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Abstract: The current network for the dual-task grinding wheel defect semantic segmentation lacks
high-precision lightweight designs, making it challenging to balance lightweighting and segmen-
tation accuracy, thus severely limiting its practical application in grinding wheel production lines.
Additionally, recent approaches for addressing the natural class imbalance in defect segmentation fail
to leverage the inexhaustible unannotated raw data on the production line, posing huge data wastage.
Targeting these two issues, firstly, by discovering the similarity between Coordinate Attention (CA)
and ASPP, this study has introduced a novel lightweight CA-ASP module to the DeeplabV3+, which
is 45.3% smaller in parameter size and 53.2% lower in FLOPs compared to the ASPP, while achieving
better segmentation precision. Secondly, we have innovatively leveraged the Masked Autoencoder
(MAE) to address imbalance. By developing a new Hybrid MAE and applying it to self-supervised
pretraining on tremendous unannotated data, we have significantly uplifted the network’s semantic
understanding on the minority classes, which leads to further rises in both the overall accuracy and
accuracy of the minorities without additional computational growth. Lastly, transfer learning has
been deployed to fully utilize the highly related dual tasks. Experimental results demonstrate that
the proposed methods with a real-time latency of 9.512 ms obtain a superior segmentation accuracy
on the mIoU score over the compared real-time state-of-the-art methods, excelling in managing the
imbalance and ensuring stability on the complicated scenes across the dual tasks.

Keywords: semantic segmentation; ASPP; DeeplabV3+; coordinate attention; MAE; grinding wheels;
defect detection; self-supervised

1. Introduction

Defects in grinding wheels can significantly affect their grinding effectiveness and
pose serious operational safety hazards. Therefore, this issue has provoked a high-precision
standard on the automatic defect detection in intelligent grinding wheel production
lines. At present, the main approach is defect semantic segmentation, based on deep
learning [1–3], which provides detailed prediction through pixel-level classification [4].

The grinding wheel is formed with an asymmetrical dual-sided structure, which
produces two highly related datasets. Defect segmentation needs to be implemented
on both datasets. Additionally, the mass grinding wheel production line contains large
amounts of workstations requiring defect detection. An economical-oriented trend is
to adopt a “one-to-many” strategy, using one single GPU to manage segmentations for
multiple workstations. Such multi-task [5] circumstances have placed high demands on
lightweighting and the computational efficiency of the network.

To solve the contradiction between precision and efficiency, improvements to the
network need to be specifically adjusted to the data. Yet, for grinding wheel defects,
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the academic community lacks references for analysis of its semantic characteristics and
corresponding processing methods.

There are four essential elements for a successful semantic segmentation network [6]:
low computational complexity, a powerful backbone feature extraction network, multi-scale
information interaction, and spatial attention. In the industry, these conditions appear even
more crucial. Although Vision Transformers (ViTs) [7] have rapidly developed in recent
years, Convolutional Neural Networks (CNNs) still dominate the industry for its lower
computational costs [8], among which the DeepLab series [9–12] in an encoder–decoder
architecture with the Atrous Spatial Pyramid Pooling (ASPP) module, stands out for being
effective in capturing multi-scale contextual information and sharpening object boundaries.

In industrial applications, segmentation networks mostly collaborate with a lightweight
backbone, which suffers from insufficient feature extraction capability and generalizabil-
ity. This has facilitated the application of attention mechanisms [13], which selectively
highlight distinct regions in the features through statistical weighting. Consequently, the
cooperation of attention mechanisms and lightweight CNNs has prevailed. Based on the
dual attention structure [14], Pan et al. [15] developed a DAN-Deeplabve3+ with Xcep-
tion backbone [16] by appending two types of attention into each branch of the ASPP to
better segment steel defects. Liu et al. [17] presented a novel Dual Value Attention (DVA)
module with a pair of ASPP modules, followed by a self-attention module in the Panoptic
DeepLab. Moreover, the combination of ASPP and the Convolutional Block Attention
Module (CBAM) [18] or Coordinate Attention (CA) [19] is frequently adopted to solve
respective tasks [20–26]. Similar approaches can be found in other architectures like the
U-Net [27–31]. These studies have achieved state-of-the-art experimental results in their
respective tasks. However, mostly, the application of attention mechanisms focuses on
implanting them as independent modules into benchmark models, in three main forms:

• Incorporated after each layer of the encoder to enhance its feature extraction capabil-
ity [27,30,32–34];

• Embedded into the multi-scale contextual features extractor like ASPP, to further
highlight multi-scale information interactions [15,17,20–26];

• Placing multiple attention units at each branch of the output from the encoder, to
augment features of every level [28,29,31].

For lightweight CNNs, these mechanisms can significantly improve performance but
also introduce additional parameters and computational burdens. Unfortunately, high-
precision lightweight structural designs are extremely scarce in the academic community.

On the other hand, class imbalance naturally exists in defect datasets due to the
uneven probabilities of appearance of certain category. Since semantic segmentation is
a pixel-level classification task, the diversity of the scales of each class will aggravate
the imbalance phenomenon. Traditional methods by data augmentation [35–38] require
excessive manual intervention and fail to utilize the inexhaustible unannotated raw data
on the production line. These raw data contain rich semantic information and may provide
additional assistance to the network in understanding the minority classes. However, due
to the limitations imposed by the enormous difficulty of manual annotation, a wastage of
the raw data is inevitable.

In recent years, the CV academia have explored the use of self-supervised pretraining,
allowing models to spontaneously capture semantic information from unannotated data to
further uplift model performance on downstream tasks. Inspired by the masked language
modeling, He et al. [39] have introduced the Masked Autoencoder (MAE) into the vision
domain, which was soon followed by research such as Semantic-Guided Masking for MAE
(SemMAE) [40] and the Fully Convolutional Masked Autoencoder (FCMAE) [41]. As
pre-training methods, the MAEs can fully leverage the unannotated data on the production
line without imposing any calculation burden. In this way, we could efficiently manage
imbalance from a new raw-data-driven perspective.

In this paper, we aim to introduce an efficient network solution for managing the dual
grinding wheel defect semantic segmentation task. The solution provides an improved
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DeeplabV3+ network with a high-precision lightweight design, while addressing imbalance
using both the weighted-driven method by Weighted Cross-Entropy and the proposed
raw-data-driven method by MAE. Moreover, it fully utilizes the similarity in the dual
datasets by transfer learning [42]. Figure 1 shows the overall framework of this paper.
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Figure 1. The overall framework of this paper.

• Our scientific contributions include two aspects:

1. We have filled in the blanks in research on grinding wheel defect segmentation
by providing thorough analysis on the grinding wheel datasets, and a compre-
hensive deep learning-based solutions with both network designs and training
strategies.

2. Based on our finding of the similarity between Coordinate Attention and ASPP,
we have proposed the novel Coordinate Attentioned—Atrous Spatial Pyramid
(CA–ASP) module, which achieves higher segmentation accuracy compared to
the ASPP, with highly reduced parameters size and computational complexity.
It has shown great potential for replacing the classic ASPP according to the
experimental results.

• Furthermore, we have made application contributions by addressing imbalance
through self-supervised pretraining with our developed Hybrid MAE network, which
would significantly reduce the raw data wastage on the production line.

2. Experimental Materials and Methods

The dual-sided grinding wheels contain rough surfaces with uneven abrasive particles,
which exhibit directionally varying reflections under an illuminant. In mass production
lines, manufacturers produce multiple forms of grinding wheels. Therefore, in different
batches, there will be significant variations in the styles of the grinding wheels, resulting in
complex backgrounds and rich semantic information in defect images (Figure 2), making it
challenging to capture semantic information at the defect boundaries.



Machines 2024, 12, 276 4 of 28Machines 2024, 12, x FOR PEER REVIEW 4 of 29 
 

 

  
(a) (b) 

Figure 2. Diverse samples of grinding wheels in different forms: (a) obverse set; (b) reverse set. 

Data for this study were obtained from a large grinding wheel manufacturing com-
pany in Guangdong Province, China, spanning from February 2023 to June 2023. 

The dual-sided task is performed at two different workstations with one computing 
device which contains a GPU. Ultimately, by using the image acquisition devices shown 
in Figure 3, we have collected 1295 unlabeled images and 490 labeled images for the ob-
verse set and 628 labeled images for the reverse set. 

   
(a) (b) 

Figure 3. Image acquisition device: (a) Obverse device; (b) Reverse device. 

2.1. Defects of Grinding Wheels 
In the obverse task, there are five types of defects presenting the following: a missing 

metal ring, an abnormal metal ring, an abnormal logo, an abnormal mesh, and sand leak-
age. In the reverse task, there are four types: holes, an abnormal mesh, sand leakage, and 
impurity. To facilitate the segmentation process, a few adjustments need to be made, in-
cluding introducing a background class and treating normal metal rings as one segmen-
tation category, which distinguish the missing metal rings from a different viewpoint. As 
a summary, the types of defects are shown in Figures 4 and 5, and their corresponding 
categories in each set are listed in Table 1. 

      
(a) (b) (c) (d) (e) (f) 

Figure 4. Defects in the obverse set: (a) normal metal ring; (b) abnormal metal ring; (c) abnormal 
logo; (d) abnormal mesh; (e) sand leakage; (f) complex scene. 

  

Figure 2. Diverse samples of grinding wheels in different forms: (a) obverse set; (b) reverse set.

Data for this study were obtained from a large grinding wheel manufacturing company
in Guangdong Province, China, spanning from February 2023 to June 2023.

The dual-sided task is performed at two different workstations with one computing
device which contains a GPU. Ultimately, by using the image acquisition devices shown in
Figure 3, we have collected 1295 unlabeled images and 490 labeled images for the obverse
set and 628 labeled images for the reverse set.
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2.1. Defects of Grinding Wheels

In the obverse task, there are five types of defects presenting the following: a miss-
ing metal ring, an abnormal metal ring, an abnormal logo, an abnormal mesh, and sand
leakage. In the reverse task, there are four types: holes, an abnormal mesh, sand leakage,
and impurity. To facilitate the segmentation process, a few adjustments need to be made,
including introducing a background class and treating normal metal rings as one segmen-
tation category, which distinguish the missing metal rings from a different viewpoint. As
a summary, the types of defects are shown in Figures 4 and 5, and their corresponding
categories in each set are listed in Table 1.
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Table 1. The types of defects and the corresponding category.

Obverse Set Reverse Set

Defect Type Category Defect Type Category

None Background None Background
Missing Metal Ring Ring_OK Holes Holes

Abnormal Metal Ring Ring_NG Abnormal Mesh Mesh
Abnormal Logo Logo Sand Leakage Sand
Abnormal Mesh Mesh Impurity Impurity

Sand Leakage Sand - -

Post-processing will be conducted according to the segmentation result, which divides
the products into different grades. Those with serious defects will be discarded, preventing
it from proceeding to the next stage of production. Therefore, the semantic segmentation
plays a very important role in the entire detection process.

2.2. Characteristics in the Materials
2.2.1. Class Imbalance

Figure 6 vividly illustrates the severe class imbalance issue presented in the grinding
wheel datasets. Ring_NG and Logo in the obverse set, as well as Holes and Impurity in
the reverse set, are considered challenging categories that require focused attention on
segmentation accuracy.
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2.2.2. Spatial Patterns

In the obverse set, it can be observed that the positional distributions of each category
exhibit certain regularities. Apart from Ring_NG, the presence of other categories is limited
to specific regions due to the overlap of the component.

In the reverse set, most Holes are concentrated within a circular range centered
around the grinding wheel, while Sand mainly occurs at the inner and outer edge of the
grinding wheel.
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2.2.3. More Complex Segmentation Scenes in the Reverse Set

In the reverse set, without the shadowing of certain components, defects hidden under
the metal rings and logo are exposed. Thus, the irregular boundaries of the defect areas are
much more pronounced than those in the obverse. This phenomenon can be observed in
Figure 22 in Section 5.2.3 and Figure 24 in Section 5.3.2.

2.2.4. Similarity between the Dual-Sided Tasks

The reticular backgrounds in the two sets are highly similar and there exist two
identical defect categories: Mesh and Sand, which allows for the model trained on the
first task to possess a certain capability of extracting semantic information on the second
one. Simple transfer learning approaches, like fine-tuning with pretrained weights, are
suitable for this scenario. Moreover, due to the richer semantic information in the obverse
set, resulting from the inclusion of more categories, the obverse set becomes a viable option
for the upstream task.

2.2.5. Related Work

MobileViTv3 Backbone: Lightweight Convolutional Neural Networks (CNNs), such
as XCeption and the MobileNet series [43–45], have been widely applied as the backbones
of industry currently. With the continuous development of transformers in recent years,
novel real-time backbones based on light-weight self-attention [46,47] and multi-head
self-attention [48] have been introduced.

CNNs are limited by the local receptive fields. To acquire global information, CNNs
require the additional attention mechanisms and the stacking of deeper networks, resulting
in a larger number of parameters. By contrast, light-weight self-attention is more effec-
tive in capturing global long-range dependencies in the image patches, as it allows the
patches to interact with each other through patch-wise cosine similarity calculation. Thus,
it needs fewer parameters to achieve comparable, or even superior performance compared
to traditional lightweight CNNs. Although its computational complexity is still higher
than CNNs, its inference speed can meet the real-time needs. With the upgrading of hard-
ware devices in the industry, the application prospects of lightweight transformers have
greatly improved.

Among the light-weight ViTs, we have selected MobileViTv3_0.50 as the backbone for
our proposed model for its highly efficient separable self-attention mechanism [47], which
brings better feature extraction and generalizability while carrying fewer parameters than
MobileNets.

The MobileViTv3 is of a hybrid architecture constructed by lightweight Inverted
Residual block (MobileNetV2 block, MV2) and the MobileViTv3 block. The MobileViTv3
block is built upon its cornerstone—Separable Self-Attention.

The network structure (Figure 7) consists of five layers, with layers three to five
incorporating the MobileViTv3 block, which stacks varying numbers of Separable Self-
Attention modules in different layers. Additionally, a width factor is applied to adjust the
scale of the feature channel dimension for each layer.

The following is the process of Separable Self-Attention. Assuming the input unfolded
tensor is x ∈ RC×k×d, firstly, it will be linearly projected using three branches, namely
the Input, Key and Value, with three corresponding weights WI ∈ RC×d, WK ∈ RC×d×d

and WV ∈ RC×d×d. Secondly, the results from the three branches will be used to calculate
the representation of the input weighted by pixel-wise similarity. Finally, another linear
projection with weights WO ∈ RC×d×d will be performed to produce the output. All in all,
with the broadcasted element-wise multiplication operation denoted by ∗, and softmax
represented by σ(·), the process can be defined as:

y =
[
∑ (σ(xWI) ∗ xWK) ∗ ReLu(xWV)

]
WO ∈ RC×k×d (1)
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Figure 7. MobileViTv3 backbone and its core modules.

Coordinate Attention: Coordinate Attention (CA) [19] is a light-weight attention
mechanism which aggregates global semantic information along the H, W spatial directions
on the input feature X ∈ RC×H×W through 1D convolutional mappings. This approach can
capture long-range dependency relationships along one spatial direction while preserving
precise positional information along the other spatial direction, thereby distinguishing
the localization of significant regions with a smaller computational complexity. The im-
plementation of CA can be divided into two steps: coordinate information extraction
and coordinate attention generation. The implementation details of CA are illustrated in
Figure 8.
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Figure 8. Coordinate Attention (CA).

Coordinate Information Extraction is implemented by a pair of 1D Pooling layer along
the H and W directions separately, with pooling kernel sizes of (H, 1) and (1, W). Assuming
the input is X ∈ RC×H×W , the output of channel c-th at height h or width w is calculated as:

zh
c = 1

W ∑
0≤i<W

Xc(h, i) ∈ RC×H

zw
c = 1

H ∑
0≤j<H

Xc(j, w) ∈ RC×W (2)

Coordinate Attention Generation comprises a pair of 1D squeeze-and-excitation (SE)
modules. Firstly, it concatenates the spatial-direction-aware features from the Coordinate
Information Extraction, and then compresses the channel dimension of the features with a
shared 1 × 1 convolution. Assuming the 1 × 1 convolution is denoted by F(·), the channel
compression rate is represented by r, and the activation function Hardswish(x) is regarded
as δ(·), the output can be calculated by:

f = δ(F([zh, zw])) ∈ RC/r×(H+W) (3)

Secondly, the compressed features f ∈ RC/r×(H+W) are split along the spatial di-
rections into f h ∈ RC/r×H and f w ∈ RC/r×W , which will be processed by a pair of 1D
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convolutions (Fh and Fw), subsequently to restore the channel dimension. Lastly, a sigmoid
activation is applied to generate attention weights along the H, W directions:

gh = σ(Fh( f h)), gw = σ(Fw( f w)) (4)

CA outputs a transformed tensor Y with augmented representations using the follow-
ing Equation:

Yc(i, j) = Xc(i, j)× gh
c (i)× gw

c (j) (5)

For the spatial patterns in the data, CA is the optimal mechanism for enhancing the
overall network, as it efficiently captures spatial statistical information. Moreover, CA is
highly lightweight, which aligns with the goals of this research.

3. DeeplabV3+ Based on Coordinate Attentioned-ASP (CA-ASP)

In general, to ensure reliable segmentation results, we have adopted the DeeplabV3+
segmentation framework, which provides more stable segmentation accuracy. The Encoder
of DeeplabV3+ consists of a backbone and an ASPP module: the former is responsible for
extracting basic features, while the latter highlights the multi-scale information interaction
within the basic features, which adapt the network to the scale variations of different
categories, thus providing robust segmentation results.

Aiming for enhancing segmentation accuracy through squeezing and integrating,
rather than adding modules into the network, corresponding improvements are made to
the DeepLabV3+ based on the characteristics of the datasets. Two main modifications are
made to the original DeeplabV3+:

• Adopting the lightweight MobileViTv3_0.50 as the backbone.
• Replacing ASPP with the proposed lightweight CA-ASP module.

Figure 9 shows the structure of the improved DeeplabV3+ network.
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For the backbone, in the pursuit of a extreme lightweight design, a width factor of
0.50 is chosen for the MobileViTv3. Furthermore, we extract features from layer two as
low-level features and features from layer five as high-level features, which will serve as
inputs of the decoder in two branches. Directly using the MobileViTv3_0.50 could avoid
adding additional attention mechanisms to the CNNs backbones, which already contain
larger parameters.

After embedding self-attention into the backbone, the next step we focus on is the
ASPP module. How can we enhance the multi-scale contextual feature extraction capability
of ASPP without increasing the computational load? Through analysis, we have discovered
an interesting similarity between Coordinate Attention (CA) and ASPP, as well as how to
make them a great pair in enhancing feature extraction capabilities, fused into the CA-ASP.
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3.1. Analysis on the Computational Complexity of ASPP

ASPP (Figure 10) is the core module of the Deeplab series networks, which encode
contextual information at multiple scales through convolution branches with different
receptive fields.
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Figure 10. ASPP module in the DeeplabV3+.

The ASPP structure includes five branches:

1. A 1 × 1 convolution for the smallest receptive field (single pixel) projection;
2. Three atrous-separable-convolution branches extracting features with 3 different

receptive fields, which produce multi-scale features;
3. A pooling branch aimed at transforming the feature map into global statistical informa-

tion and then regenerating them as features with the maximum receptive field, helping
the network better understand overall semantics and improve its understanding of
object context.

Ultimately, the concatenated multi-scale features are fused through a 1 × 1 convolution,
which will impulse the interaction of the multi-scale information in the features.

In the Deeplab series, the output of the backbone, serving as the input of ASPP, usually
contains a large channel dimension (such as 960, 1024, 2048, etc.) to preserve the integrity of
feature information to the maximum extent. Figure 11 illustrates the segmentation accuracy
of DeeplabV3+ with the MobileViTv3_0.50 with different output channel dimensions on
the mean Intersection over Union (mIoU), highlighting the importance of high-dimensional
output of the backbones.
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Considering the case without bias, where X ∈ RCin×H×W is the input tensor and
Y ∈ RCout×H×W is the output tensor, using the kernel size of (kH × kW) and the group of
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g, the Floating-Point Operations per second (FLOPs) of one convolution operation can be
calculated as:

FLOPs = (2 × kH × kW × Cin/g − 1)× Cout × Hout × Wout (6)

As can be seen in Figure 10, the five convolution branches in ASPP directly
compute on the high-dimensional features with a larger Cin, resulting in significant
computational complexity.

3.2. Coordinate Attentioned-Atrous Spatial Pyramid (CA-ASP)

In our research, we have found that the global contextual feature extraction in CA
mechanisms overlap in functionality with the ASPP pooling design. Based on this point, we
first referred to the self-attention mechanism in pursuit of how global features interact with
local features and how attention can be aggregated into the network, and then delicately
integrate CA with ASPP. The proposed CA-ASP architecture is shown in Figure 12.
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3.2.1. ASP: A Slimmed-Down ASPP without Pooling

At the first place, we simplified the ASPP to reduce its computational load. Modifica-
tions and corresponding analysis are as follows.

• 1 × 1 Conv as Pre-Mapping Unit.

First, on the assumption that a 1 × 1 convolution can be seen as a linear projection of
the input features with an identity receptive field, rather than treating it as an independent
branch in ASPP, we choose to move it forward as a pre-mapping unit to form an inverted
residual block, which can reduce the dimensions of the input from X ∈ R960×H×W into
X′ ∈ R256×H×W , without losing critical information. Different from directly mapping the
features into a lower dimension, an inverted residual block enables the model to learn and
retain critical information through a learnable “expand-and-squeeze” process (activations
between the 1 × 1 convolutions are required). Figure 13 shows the details.

• Fusion to the features from four different receptive fields.

Figure 14 illustrates the comparison between random samples of the high dimen-
sional input X ∈ R960×H×W from the backbone and the output of the Pre-Mapping Unit
X′ ∈ R256×H×W , indicating a minor discrepancy between the two. This is because a single
layer of linear projection by a 1 × 1 convolution would not introduce significant changes to
the feature maps.
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Thus, considering X′ as the representation of X, we import X′ into the three branches
of atrous-separable-convolution, with three different receptive fields to extract multi-scale
contextual features. Then, concatenation is conducted on the above four contextual features
from four different receptive fields. At last, the concatenated features will be fused by a
1 × 1 convolution layer to highlight the interaction of the multi-scale information.

• ASPP with no Pooling (Based on similarity between CA and ASPP).

There are multiple ways to obtain global features. ASPP Pooling employs a 2D
Global Average Pooling (GAP) to spatially squeeze global statistical information with the
maximum receptive field and then regenerate them into global features. Approximatively,
CA can obtain a pair of global features along a certain spatial direction through 1D pooling,
and then regenerate them into globally aware attention weights with 1D convolution.

From a functional perspective, there are overlaps between the two. Compared to the
former, global features from the latter contains additional position information. Equation
(7) illustrates that a pair of 1D pooling preserves positional information in two dimensions,
while GAP can only preserve channel information. For semantic segmentation tasks, the
latter would be the preferred option.

GAP(X) := X ∈ RC×H×W → gx ∈ RC

Poolings1D(X) := X ∈ RC×H×W → (pxh ∈ RC×H , pxw ∈ RC×W)
(7)

Based on this point, we decided to remove ASPP Pooling from ASPP, forming ASP.
One question remaining is how to aggregate the global-aware weights from CA into the
multi-scale contextual features from ASP.

3.2.2. Integrate CA into ASP

Now that the slimmed-down ASP has made room for CA, the second step is to
integrate CA into the module.

One enlightenment brought by the Self-Attentions is that global information can be
incorporated into the features, not only through concatenation [21–26] or addition [14,20],
but also through weighted multiplication [6,7,46–48]. Separable Self-Attention is a classic
structure of Self-Attentions, and CA is a typical case of attention mechanisms. By comparing
Equations (1) and (5), we can find that CA multiplies the weights with the input features,
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while Separable Self-Attention multiplies the weights with the representation of the input.
Both ways can incorporate global attention information into the features. This evidence
proves that CA could replace ASPP Pooling.

Inspired by this, we use X′ ∈ R256×H×W from the Pre-Mapping as input of CA to
generate globally aware coordinate attention weights and then multiply it with the multi-
scale contextual representation of the input produced by the ASP.

3.2.3. Mathematical Description and Effects

Assuming that the output from the backbone is X ∈ R960×H×W , the Pre-Mapping Unit
is denoted by M(·), the atrous-separable-convolutions with a atrous rate i is represented by
Ai(·), and fusion is signified by F(·), operations of the ASP can be described as:

YASP = F(Concat[M(X), Ai=6(M(X)), Ai=12(M(X)), Ai=18(M(X))]) (8)

Secondly, we can take M(X) ∈ RC×H×W as the input to calculate CA weights accord-
ing to Equations (2)–(4). Modifying Equation (5) with Equation (8) yields the output of
CA-ASP as:

Yc(i, j) = YASP
c(i, j)× gh

c (i)× gw
c (j) (9)

Table 2 lists the ASPP combined with different attention mechanisms. It is evident
that CA-ASP significantly reduces the parameter size (45.3%) and the computational load
(53.2%) of ASPP. Further experimental results indicate that this change does not have a
negative impact on the model’s performance, which will be detailed in Chapter 5.

Table 2. Comparison of ASP with different attention mechanisms in computational efficiency, with
an input of X ∈ R960×32×32.

Method Params (M) FLOPs (M)

ASPP (Baseline) 1.59 1386.99
ASPP + CBAM 1.60 1387.37

ASPP + Separable
Self-Attention 1.79 1588.58

CA + ASPP 1.68 1392.71
ASPP + CA 1.60 1387.79

CA-ASP (Ours) 0.72 737.69

3.3. Loss Function: Weighted Cross-Entropy

To address the issue of class imbalance, we use Weighted Cross-Entropy (WCE) as
the loss function. Assuming that C is the category number, wc stands for the weight of
class c, yi is the label value of the i-th pixel, and yi is the predicted value. The WCE can be
calculated using Equation:

LWCE = − 1

N
C
∑

c=0
wc

C

∑
c=0

N

∑
i=0

(wcyi log(yi) + (1 − yi) log(1 − yi)) (10)

The weights are calculated based on the total pixels of each class, where fi represents
the total pixels for the i-th class in the annotated data, f denotes the total pixels, and
eps is a very small number to prevent division by zero. The weight for the i-th class is
calculated by:

weighti =
1

log(1 + eps + fi/ f )
(11)

By taking the logarithm, classes with lower frequencies receive higher weights, thereby
increasing their contribution to the loss function. WCE has the advantage of simple gradient
computation and easy convergence properties. By manually calculating class weights, it
spares the model from learning different penalty levels for different classes during training,
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thereby reducing the training burden. In cases where the dataset is relatively complete, it is
a suitable and efficient option.

4. Training Strategies: Self-Supervised Pre-Training and Transfer Learning

In seeking further boosting in segmentation performance without an additional calcu-
lation workload, our focuses have shifted to training strategies.

4.1. Self-Supervised Pre-Training Based on the Hybrid MAE

In our viewpoint, self-supervised pre-training enhances the model’s capacity for
capturing crucial information by reinforcing its understanding of semantic information in
the data, which includes the distinguishing information of the minority classes. Therefore,
self-supervised pre-training has the potential to ease class imbalance by augmenting the
overall semantic extraction capabilities on all categories.

On the other hand, self-supervised pre-training is highly suitable for defect segmenta-
tion in the industry, as there exists inexhaustible data that are free to be used.

Nevertheless, existing networks have strong architectural constraints, with MAE
and semMAE based on a full transformer architecture, and FCMAE built upon fully
convolutional layers, making it difficult to be applied directly on the hybrid architectural
MobileViTs [46–48]. Thus, we have developed a Hybrid MAE network.

The key idea of MAE is to divide input images into patches of a certain patch size,
which will be randomly masked with a relatively high mask rate (0.60, 0.75, etc.), and
then to reconstruct the missing pixels through the pretraining model of encoder–decoder
architecture, forcing the model to conduct self-supervised learning on the data (Figure 15).
After pretraining, the semantic-aware encoder will be transferred into the networks in the
downstream task.
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Figure 15. MAE reconstruction results.

All the related methods [39–41] adopt an asymmetric encoder–decoder structure,
where a relatively larger encoder is paired with a light-weight decoder, allowing the
encoder to take on more of the semantic feature extraction burden. Additionally, the
encoder only extracts features from the remaining visible patches, significantly reducing
the model’s computational complexity and accelerating the pretraining process.

To apply self-supervised pre-training on the MobileViTv3 of hybrid architecture with
both CNN and Transformer blocks, modifications are made based on the MAE and FCMAE.
The overall structure of the proposed pre-training network is shown in Figure 16.
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FCMAE. The overall structure of the proposed pre-training network is shown in Figure 
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Figure 16. Hybrid MAE architecture in our research.

4.1.1. Mask Generation

Assuming the input image is I ∈ R3×512×512, the patch size is set to 32, and the mask
rate is chosen as 60%, a mask matrix M ∈ R1×16×16 is generated at the patch-wise level.

4.1.2. Encoder

We take the whole structure of the encoder in DeeplabV3+ for pretraining, which
includes a MobileVITv3_0.50 backbone and the CA-ASP. To conduct masking, some details
need to be noted.

• Layers for masking:

Convolutional layers, limited by the receptive field, especially for those in the initial
stages, may not be capable of learning sufficient semantic information from the sparsely
masked data, which could be detrimental to the training of subsequent layers. Therefore,
to prevent excessive information loss caused by early masking, we have drawn inspiration
from FCMAE to mask features on the later stage, with layer three to layer five of the
MobileViTv3, as well as the CA-ASP layer selected for masking. Owing to the varying
size of the features in different layers, the mask matrix needs to be upsampled before
application.

• Masking strategies:

To ensure that the encoder extracts features only from visible pixels after masking, for
convolutional layers in the backbone, we apply the approach purposed in FCMAE [41]
(Figure 17a), conducting a binary masking operation before and after every convolution
operation. Since a lightweight encoder is selected for the task, this operation will not
bring too much computational burden. However, when we tried to implement the same
method to CA-ASP, one problem arises: how do we match the 2D mask matrix with the
1D convolution in CA? To avoid mismatching and streamline the masking process, we
treat CA-ASP as a black box and only apply masking to its input and output (Figure 17b).
During fine-tuning, all it needs is to simply remove the masking steps.
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Additionally, for the separable self-attention layer, the method of MAE [39] is applied
(Figure 17c), where self-attention is only conducted on the unfolded non-masked parts.
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Then, the transformed features will be reassembled in the original order. Since self-attention
occupies most computations in the encoder, it would accelerate the pretraining.

4.1.3. Decoder

The decoder is designed, based on FCMAE, with a few adjustments tailored for the
DeeplabV3+. In semantic segmentation, it is essential to maintain an adequate feature size
from the encoder, hence an output stride of 16 is commonly selected for such tasks, which
the produces the output features X ∈ R256×32×32. This process can be described as:

Encoder(x) := I ∈ R3×512×512 → X ∈ R256×32×32 (12)

• Adjustment for the output stride of the encoder in semantic segmentation:

However, in the FCMAE method, there is no upsampling process. To match the shape
of predict tensor and the input image, the final prediction needs to be scattered across the
channel dimension in a patch-wise order.

Assuming the patch size is set to 32, the corresponding number of patches will be 162.
The final prediction needs to be Y ∈ R(322×3)×162

, where the first dimension represents all
the pixels in each patch and the second dimension represents the number of patches.

To ensure consistency with the encoder throughout pre-training and fine-tuning, the
feature maps need to be downscaled by half, which will be achieved via a 3 × 3 convolution
with a stride of 2. Moreover, to preserve the integrity of the information extracted from the
encoder, the channel dimension of the features should be expanded simultaneously. With
X ∈ R256×32×32 representing the output from the encoder, the output of this downscale
mapping layer would be:

Conv3×3(x) := X ∈ R256×32×32 → X′ ∈ R512×16×16 (13)

• ConvNeXtV2 block in FCMAE:

The following ConvNeXtV2 block [41] in FCMAE is an inverted residual structure
(Figure 18). To manage sparse data, it uses a large convolutional kernel and a corresponding
stride to increase the receptive field while remaining in the shape of the input, allowing
it to aggregate information from the sparse visible pixels to the maximum extent. Within
ConvNeXtV2, there exists a Global Response Normalization (GRN) module [41] to address
the issue of feature collapse, which refers to the phenomenon where features become
excessively similar.
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Figure 18. ConvNeXtV2 Block.

The following elucidates the implementation of the GRN. Given that an input
X ∈ RH×W×C, a L2-Norm L2(·) is applied, followed by a normalization function N(·). To
ease optimization, two additional learnable parameters, denoted by γ ∈ RC and β ∈ RC,
were introduced and initialized to zero. The output can be calibrated as:

{γ ∗ x ∗ N(G(x)) + β + x} := x ∈ RH×W×C → x′ ∈ RH×W×C (14)

The output of the ConvNeXtV2 Block would be:

ConvNeXtV2(x) := X′ ∈ R512×16×16 → X′′ ∈ R512×16×16 (15)

• Prediction Layer:



Machines 2024, 12, 276 16 of 28

At last, the prediction layer is conducted by a simple 1 × 1 convolution, which
transforms the features into a final prediction:

Conv1×1(x) := X′′ ∈ R512×16×16 → Y ∈ R(322∗3)×16×16 (16)

4.1.4. Loss Function

The Mean Squared Error (MSE) is used as the loss function, calculating the average
loss of each patch only on non-masked pixels.

Firstly, the input X and prediction Y should be transformed into a patch-wise level:

Patchi f y(x) := X ∈ R3×512×512 → X ∈ R(322∗3)×162
(17)

Reshape(x) := Y ∈ R(322∗3)×16×16 → Y ∈ R(322∗3)×162
(18)

Assuming that p is standing for the total number of patches, the mask value of the i-th
patch is denoted by Mi, l is the total pixels in the i-th patch, yj is the j-th pixel in the i-th
patch of the prediction, with corresponding ground truth signified by yj, the loss can be
calibrated as:

masked_MSE =
1
p

p

∑
i=0

l

∑
j=0

Mi(yj − yj)
2 (19)

4.2. Transfer Learning for the Reverse Task

The obverse task is selected as the upstream task, due to its richer semantic information.
After self-supervised pre-training with MAE and the subsequent supervised fine turning on
the obverse set, the model is already excellent in extracting semantic information. Thereby,
we opted not to conduct additional MAE pre-training for the reverse task, but directly
transfer the model weights from the obverse task to the reverse one.

Unlike MAE pretraining, which only delivers the encoder of the network, transfer
learning between the dual tasks involves transferring the entire network structure, except
for the final prediction layer, owing to the distinct number of categories presented in the
two sets.

This strategy leverages the knowledge and feature representations learned from the
upstream task to expedite the training process of the reverse task, potentially enhancing
model performance.

5. Results
5.1. Experimental Setup

All the designed experiments were conducted on the Window 11 system with the 13th
Gen Intel(R) Core (TM) i9-13900HX CPU, 16.0 GB RAM, and NVIDIA GeForce RTX 4060
GPU with 8 GB memory. The implementation of the developed models and methods are
based on the PyTorch 2.1.1 framework with CUDA 11.2, CUDNN 11.2.

5.1.1. Dataset and Loss Function

Experiments were conducted using image data with a resolution of (512 × 512).
For supervised learning, the annotated datasets were split into training, validation,

and testing sets in a 6:3:1 ratio. Subsequently, standard data augmentation techniques
(random flipping, rotation, scaling, cropping, etc.) were applied, resulting in a threefold
increase in the data volume of each set.

The training and validation sets were used for supervised training, parameters opti-
mization, and result evaluation, while the testing set was used for the final segmentation
demonstration.

All the networks in the experiment were trained using Weighted Cross-Entropy.
For MAE self-supervised pre-training, we have made full use of the 1295 unannotated

original samples on the obverse task.
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5.1.2. Evaluation Indicators

• Metrics of overall segmentation accuracy: Two metrics were used to verify the overall
segmentation accuracy.

1. Mean Pixel Accuracy (MPA): MPA calculates the average pixel-level segmenta-
tion accuracy, but it does not consider the spatial relationships between categories,
and it is insensitive to segmentation boundaries;

MPA =
1

n + 1

n

∑
i=0

pii

∑k
j=0 pij

(20)

2. Mean Intersection over Union (mIoU): mIoU measures the average overlap
between predicted masks and ground truth masks across all classes in a dataset.
It is the most widely accepted and primary metric among all the other metrics to
evaluate the overall segmentation accuracy as it considers not only pixel-level
accuracy but also the accuracy of segmentation boundaries;

mIoU =
1

n + 1

n

∑
i=0

pij

∑k
j=0 pij + ∑k

j=0 pji − pii
(21)

• Metrics for class imbalance: Due to the significant class imbalance, we adopt two
auxiliary metrics to assess the model’s ability to address this issue.

1. Intersection over the Union (IoU) of the minority classes: IoU measures the
overlap between predicted masks and ground truth masks for a certain class. We
will provide extra attention to the IoU of the minority classes in the results;

IoUi =
pij

∑k
j=0 pij + ∑k

j=0 pji − pii
(22)

2. Frequency Weighted Intersection over the Union (FWIoU): FWIoU computes a
weighted sum of IoU for each category, with the weights being the frequency of
occurrence of each category.

FWIoU =
1

∑n
i=0 ∑k

j=0 pij

n

∑
i=0

∑k
j=0 pij pii

∑k
j=0 pij + ∑k

j=0 pji − pii
(23)

In Equations (20)–(23), n represents the number of target categories, pii indicates
represents the total pixels correctly predicted as an actual category, pij and pji denote the
total pixel-wise mispredictions of a certain category.

• Metrics for measuring lightweighting and computational complexity: The three
metrics below are calculated on the obverse set, as it contains more categories which
result in larger number of parameters compared to the reverse set. Metrics in this part
will determine whether the network meets the real-time requirements of Grinding
Wheel defect segmentation.

1. Parameter Size (in Million, M): Parameter size refers to the total number of
learnable parameters in a model, measured in millions (M), which intuitively
reflect the scale of the network. Additionally, it is important to note that param-
eter size is not equivalent to memory usage (in MB). Typically, each parameter
is stored using a precision floating-point format (float32). Hence, the memory
usage of a network can be estimated by multiplying the parameter size by 4;

2. Floating-point Operations (FLOPs) (in Million times, M): FLOPs are the most
commonly used and intuitive metric for measuring model computational complexity;
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3. Latency (in ms): Latency is measured as the average speed of 50 consecutive
inferences of an input with a shape of X ∈ R1×3×512×512, verifying the inference
speed.

5.2. Experiments on the Obverse Task
5.2.1. Ablation Experiments of the CA-ASP

To evaluate the effectiveness of CA-ASP, we compared the combination of ASPP with
various state-of-the-art attention mechanisms. The experiments were conducted with the
DeeplabV3+ network based on the MobileViTv3_0.50 backbone, each trained for 250 epochs
with a batch size of 10. The metrics on the validation set of each model are listed in Table 3.

Table 3. Comparison results of ASPP integrated with different attention mechanisms based on
DeeplabV3+ with a mobileViTv3_0.50 backbone.

Method
Params

(M)
FLOPs

(M)
Latency

(ms)
MPA
(%)

mIoU
(%)

FWIoU
(%)

IoU (%)

Ring_NG Logo

ASPP (baseline) 4.31 25,282.92 9.978 78.346 68.333 88.583 36.123 46.058
ASPP + CBAM 4.32 25,283.30 10.682 78.681 68.252 88.698 33.741 44.602

ASPP+ Separable Self-Attention 4.51 25,484.51 10.841 78.018 68.680 88.584 30.790 52.274
CA + ASPP 4.40 25,288.65 10.031 78.110 67.212 87.857 33.907 48.333
ASPP + CA 4.31 25,283.73 9.836 80.238 69.359 89.019 35.357 52.626

CA-ASP (Ours)
3.44 24,633.63 9.512

80.821 70.208 89.090 37.075 50.944
CA-ASP + MAE (Ours) 81.315 70.796 89.133 41.727 53.355

As can be observed from the results, our CA-ASP method, which has a reduced
parameter size (−0.87 M) and FLOPs (−649.29 M) compared to the baseline model, gains
the highest mIoU score of 70.208%, surpassing other methods by +0.849% to +2.996%.

However, compared to one of the best combinations “ASPP + CA”, our method has
shown a slight inadequate performance on the challenging class Logo.

To further explore the potential of CA-ASP, we have proceeded to conduct MAE
self-supervised pretraining on the model.

5.2.2. Ablation Experiments of MAE Self-Supervised Pretraining

In this part, we used the DeeplabV3+ based on MobileViTv3_0.50 backbone and CA-
ASP on the obverse task, where 1295 unannotated data were divided into training and
validation sets in an 8:2 ratio. Pretraining was conducted for 800 epochs with a batch size of
20. In the formal training phase, models using MAE pretrained weights and initial weights
were separately trained for 250 epochs.

• Changes in the metrics.

To measure the differences in segmentation performance brined by the MAE method,
we first looked at the changes in the metrics (Table 3), which indicate that the network with
MAE achieved a slight increase in mIoU (+0.588%) and FWIoU (+0.043%) but obtained
a relatively significant improvement in the IoU of the challenging classes, especially in
Ring_NG, exceeding the CA-ASP model by +4.652% and the baseline ASPP model by
+5.604%, while in the category Logo, surpassing the best combination of “ASPP + CA” by
+0.729% and baseline model by +7.297%.

• mIoU-over-epoch curves.

Additionally, a reference was made to the mIoU-over-epoch curves in Figure 19, which
indicates that MAE has brought a better initial state to the model, but soon began to
converge with the baseline, eventually resulting in a minimal rise.
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Figure 19. mIoU-over-epoch curves of CA-ASP with MAE and baseline CA-ASP.

This has prompted us into rethinking about how to evaluate the quality of semantic
information learning during self-supervised pretraining. In situations where there is an
imbalance between categories, the tendency of the model towards some certain categories
may lead to a lack of improvement in mIoU. Also, a light-weight network has fewer
parameters to be trained, which may result in similar converging speed after the initial
phase. Furthermore, the absence of pre-training for the decoder, as well as the disparity
between the source domain (Image Reconstruction) and the target domain (Semantic
Segmentation) may contribute to the similar convergence in the later stage.

• IoU-over-epoch curves.

Based on this assumption, we observed the changes in IoU of each class (Figure 20) and
found that in the initial stage, the model’s understanding on the Background far exceeds
that of the baseline. At the same time, there has been some improvement in the majority
classes, Mesh and Sand. In contrast, the model did not demonstrate any additional benefits
from pre-training considering no difference was made in the two difficult classes Ring_NG
and Logo during the initial training.
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In fact, this situation accords with expectation, as during pretraining, there is no
concept of categories, meaning that the majority pixels, which belong to the majority classes
over supervised training, contributing more to the MSE loss, inevitably leading to a certain
overfitting. The higher stability of the two majority classes, Mesh and Sand, in subsequent
training also serves as evidence of this point.

However, to our surprise, in the following training for the challenging class Ring_NG,
while the baseline model had already started to converge, the IoU of the MAE model
was still rising, ultimately leading to a significant improvement in segmentation accuracy.
Meanwhile, although both curves of the Logo class exhibited significant fluctuations, which
stem from its extreme scarcity, the MAE method still achieved a higher metric value.
Furthermore, when we observed the period during which the two challenging classes
reached their optimum, there was a minor difference shown in the IoU of the two models
on other categories as they were already converging. This means that the increase in mIoU
is mostly contributed to by challenging classes, which would provide valuable guidance
for addressing imbalance phenomenon.

The reason behind this may lie in the additional samples, which latently exist in
the unannotated data and the semantic-aware pretrained weight which contains a more
comprehensive understanding of the minority classes. One the one hand, the additional
samples are beneficial for the model to learn more semantic information. On the other hand,
during the initial stages of training, due to the issue of imbalance, the majority classes still
contribute the most to the loss, prompting the model to fit towards the majority. At this
point, the benefit of a difficult-class-friendly initial weight may not have fully manifested.
However, when other majority classes start to converge with a relatively high mIoU, their
contribution to loss decreases significantly, and the minority classes come to dominate. It is
at this stage that a semantic-aware initialization weight, compared to random initialization,
has greater potential to steer the model’s convergence towards the challenging classes.

• Improved Quality of Features from the Encoder.

Figure 21 demonstrates the feature from the encoder of DeeplabV3+ before and after
supervised training, where (a) employs randomly initialized weights, and (b) utilizes pre-
trained weights with MAE. The input is the image from the second row of Figure 22 in
Section 5.2.3, which contains a Ring_OK and a Ring_NG object.
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Figure 22. The visualized segmentation results of different networks on the testing set of the obverse 
task. The red, green, yellow, blue, and purple areas refer to the Ring_OK, Ring_NG, Logo, Mesh 
and Sand: (a) Ground Truth; (b) mViTv3_0.50 + FCN; (c) mViTv3_0.50 + PSPNet; (d) mViTv3_0.50 + 
Segformer; (e) mobileNetV3_large + DV3+; (f) mViTv3_0.75 + DV3+; (g) mViTv3_0.50 + DV3+ (base-
line); (h) mViTv3_0.50 + (ASPP+CA) + DV3+; (i) mViTv3_0.50 + CA-ASP + DV3+ (Ours); (j) 
mViTv3_0.50 + CA-ASP + DV3+ + MAE (Ours). 

A notable enhancement in the quality of features is observed with the MAE method. 
Furthermore, upon closer inspection of the features, it is evident that there are more dis-
tinct features highlighting Ring_OK. Additionally, the features of Ring_NG are more pro-
nounced compared to the randomly initialized approach. 

In conclusion, this further validates our hypothesis of using MAE to address class 
imbalance. MAE pre-training significantly enhances the network’s understanding of the 
minority classes. Additionally, it is noticeable that the model with MAE has significantly 
reduced the cluttered and irrelevant features. This is because the model filters out the 
background features and retains only the most important features for the current sample, 

Figure 21. Features form the encoder before and after supervised training: (a) randomly initialized
weights; (b) MAE pretraining weights.
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Figure 22. The visualized segmentation results of different networks on the testing set of the obverse 
task. The red, green, yellow, blue, and purple areas refer to the Ring_OK, Ring_NG, Logo, Mesh 
and Sand: (a) Ground Truth; (b) mViTv3_0.50 + FCN; (c) mViTv3_0.50 + PSPNet; (d) mViTv3_0.50 + 
Segformer; (e) mobileNetV3_large + DV3+; (f) mViTv3_0.75 + DV3+; (g) mViTv3_0.50 + DV3+ (base-
line); (h) mViTv3_0.50 + (ASPP+CA) + DV3+; (i) mViTv3_0.50 + CA-ASP + DV3+ (Ours); (j) 
mViTv3_0.50 + CA-ASP + DV3+ + MAE (Ours). 

A notable enhancement in the quality of features is observed with the MAE method. 
Furthermore, upon closer inspection of the features, it is evident that there are more dis-
tinct features highlighting Ring_OK. Additionally, the features of Ring_NG are more pro-
nounced compared to the randomly initialized approach. 

In conclusion, this further validates our hypothesis of using MAE to address class 
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Figure 22. The visualized segmentation results of different networks on the testing set of the obverse
task. The red, green, yellow, blue, and purple areas refer to the Ring_OK, Ring_NG, Logo, Mesh
and Sand: (a) Ground Truth; (b) mViTv3_0.50 + FCN; (c) mViTv3_0.50 + PSPNet; (d) mViTv3_0.50
+ Segformer; (e) mobileNetV3_large + DV3+; (f) mViTv3_0.75 + DV3+; (g) mViTv3_0.50 + DV3+
(baseline); (h) mViTv3_0.50 + (ASPP+CA) + DV3+; (i) mViTv3_0.50 + CA-ASP + DV3+ (Ours);
(j) mViTv3_0.50 + CA-ASP + DV3+ + MAE (Ours).

A notable enhancement in the quality of features is observed with the MAE method.
Furthermore, upon closer inspection of the features, it is evident that there are more distinct
features highlighting Ring_OK. Additionally, the features of Ring_NG are more pronounced
compared to the randomly initialized approach.

In conclusion, this further validates our hypothesis of using MAE to address class
imbalance. MAE pre-training significantly enhances the network’s understanding of the
minority classes. Additionally, it is noticeable that the model with MAE has significantly
reduced the cluttered and irrelevant features. This is because the model filters out the
background features and retains only the most important features for the current sample,
which indicates that the model’s ability to focus on important information has also been
further improved.

5.2.3. Comparative Experiments with State-of-the-Art Methods

At last, we have reached the comparative experiment to determine if the proposed
model is sufficiently ideal compared to some state-of-the-art real-time models. We have
involved four different segmentation architecture including FCN [49], PSPNet [50], and
Segformer [51] and DeeplabV3+. Moreover, two types of backbone have been selected,
including the MobileNetV3, renowned as one of the best real-time CNNs, and the Mobile-
ViTv3, which is one of the top-performing real-time hybrid transformers.

The first experiment is the metrics comparison (Table 4), according to which we make
the following observations:
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• DeeplabV3+ is slower than other simple architecture, but better in segmentation
precision: FCN, PSPNet, and Segformer are typical asymmetric encoder–decoder
structures, where the decoder is considerably simpler than the encoder. Hence, when
given a light-weight encoder, it would exhibit faster inference speeds. However, when
we compare Methods (1)–(3) and (6), it becomes evident that models of such structure
all suffer from one issue: they attain an excellent MPA but struggle to achieve a
sufficient mIoU, which means that the model is capable of accurately predicting most
areas (profit for MPA) but fails to produce precise mask boundaries (adverse to mIoU).

• In the perspective of latency, our method bridges the gap between CNNs and
hybrid transformers: Experimental results in other research [46–48] have shown that
lightweight CNNs are still faster than lightweight hybrid transformers. When we refer
to Methods (4)–(8), it is evident that the models based on MobileViTv3 contain fewer
parameters but obtain lager FLOPs, which stem from the mechanism of self-attention,
optimizing the limited parameters to perform denser computations to achieve superior
segmentation precision.

Among the DeeplabV3+ models, our method contains the fewest parameters,
which is 45.2% smaller than models with the MobileNetV3_large, and 41.4% smaller
than the one using the MobileViTv3_0.75. The FLOPs of our method is between the
above two models and is closely comparable to the one using the MobileNetV3_large
(+1,789.88 M), which on the GPU device will provide minimal differences in the latency
(+0.146 ms).

All in all, the latency of 9.512 ms in our method can meet the real-time requirement.
Moreover, this result can provide valuable insights for improving real-time transformer-
based semantic segmentation models: if the computational complexity of self-attention
cannot be further reduced, then improvements can be made to the ASPP module to
achieve faster inference speeds.

• Among the Deeplabs, our method obtains the best mIoU, with the smallest param-
eter size: It is apparent that our method, with the best mIoU of 70.796%, surpasses
other Deeplabs ranging from +2.463% to +0.597%. Furthermore, this improvement is
achieved with the parameters reduced to a minimum.

• Ability for dealing with imbalance: It can be observed from the FWIoU and IoU that
our method presents notable advantages in addressing imbalance. In terms of FWIoU,
our method gains the highest score of 89.133%. For the IoU of the challenging classes,
other methods encounter difficulty in balancing the segmentation precision across
both classes. However, this phenomenon is effectively addressed by our method as
there is a significant improvement in the IoU of the two classes.

Table 4. Comparison with other state-of-the-art models on the Obverse task.

Method Params(M) FLOPs
(M)

Latency
(ms)

MPA
(%)

mIoU
(%)

FWIoU
(%)

IoU (%)

Ring_NG Logo

(1) mViTv3_0.50 1 + FCN 3.49 4770.27 6.330 78.110 66.672 86.933 37.602 44.518
(2) mViTv3_0.50 + PSPNet 11.2 11,724.93 7.890 80.772 67.661 87.042 37.406 48.618
(3) mViTv3_0.50 + Segformer 2.03 6960.19 7.440 79.895 68.021 87.651 33.563 53.222
(4) MobileNetv3_large + DV3+ 2 6.28 22,843.75 9.366 81.303 69.003 88.410 41.698 43.607
(5) mViTv3_0.75 + DV3+ 5.87 28,268.60 10.519 83.094 70.199 88.869 37.975 53.338

(6) mViTv3_0.50 + DV3+
(baseline) 4.31 25,282.92 9.978 78.346 68.333 88.583 36.123 46.058

(7) mViTv3_0.50 + CA-ASP +
DV3+ (Ours) 3.44 24,633.63 9.512

80.821 70.208 89.090 37.075 50.944

(8) mViTv3_0.50 + CA-ASP +
DV3+ + MAE (Ours) 81.315 70.796 89.133 41.727 53.355

1 mViTv3 signifies the MobileViTv3; 2 DV3+ signifies the DeeplabV3+.
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The second experiment aims to evaluate the model’s stability and generalizability on
unseen data in the testing set. Figure 22 demonstrates some of the visualized segmentation
results on the testing set. As we move along from Row 1 to Row 7, the complexity of
the segmentation scene gradually increases, which poses high demands on the model’s
generalizability and stability. Moreover, we have further involved the DeeplabV3+ with
the “ASPP + CA” method into the demonstration, as it has produced excellent results,
according to Table 3.

In Tables 3 and 4, it is proven that our method achieves the highest segmentation
precision on both mIoU and FWIoU. In Figure 22, it is more intuitive to make observations
that may help to discern the underlying reason:

• Smoother boundaries brought by lager parameters: PSPNet and the DeeplabV3+
with the MobileNetV3_large are constructed by the largest parameters compared to
other models, and thus they have provided smoother mask boundaries. However,
smoothness is not equivalent to precision. In the relatively simpler scenes (Row 1~3),
Methods (c), along with (b) and (d), present insufficient segmentation accuracy. As the
scenes become increasingly complex, Methods (c) and (e) exhibit more pronounced
misclassifications (Method (c) in Row 5~6, Method (e) in Row 4~6), some of which
is caused by its shortcomings in segmenting the challenging Ring_NG and correctly
predicting the category of a moderately sized region.

• The stability of segmentation accuracy unaffected by scene complexity: Segmenta-
tion in complex scenes not only tests the overall segmentation accuracy of the model
but also requires the model to sensitively discern precise boundaries. Additionally,
it poses high demands on how the model balances different categories. When multi-
ple segmentation categories coexist, the model may expand the regions of majority
classes (including the Background) and engulf those of minority classes. This reflects
the model’s ability in addressing class imbalance. Methods (b)-(e) and (g)-(h) show
discrepancies as the scene becomes more complex, especially in the challenging classes
of Ring_NG and Logo. When we observe Row 7, another phenomenon emerges: as
the scene becomes sufficiently complex, some methods, including (c), (e) and (h), tend
to expand the segmented regions outwards. This could be a contributing factor to
the lack of improvement in the mIoU metric: the denominator, represented by the
Union, becomes larger. Overall, compared to the best-performing methods (e), (f), and
(h), our approach demonstrates the fewest misclassifications and ensures the most
precise boundaries of Ring_NG and Logo, and thus maintains solid stability and better
generalizability as the scene complexity increases, thanks to the enhanced attention
capability of CA-ASP on spatially salient regions, which significantly improves the ac-
curacy of the baseline (g) with fewer parameters, and the improvement in addressing
imbalance through MAE self-supervised pretraining.

5.3. Experiments on the Reverse Task
5.3.1. Ablation Experiments of Transfer Learning

To verify the effectiveness of transfer learning on the reverse set, we compared the
mIoU-over-epoch curves of two sets of models with and without pretrained weights
(Figure 23), one being the baseline model using the DeeplabV3+ with mobileViTv3_0.50
backbone, and the other being our proposed model with CA-ASP.

At the initial and middle stages, benefitting from the complete pretraining weights
of both the encoder and the decoder, a faster convergence was achieved through transfer
learning. As the models began to converge, models with transfer learning pretrained
weights obtained a slight rise in the mIoU.

The results indicate that transfer learning not only accelerates convergence but
also, by further training on the semantic-aware pretraining weights, leads to a higher
segmentation accuracy.
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5.3.2. Comparative Experiments with State-of-the-Art Methods

We have further validated the effectiveness of our network in the reverse task by
comparing several models that performed well in the obverse task. Each network is trained
for 200 epochs with a batch size of 10.

• Achieving the best performance on overall precision and dealing with imbalance.

Firstly, in Table 5, results indicate that, consistent with the obverse task, our method
achieves the best segmentation performance on mIoU (80.757%), which has brought a
+5.216% increase compared to the baseline.

Table 5. Comparison with other state-of-the-art models on the Reverse task.

Method
MPA
(%)

mIoU
(%)

FWIoU
(%)

IoU (%)

Holes Impurity

(1) mViTv3_0.50 1 + PSPNet 85.321 72.015 93.613 60.346 36.660
(2) mViTv3_0.50 + Segformer 91.818 74.683 93.852 66.919 42.226
(3) MobileNetV3_large + DV3+ 2 93.895 75.216 94.184 59.336 49.121
(4) mViTv3_0.75 + DV3+ 93.552 76.961 94.394 65.948 51.713
(5) mViTv3_0.50 + DV3+ (baseline) 92.896 75.541 94.143 63.881 47.939
(6) mViTv3_0.50 + DV3+ (pre) 3 93.558 76.967 94.267 65.442 53.257
(7) mViTv3_0.50 + (ASPP+CA) + DV3+ 92.402 77.119 94.634 65.839 53.228

(8) mViTv3_0.50 + CA-ASP + DV3+
(Ours) 93.908 79.507 95.485 69.028 55.164

(9) mViTv3_0.50 + CA-ASP + DV3+ (pre)
(Ours) 94.215 80.757 95.645 71.152 58.398

1 mViTv3 signifies MobileViTv3; 2 DV3+ signifies DeeplabV3+; 3 (pre) signifies (pretrained).

In terms of imbalance, simple networks such as PSP and Segformer, show limitations
in handling challenging classes in the reverse set. In contrast, our method achieves signif-
icant improvement in the Holes (+4.233%~+11.816%) and Impurity (+5.17%~+21.738%)
compared to other methods.

• Magnified gaps between different methods caused by the more complex scenes.

Secondly, in addition to the metrics itself, another noteworthy phenomenon is that on
the reverse task, the gaps between the models have been magnified. To further explore the
reasoning behind this, likewise, we have assessed the models on the testing set, which will
also test the stability and generalizability of the models on the reverse task.
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As in Figure 22, the complexity of the scene in Figure 24 increases progressively in
order, which vividly illustrates the accuracy discrepancies between the models.

As stated in Section 2.2.3, the scenes are more complex in the reverse set. The phe-
nomenon of expanding segmented regions outwards in complex scenes, as depicted in
Figure 22, becomes intensified in the reverse set excessively. Even in the simplest scenario
in Row 1, Method (d) exhibits such a situation. As the scenes become more complicated
(Row 4~7), the excessive expansion, to varying degrees, is shown in most of the methods
(b)-(g), which will hinder the networks to achieve higher mIoU scores.

However, under such circumstances, our method (h) still processes robust stability
and better generalizability across different scenes, as it effectively suppresses the excessive
expansion of the regions, which leads to sharper boundaries. On the other hand, it can be
perceived in the masks of Holes and Impurity that, our method produces the clearest and
most precise edges on the challenging classes even in the most complicated scenarios.
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Figure 24. The visualized segmentation results of different networks on the testing set of the reverse 
task. Red, green, yellow, blue, and purple areas refer to Holes, Mesh, Sand, and Impurity: (a) 
Ground Truth; (b) mViTv3_0.50 + PSPNet; (c) mViTv3_0.50 + Segformer; (d) mobileNetV3_large + 
DV3+; (e) mViTv3_0.75 + DV3+; (f) mViTv3_0.50 + DV3+ (pretrained); (g) mViTv3_0.50 + (ASPP + 
CA) + DV3+; (h) mViTv3_0.50 + CA-ASP + DeeplabV3+ (pretrained) (Ours). 

As stated in Section 2.2.3, the scenes are more complex in the reverse set. The phe-
nomenon of expanding segmented regions outwards in complex scenes, as depicted in 

Figure 24. The visualized segmentation results of different networks on the testing set of the reverse
task. Red, green, yellow, blue, and purple areas refer to Holes, Mesh, Sand, and Impurity: (a) Ground
Truth; (b) mViTv3_0.50 + PSPNet; (c) mViTv3_0.50 + Segformer; (d) mobileNetV3_large + DV3+;
(e) mViTv3_0.75 + DV3+; (f) mViTv3_0.50 + DV3+ (pretrained); (g) mViTv3_0.50 + (ASPP + CA) +
DV3+; (h) mViTv3_0.50 + CA-ASP + DeeplabV3+ (pretrained) (Ours).

6. Conclusions and Discussion

Targeting at extreme lightweight and highly efficient design for the DeeplabV3+, this
paper has proposed a novel light-weight CA-ASP module to the DeeplabV3+ network based
on the discovery of similarities between CA and ASPP, which outperforms the original
ASPP baseline with a reduced parameter size (45.3%) and computational complexity
(53.2%). Moreover, in addition to employing Weighted Cross-Entropy, this paper has
innovatively developed a hybrid MAE self-supervised pre-training network to manage
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imbalance. Through the MAE pretraining, we have fully leveraged the unannotated data
to uplift segmentation precision of the minority categories, and further enhance the overall
precision. At last, to address the highly related dual-side tasks, transfer learning has been
conducted to accelerate the convergence process, which has further led to an improvement
in segmentation accuracy on the reverse set.

Ablation experiments results have indicated that our network, with a real-time infer-
ence speed of 9.512 ms, achieves fewer parameters (−0.87 M) and less FLOPs (−649.29 M)
compared to the baseline network using ASPP, while surpassing the latter on mIoU by
+2.463% on the obverse set and +5.216% on the reverse one. Comparative results have
demonstrated that our method exceeds other state-of-the-art real-time semantic segmenta-
tion networks on mIoU by +0.597%~+4.124% on the obverse set and by +3.638%~+8.742%
on the obverse set. Moreover, our network has made significant improvements in managing
imbalance and has shown robust stability and a better generalizability in
complex scenarios.

Through dual validations on the obverse and reverse sets, results have demonstrated
that our developed method provides valuable answers to the two main questions proposed
by the dual grinding wheels segmentation tasks.

However, after careful review, two issues were identified. Firstly, no modification
has been made to the decoder of the DeeplabV3+, which has a great potential for further
enhancing segmentation performance. Secondly, we have made structural improvement to
MAE on the hybrid architecture encoder but did not change the form of self-supervised pre-
training. Given the potential of MAE in addressing imbalance issues, there may be better
strategies, such as selectively choosing difficult samples of the minority classes to fine-tune
the pre-training. On the bright side, as in general, the attention mechanisms contain a
pooling layer, there may be more ways to integrate different attention mechanisms into
the ASPP according to the theory we proposed. These topics require further exploration in
future research.
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