

Average reward −0.0089 −0.0065 0.0057
Success rate 56.00% 66.70% 99.30%

4.1.4. Generalization Results for Increased Traffic Densities

High-fidelity microscopic traffic flows closely resemble actual traffic scenes, so we
used them as the test traffic flow with increased traffic densities. The impact of changes
in traffic density is shown in Table 4. It can be observed that the policy trained under
rule-based traffic flow without randomization experiences a gradual decline in success
rates and rewards as traffic density increases. In contrast, the policy trained under domain-
randomized rule-based traffic flow consistently maintains a higher success rate.

Table 4. The impact of traffic densities on three trained policies with high-fidelity traffic flow.

Traffic Density for Testing under High-Fidelity Traffic Flow

ϕ = 0.56 ϕ = 0.72 ϕ = 0.89

Training under
rule-based traffic
flow (ϕ = 0.56)

no randomization Average reward 0.0039 0.0017 0.0006
Success rate 95.90% 93.30% 91.90%

randomization Average reward −0.0001 −0.0002 −0.0001
Success rate 98.20% 98.50% 98.20%

ϕ is the vehicle generation probability of the microscopic traffic flow, defined as the number of vehicles that are
generated from the lane starting point per second.

4.1.5. Ablation Study

In order to strengthen the understanding of individual domain-randomized parame-
ters’ role in the model’s performance, we analyzed their individual impact on the training
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outcomes through an ablation study. For the ablation study, we separately ablated each
of the domain-randomized parameters. Subsequently, policies were individually trained
under the traffic flows with domain-randomized parameter ablation. Finally, the trained
policies were tested under both the domain-randomized (all parameters randomized) and
high-fidelity traffic flows. The results of the ablation study are shown in Table 5.

Table 5. The results of the ablation study.

Training under
Rule-Based Traffic Flow

Traffic Flows for Testing

Rule-Based,
Randomization

High-Fidelity,
No Randomization

randomization—no δ
Average reward 0.0049 −0.0023

Success rate 99.90% 95.60%

randomization—no T Average reward 0.0018 −0.0049
Success rate 92.50% 94.10%

randomization—no amax
Average reward 0.0038 −0.0038

Success rate 97.30% 97.70%

randomization—no amin
Average reward 0.0025 −0.0026

Success rate 94.20% 96.80%

randomization—no vmax
Average reward −0.0070 0.0016

Success rate 65.00% 93.70%

no randomization Average reward −0.0089 0.0029
Success rate 56.00% 95.20%

randomization—all parameters Average reward 0.0057 −0.0069
Success rate 99.30% 98.20%

It can be observed that a decline occurs in the performance of the policies trained under
the traffic flows with ablations when tested under the high-fidelity traffic flow. Moreover,
the ablation of vmax significantly affects performance.

4.2. Freeway
4.2.1. Freeway Environment

We used a straight two-lane freeway measuring 1000 m in length, inspired by Lin et al. [27].
Figure 3 depicts a standard lane-changing scenario in SUMO, where the ego vehicle is indicated
by the red car and the surrounding vehicles are represented by the green cars.

100m

Figure 3. The ego vehicle overtakes along the arrow trajectory in the freeway.

State

The state of the environment is centered on the ego vehicle and four nearby vehicles:
one directly in the front and one directly behind it in the same lane, and two similarly
positioned vehicles in the adjacent lane. At time t, the state is defined by the longitudinal

distance (dp
t , d f

t , d
adjacentp
t , d

adjacent f
t ) of these four vehicles from the ego vehicle, their respec-
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tive speeds (vp
t , v f

t , v
adjacentp
t , v

adjacent f
t ), and the speed and acceleration (vego

t , aego
t ) of the ego

vehicle. These parameters form a state representation with ten variables as follows:

st = (dp
t , d f

t , d
adjacentp
t , d

adjacent f
t , vp

t , v f
t , v

adjacentp
t , v

adjacent f
t , vego

t , aego
t ) ∈ S. (15)

Action

The action space is defined as follows:

at = {accego
t , 0, 1} ∈ A. (16)

where accego
t is a continuous action that indicates the acceleration of ego vehicle. Meanwhile,

the discrete actions ‘0’ and ‘1’ dictate lane-changing behavior. The ‘0’ means to keep the
current lane and the ‘1’ means an instantaneous lane change to the other lane.

Reward

We have formulated a reward function aligned with practical driving objectives,
incentivizing behaviors such as avoiding collisions, obeying speed limits, preserving
comfortable driving conditions, and maintaining a safe following distance. The total
reward Rtotal is expressed as follows:

Rtotal = Ract + Rdistance + Rjerk + Rv + Rcollision. (17)

In order to penalize frequent lane changes, the penalty Ract is defined as follows:

Ract =


ω0, if |yt−1 − yt| ̸= 0 and dp

t < dsafe,
ω1, if |yt−1 − yt| ̸= 0 and dp

t > dsafe,
0, other,

(18)

where yt is ego vehicle’s lateral position and ω0 < ω1. If the vehicle changes lanes within
the safety distance dsafe, it incurs a penalty of ω0. Alternatively, changing lanes outside
dsafe results in a penalty of ω1.

It is essential to ensure that the ego vehicle maintains a safe following distance from
the preceding vehicle, and the corresponding penalizing reward Rdistance is defined as

Rdistance = ω2 ∗
∣∣∣∣∣dp

t − dsafe

dsafe

∣∣∣∣∣, if dp
t < dsafe. (19)

The objective of Rjerk is to ensure driving comfort. It is defined as

Rjerk = ω3 ∗ |(at − at−1)/0.1|, (20)

where at and at−1 denote the acceleration at the current and previous moments, respectively.
In order to promote the ego vehicle speed that enables overtaking, the penalty Rv is

defined as follows:

Rv =



ω4 ∗
∣∣∣∣ vego

t −vstable
vsafe

∣∣∣∣, if vstable < vego
t < vsafe and dp

t < dsafe + d∗,

ω5 ∗
∣∣∣∣ vego

t −vsafe
vsafe

∣∣∣∣, if vego
t > vsafe and dp

t < dsafe + d∗,

ω6 ∗
∣∣∣∣ vego

t −vstable
vstable

∣∣∣∣, if vego
t < vstable and dp

t < dsafe + d∗,

0, otherwise.

(21)
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When there is no opportunity to overtake the vehicle ahead, the ego vehicle should travel
at a steady speed similar to that of the preceding vehicle. Consequently, we introduce a
threshold d∗. As long as dp ∈ [dsafe, dsafe + d∗], the ego vehicle will not incur penalties of
Rdistance or Rv.

In the equations presented above, ωi denotes the corresponding weights. The key
parameters for the freeway scene are presented in Table 6.

Table 6. Parameters for freeway simulation.

Parameters Value Weights Value

amin −4.5 m/s2 w0 −5
amax 2.6 m/s2 w1 −2
vsafe 16.89 m/s w2 −10

vstable 8.89 m/s w3 −0.005
dsafe 25 m w4 1

Rcollision −200 w5 −0.5
d∗ 2.5 m w6 −0.5

4.2.2. Parameterized Soft Actor–Critic

The SAC algorithm in Section 4.1.2 can only solve continuous-action space problems.
When dealing with continuous-discrete hybrid action space for freeway lane change, we
adopt the Parameterized SAC (PASAC) algorithm, inspired by Lin et al. [27].

PASAC is based on SAC. The actor network produces continuous outputs, which
include both continues actions and the weights for the discrete actions. An argmax function
is utilized to select the discrete action associated with the maximum weight.

The freeway environment, having a hybrid continuous-discrete action space, requires
the agent to be trained with the PASAC algorithm. The hyperparameters of PASAC are the
same as SAC.

4.2.3. Results under Different Microscopic Traffic Flows
Training

In the freeway environment, we trained 400,000 timesteps in each of three different
microscopic traffic flows. It required 1.5 h to complete the training using both rule-based
traffic flows without randomization and with domain randomization. In contrast, the
training under the condition of high-fidelity traffic flow took 5 h. Vehicle generation
probability is 0.14 vehicles per second, and the traffic density on the main road was
approximately 11 vehicles per kilometer on each straightaway.

Testing

The trained policy was tested with 1000 episodes in the freeway environment. We
evaluated the trained policy based on the ego vehicle’s success rate defined by the com-
pletion of an episode without any collisions, and the average reward value over the entire
testing period.

Comparison and Analysis

In Figure 4, it can be observed that the policies all tend to converge around 200 episodes.
Throughout the training process, aside from the initially lower reward of the domain-
randomized traffic flows, the convergence rates and final rewards of the three curves are
closely aligned.

The results of testing are shown in Table 7. It can be observed that the policy trained
under domain-randomized rule-based traffic flows has the highest success rates when
tested under different microscopic traffic flows. The policy trained under rule-based and
high-fidelity traffic flows without randomization cannot adapt to domain-randomized
rule-based traffic flow.
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Figure 4. Undiscounted episode reward during training under three traffic flows.

Table 7. The results of testing the trained policies regarding freeway condition.

Traffic Flows for Training

Rule-Based,
No Randomization

High-Fidelity,
No Randomization

Rule-Based,
Randomization

Testing

rule-based,
no randomization

Average reward 200.50 205.32 197.15
Success rate 100% 99.70% 100%

high-fidelity,
no randomization

Average reward 187.10 208.85 202.48
Success rate 98.90% 99.60% 99.90%

rule-based,
randomization

Average reward 126.27 160.06 186.72
Success rate 80.40% 89.00% 99.40%

4.2.4. Generalization Results for Increased Traffic Densities

The impact of changes in high-fidelity traffic density is shown in Table 8. It can
be observed that the success rate and reward of the policy trained under microscopic
traffic flow without randomization decreases significantly as traffic density increases. In
contrast, the policy trained under domain-randomized traffic flow maintains a success rate
near 100%.

Table 8. The impact of changes in traffic density on three trained policies under high-fidelity traffic
flow.

Traffic Density for Testing under High-Fidelity Traffic Flow

ϕ = 0.14 ϕ = 0.18 ϕ = 0.20

Training under
rule-based traffic
flow (ϕ = 0.14)

no randomization
Average speed 16.39 15.89 15.77

Average reward 187.10 189.85 109.49
Success rate 98.90% 93.90% 66.50%

randomization
Average speed 15.83 15.42 15.17

Average reward 202.48 197.48 191.51
Success rate 99.90% 99.80% 99.90%

ϕ is the vehicle generation probability of the microscopic traffic flow, defined as the number of vehicles that are
generated from the lane starting point per second.

4.2.5. Ablation Study

In the freeway environment, we also conducted an ablation study to enhance our
understanding of the role that an individual domain-randomized parameter plays in the
model’s performance. The results of the ablation study are shown in Table 9.
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Table 9. The results of the ablation study.

Training under
Rule-Based Traffic Flow

Traffic Flows for Testing

Rule-Based,
Randomization

High-Fidelity,
No Randomization

randomization—no δ
Average reward 170.46 187.65

Success rate 97.20% 99.90%

randomization—no T Average reward 169.62 178.95
Success rate 98.50% 99.60%

randomization—no amax
Average reward 181.49 202.52

Success rate 98.30% 99.90%

randomization—no amin
Average reward 170.72 185.81

Success rate 99.40% 100%

randomization—no vmax
Average reward 96.99 150.10

Success rate 89.90% 99.50%

randomization—no lcSpeedGain
Average reward 132.04 156.61

Success rate 100% 100%

randomization—no lcAssertive
Average reward 173.71 188.57

Success rate 97.70% 99.90%

no randomization Average reward 126.27 187.10
Success rate 80.40% 98.90%

randomization—all parameters Average reward 186.72 202.48
Success rate 99.40% 99.90%

In the freeway environment, the collision rates of the different policies are close to
zero, so we mainly compare the average rewards of the different policies. It can be found
that the conclusions are similar to those of merging, where the performance of the policies
trained under traffic flows with domain-randomized parameter ablation declines to varying
degrees. The ablation of vmax has a large impact on the performance.

5. Conclusions

In this study, we introduce a method for randomizing lane-changing and car-following
model parameters to generate randomized microscopic traffic flows, and we evaluate and
compare the policies trained by reinforcement learning algorithms in freeway and merging
environments. The results show that

• The policy trained under the condition of domain-randomized rule-based microscopic
traffic flow is able to maintain high rewards and success rates when tested with
different microscopic traffic flows. However, the policy trained under the condition
of microscopic traffic flow without randomization or high-fidelity microtraffic flow
performs significantly worse when tested under microscopic traffic flows that are
different from those of training. This indicates that domain randomization enables
reinforcement learning agents to adapt to different types of traffic flow.

• The policy trained under the condition of domain-randomized rule-based microscopic
traffic flow performs well when tested under high-fidelity microscopic traffic flow with
different traffic densities. The policy trained under microscopic traffic flow without
randomization decreases significantly with increasing traffic density. This indicates
that the domain-randomized traffic flow possesses strong generalization to changes in
traffic density.

• Although high-fidelity microscopic traffic flow is close to real microscopic traffic flows,
the results show that not only does it considerably increase simulation time but policies
trained under the condition of microscopic traffic flow also do not generalize well to
different microscopic flows. Therefore, high-fidelity microscopic traffic flow is more
suitable for testing rather than training.
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In summary, the policies trained under domain-randomized rule-based microscopic
traffic flow demonstrate robust performance when transferred to environments that closely
resemble real-world traffic conditions. The future work includes testing a policy trained
under the condition of domain-randomized rule-based microscopic traffic flow on a real
autonomous vehicle.
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